ADAPTIVE FILTERS I: FUNDAMENTALS

by

‘Bernard Widrow

December 1966

Reproduction in whole or in part
is permitted for any purpose of
the United States Governament.

Technical Report No. 6764-6

Prepared under

U.S. Army Materiel Command
NIKE-X Project Office
Redstone Arsenal, Alabama
Contract No. DA-01-021 AMC-90015(Y)

and also under

Naval Ship Systems Command
Department of the Navy
Contract NOBsr-95038

Systems Theory Laboratory
“Stanford Electronics Laboratories

SU-SEL-66-126

Stanford University Stanford, California



ABSTRACT )

An adaptive filter consisting of a tapped delay line, vafiable
weights, a signal summer, and a means for automatically’adjusting‘the
weights (the IMS algorithm, based on the method of steepeét descent) has
been presented and analysed. Feedback is used to control the "design"
(the weight adjustments) of the system rather than to control the sighals
being filtered. ’

A mean-square-error performance criterion is used. In many cases,
the mean-square error is a quadratic function of the filter adjustments.
In such cases, recursive gradient optimization by the method of steepest
descent produces exponential-like transients in the adjustment parameters
dur}ng adaptation. A linear theory of adaptation based on state-space
methods is developed which relates the stability, rate of adaptation,
and expected filter perforﬁance to signal statistics and to parameters
of the adaptation algorithm. Simplifications in analysis have been
realized by expressing adaptation transient phenomena in terms of the
normal coordinates of the system. The adaptive time constants are given
by ' . 1

T = 3oy p=1,2, ... n,
P 2( ks) lp

where xp is the pth eigenvalue of the input-signal correlation matrix
[¢(x,x)] and ks is a design parameter that determines the rate at
which adaptation is accomplished. _
The IMS algorithm, which is simple and practical, uses measured
gradient estimates that are "noisy" but unbiased. Noise in the filter
ad justments causes loss in system pefformance. This loss can be mini-
mized by slow adaptation. The per unit amount by which the mean-square
error of an adaptive filter exceeds that\of an optimal-least-squares

filter is derived as . n -

M=%z ;—1- .
=l 'p

Applications of the principles of adaptive filtering have been made

in the laboratory to automatic control, automatic modeling, prediction,'
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noise filtering, and pattern recognition; also to equalizers for
communication channels and to antenna arrays capable of developing a
high degree of directivity for noise rejection. Adaptive filters and
adaptive systems in general will find their strongest applications in
situations where inputs are nonstationary and where little or no a priori

statistical 1nformation about input signals 1s available.

SEL-66-126 : iv



CONTENTS

INTRODUCI‘ION o e iny e o e o o ® o o a‘e e e o

Previous Developments in Filter Design .
ldvantages”of~the Adaptive Filter . . .

AN ADAPTIVE FILTER ¢ ¢ o o o ¢ o o o o o o o

THE PERFORMANCE SURFACE . « o ¢ & ¢ 5 o o o

THE GRADIENT AND THE’LEAST-SQUARES-OPTIMAL WEIGHTS

THE METHOD OF STEEPEST DESCENT; A FEEDBACK MODEL

Flow-Graph Model . . . . o « o« « o o o o
Diagonalization of Flow Graph . . . . .
Normal State Variables . . . . « « « « &«
Transients in the Normal State Variables
Time Constants . . . . ¢ « « o & o o o

stability L] L] . L] L3 L L] L] . L] £l L4 L 3 Ld L]
THE IMS ADAPTATION ALGORITHM . . . . . « « &«

Method of Gradient Estimation . . . . .
Procedure in Using the LMS Algorithm . .

ms AIJGORITW O e o . o e . . L] . . e ©® o o

Time CONStantsS . o « o « o o o o o o o o

Stability of the LMS Algorithm . . . . .

GRADIENT-MEASUREMENT NOISE . . . . + « « o «

3

.

Excess Mean-Square Error Due to Adaptation . . .

‘Covariance Matrix of Gradient-Measurement Nolse

Propagation Path of Gradient-Measurement Noise .

 Fluctuations in Normal State Variables .
MI SADJUSTLENT . . . . L] L4 . . . . L] . . . L3

Misadjustment Formulas . . . « « + o o &

Efficiencies of Adaptation Processes . .

Page
* - - 1
L ] . - . 1
. o - 2
. L] L 4 3
® . L ] 5
- . L ] 9
L] o L ] 10
e o o« 13
L] ® L ] 16
. . . 19
. . s 19
L] * [ ] 24
L ] L] L d 24
e o« o 25
L] . [ ] 26
1] L] L] 27
e e e 28
. * ® 29
... 30
. s o 34
L] L] L] 35
e o« o 36
. o * 39
. L] L] 41
L] L ] L] 44
e o o 45
L] L] . 46
SEL-66-126



CONTENTS (Cont)

Page
APPLICATION OF ADAPTIVE FILTERS TO NONSTATIONARY SIGNALS . . . . . 49
OTHER FORMS OF ADAPTIVE FILTERS o w e o o & e o .o ®» o o & ® 50

A Continuous Adaptive Filter . .4; ; . ; e o o s s o o s o e o 51
A Nonlinear Adaptive FAlter . . . « « « « o « o o o « « « o » 53
A Feedback Adaptive FAlter . . « « o + o + o« o o o o o o o « « 53

chIJUSIONS » oc o o o o o o @ ® e ® o s e ¢« o o o » .‘ s = e e . 54

Advantages, Limitations,’Applications ERE .'. e . e ; . 56
Suggestions for Future Work . . . « o « + « o ¢ e s » o o o o 56

REF‘ERENCES . e o @ o e o o e o o = o o e s @ * ® o ® @ . * e e e . 57

SEL-66-126 vi



Figure No.
1.
2.
3.
4.
5.

ILLUSTRATIONS

Modeling an unknown system by a discrete adaptive filter.
Adaptive linear combinatorial system . . . . S5 e e i

Illustration of method of steepest descent . . . . . . .

Flow-graph model of method of steepest descent . FERe

Transformation steps from unprimed to primed coordinates
(normal state variables) . . ¢ . ¢ o s s e o s o s e e e

A one-diﬁensional tlow’graph (a), and its impulse

response ( b) o o s o * o o @ e o o e ® o & o o o e & o =

Geometrical relations among xj,‘ws, “and AW Ol

J

The gradient-measurement-noise propagation path . . . . .

Additional forms of adaptive filters: (a) continuous;
(b) nonlinear; (c) feedback . . « « « o« o o o o o & o o &

Page

11
14

20
23
33
40

52

vii SEL-66-126



ACKNOWLEDGMENTS

The work reported here had its beginnings while the author was a
faculty member at MIT from 1956 to 1959. The work was continued when
the author went to Stanford University in 1959, and the work was then
supported under a Tri-Service contract. More recently the work has
béen supported by Army and Navy contracts as noted on the title page.

Special thanks go to P. E. Mantey for maﬁy useful technical

interchanges.

SEL-66-126 viii



INTRODUCTION

The term "filter" is bftén'applied to any device or system that
processes incoming signals or other data in such a way as to eliminate -
noise, or smooth thg signals,'or identify each signal as beionging to
a particular class, or even predict the next signal from momenﬁ to
moment .

This paper preéents an approach to filtering of statistically

stationary or nonstationary signals, using an adaptive filter that is

in some sense self-designing (really self—optimizing). This_approach
does not,requiré complete g.griori‘knowlédge of the statistics of the
signals to be filtered. Thus the method has novel and significant
applications in the fieldsvof noise filtering for communication channels,
automatic control, pattern recognition, adaptive antenna design, and .
many others.

Previous Developments in Filter Design

Pioneering work in the field of filter design was done by Norbert
Wiener [1] more than two decades ago. His efforts made possible the
désign of linear filters for noise elimination and for predicting and
smoothing statistically stationary signals. Wiener filters are simple
to implement, and the design is optimal in the least-squares sense.

More recent work by Kalman and Bucy [2] has led to the design of

optimal time-variable linear filters for nonstationary signals. For

such signals, Kalman-Bucy filters can deliver substantially better

performance than Wiener filters.
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"Both the Wiener and the Kalman-Bucy filters must be designed on
the basis of a priori information or assumptions about the statistics
of the signals to be processed. These filters are optimal in practice
only when the statisticalvcharacteristics of the actual input signals
.match the a priori information on the basis of which tbe filters
were designed. When the‘g priori information is not known perfeétly,,
these filters will not deliver optimalvperformance.

Advantages of the Adaptive Filter

The adaptive filter d@Scribed in the present paper bases its own
"design" (its internal adjustment settings) upon estimated (measured)
statistical characteristics of input and output signals. The statistics
are not measured explicitly and then used to design the filﬁer;,rather,
the filter design is accomplished in a‘single proéess by a recursive
algorithm which automatically updates the adjustments with the arrival
of each new data sample. ‘

Inev?table efrors in the statistics estimates prevent the adaptive
filter from deliveringvoptimal performance, but the loss in performanée
can often be made quite small. This loss will be related to the
averaging timé (which in turn is related to the speed of adaptation)
and to the number of internal adjustments.

The form of adaptive filter described in this paper is almost as
“simple to implement as the Wiener filter, ahd should perform nearly as
well as the Kalman-Bucy filter (given perfect a priori information.)
Under circumstances in which the a priori information is.not perfectly

known, it is quite possible that the performance of an adaptive filter

could exceed that of either a Wiener or a Kalman-Bucy filter.

SEL-66-126 2



When almost no a priori information is available, the use of an

adaptive filter may be the only reasonable possibility.

AN ADAPTIVE FILTER

Adaptive;filters can be continuous or discrete. One partichlar
form of adaptive filter to be considered is a discrete (sampled-data)
type. It consists of a tapped delay line, variable weights (variable
gains) whose input signals are the signals at thq,delayfline téps,’j
summer to add the*weighted;signals, and machinery to automatically’
adjust the weights. The impulse résponse of such a discrete system
is completely controlled by the weight settings. The adaptatién ﬁrocess
automatically seeks an optimal filter impulse response by adjustihg the
weights. Figure 1 111hstrates schematically most of the components
of an adaptive filter, which is used {n this case for modéling an
unknown dynamic system.

Two kiﬁds of processes take place in the adaptive fiiter: training
and operating. The training (adaptation) process is concerned with
adjusting the weights in the tapped delay line. The operating prdcess
consists in forming output signals by weighting the delay-line tap
signals, using the weights resulting from the training process.,

During the ttaining process, an additional input signal, the
"desired response,"” must be supplied to the adaptive filter along with
the usual input signals. This requirement may in some cases restrict
the use of the adaptive filter. Nevertheless, in many,a;plications;4
such as those mentioned above, the adaptive process is useful. An

exémple illustrating the use of the desired-response signal is that
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shown in Fig. 1. Here a continuous signal f(t) 1is indicated as an
input to an unknown system that is to be modeled. The discrete
ndeptive model is supplied wi;h an 1npu£ signal fj derived from
samples of f£(t). The output of the unknown system g(t) 1s,eampied
and these samplee gj are compared with the output s:J n:’the adaptive
model. The latfer sySfem can self-adapt tn minimize the nean-squafe
error, where the error is defined as the difference between the output
7 of thevadaptive model and the output of the unknown system (the latter
output being taken as the desired response for the adaptive model) .
The analyses to be presented in this paper will show that if
the input and output signals of the system being modeled are statisti-
cally stationary, the errnr signal is elsoAstationary and has a mean-
square valuevwhich is a quadratic function of the weight Setfings.
Thus the mean-square error function may be viewed as a "performance
'surface" for the adaptive process. Automatic minimization of mean-
square error can be accomplished by "hill-climbing" metheds. For the
adaptive filter shown in Fig. 1, the performance surface has a unique

stationary point (a minimum) which can be soupht using gradient

Vtechniques,

THE PERFORMANCE SURFACE
The analysis of the adaptive filter can be developed by considering
the adaptive linear conbinatorial system shown in Fig. 2. It can be
seen that this combinatorial system is imbedded in the a&aptive filter

shown in Fig. 1, and indeed the combinatorial adaptive system is the
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Fig. 2. Adaptive linear combinatorial system.
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‘most significant portion of the adaptive filter.1 The analysis of
adaptive filter performance will bé based on a study of the system of
Fig. 2, assuming stationary input signals.

A set of input signals is weighted and summéd to form an output
signal. The input signals in the set are assumed to occur simultaneously
and discretely in time. The jth set of input signa;s 1s'designated by |
the vectqr ij = (ﬁj’ xzj,..., -x,nj) . The set of wei@ts‘ is designated

by the vector W= (wl, ,...,lwn). The Jth sum is

w
n 2 .

s. =W % = Z w,  x .. Denoting the desired response for the Jth
3 S R |

h

set of input signals as d the error at the Jt time interval is

j,
given by

n
ej--.dj-;fw‘-xzj=dj-ﬁ°xd. )

From Eq. (1), the square of the jth error is
n n

n
2 _ 2 E z E '

€, =d, -2 w, x, d, + w,W_X,. X _ . (2)
J J £2=1 £ L33 £2=1 m=1 £ m 43 J

Note that the product of sums is written as a double sum and that two
separate dﬁmmy summation indices are required. From this point onward,
all sums will be taken from 1 to n unless o;herwise'noted.

The expected value of the error squared (the mean-square error) is

given by

Z.Z..5, S '
EJ =d 2 ¢ v, ¢(x£, d) + g 4 wz LA O(xl' xm) ,» (3)

1This combinatorial system can also be connected to the elements of a
phased array antenna to make an adaptive antenna [3]; to a quantizer to
form an adaptive threshold element ("Adaline" [4] or TLU [5]) for use
in adaptive logic and pattern~recognition systems; or it can be used as
the adaptive portion of certain learning control systems [6],[7].
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where correlations are defined as

o(x,, ) R

é—
25 95’ and 0(#1, xm)‘- xzj'xmj . (4)

The expectation ig(taken over Jj, the input-vector index number.

Equation (3) may be expressed in matrix form in the following way:

2 _ 2
eg=dj- 2 VW] +W (o0 W] , (9

where 11] and W, are the column and row vectors of vieights, respec-

tively, and

e(x,d) =l2(x1,d) 0(x2,d) cese Q(*é,d) oy o(xn,d)., (6)
o -
o(xl,xl) “xl!xz)
[o(x,x)] a1 (x2’x1) °** . . L&)
I : ’ ¢(xn.xn)_-

Equation (6) defines a crosscorrelation vector, an array of cross-
correlat{oﬁs between thé individual input siénal compdnent5~aﬁd the
desired-response signal. Equation (7) defines the correlation matrix
of the input-signal components. This is the covariance matrix of the
input-signal components when all of their means are zero.

It may be observed from‘Eq. (3) fhat for stationary input signals,
>the mean-square error is precisely a second-order function of the
weights, the w's. The mean-séuare-error performance. function may be
visualized as a bowl-shaped surface, a parabolic function of the weight
variables. The adaptive process has the job of continually seeking
the "bottom of the bowl." A means of accomplishing this by the well-

known method of steepest descent [8], [9] is discussed below.

SEL-66-126 , ' 8
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In the nonstationary case, the bottom of the bowl may be moving,
while the orientation and curvature of the bowl may be changing. The
behavior of the adaptivg process when the inputs are nonstationary
will.be approached‘bybétudying first this behavior with stationary
inpufs. It'hillybe assumed that*the input and desired-reéponse signals

are stationary unless otherwise noted.

THE GRADIENT AND TIE‘LEAST—SQUARES—OPI‘IMAL wzmm's ;
The method of steepest de#cent uses gradients of th; performance
"surface in seeking its minimum. The gradient at any point on the
performance surface may be obtained by differentiating the mean-square;
error function of Eq. (3). The'ith gradient component is
ae—j z '
S = -2¢ (xi,d) + 2 : v, ¢(xi,x£) - (8)

i

The entire gradient vector may therefore be written as

3 .
Ve, = -2 o(x,d) + 2W, [o(x,x)] . (9
L J | Sl | _
1] " . _2
To find the '"optimal" set of weights, WLMS' that minimizes ej , set
V@? = 0. kAccordingly,
ox,d) =W .o [o(x,0)] , (10a)
-1
wiMS = 0 (x,d) [o(x,x)] . (10b)

The least-mean-square (LMS) error is achieved by choosing the optimal
weight vector given by Eq. (10b). This equétion may be recognized as a '

matrix version of the Wiener-Hopf equation [1].

9 SEL-66-126



An expression for the minimum mean-square error may be obtained by
substituting (10a) into (5).

2 . 2 i S S |
€min = 93 T XD “’kms] - au

. THE METHOD OF STESRESTfDESCENT; A FEEDBACK MODEL

In seeking the minihum ﬁean—sqdare error by4thé method of steepest
descent, one begih; yitg;an i;itihlfguéés as tO'whére the minimum ﬁoint
of the megg-squareferrof suffacefhéf‘be. This meahs that one begins
with a set of initial cbﬁditions or initiél values for the weights. The
gfadient vector is measured at the point on the perfotmance surface |
Qorresponding to these initial weights. .The next guess is then obtained
from the present guess by making a cﬁange in the weight vector in the
direction of the negative of the gra?ient vector--i.e., in the opposite
&irection t6 the gradient vector. If the mean-square error is reduced
with each change in the weight vector, the pfocess will convérge on the
stationary point (minimum) regardless of the choicé of initial weights.

A plan view of a two-dimensional (two-weight) quadratic performance
surface is shown in Figs. 3a and 3b. The mean-square error is assumed
t; be measured along a coordinate normal to the plane of the paper.
The computer-drawn ellipses represenf contours of constant mean-square
error, spaced_at equal increments. The gradient must be orthogonal to
these contours everywhere on the surface. A series of small steps
undertaken by the weight vector, starting with an initial guess, is
111us£rated in Fig. 3a. ,Thése steps are so small that they appear to
comprise a continuous chain. A series of iarger steps is shown in
Fig. 3b. Each step is taken normal to the error contour from which it

SEL-66-126 _ 10
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~ INITIAL
/ GUESS

(a) Sl
_ Wa
k =0.0l |
™
INITIAL
GUESS
(b) \\
W
kg= 0.05

Fig. 3. Illustration of method of steepest descent: (a) overdamped;
(b) underdamped.
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begins. It will be shown later that the weights undergo geométric
(discrete exponential) transients in relaxing toward the surface
minimum. "Overdamping" is illustrated in Fig. 3a, while "underdamping”

is illustrated in Fig. 3b.

.

-In the procedure described here, it will be assumed that the weight
vector is changed after the incidence of each new input-signal wector

X X .sees .+ Therefore the weight vectors will be correspondingly'
j ’ + ? - -
— it : :

indexed--viz., W_ , W 1?, eeses o« 1f each change 1n‘thefweight vector
T '
is made proportional to the error-surface gradient vector, the method

7

of steepest descent can be described by the following relations:

3 ;
w =W, +k . . ' (12)
T B s J, '

This equation states that the "next guess” equals the "present guess"
plus the gradient vector multiplied by a constant ks' But where did
the "present guess”" come from? It was calculated during the previous

iteration cycle as the "next guess.” That is,

W) =)
L present —_J previous
cycle cycle
or
W =DW : (13)
wd, ity ,

The operator D is a time-domain delay of one iteration cycle. The

method of steepest descent is characterized by Egs. (12) and (13). An

‘expression for Vt? can be obtained by uéing Eq. (9) with suitable

el
indexing.
— 7
Vel = -2 o(x,d) +2 W [o(x,x)] . (14)
L — L_Jl[

SEL-66-126 , 12



2
From this the gradient vector Ve,
: —J

of the expected.error-équared function when the weight vector is W_ .

is to be interpreted as the gradient

When, as in the.present case, the performance function is quadratic,
the gradient is a linear function of the weights. : The be;uty:bf working
with the quadratic performance surface lies both in thisliihear>relatioﬁ
and in the“freedom from relative minima that is a charaéte:istic of
such a surface.

The analysis;df steepest-deécent adaptation is faciiitatéd by’ﬁéking
use of the fﬁmiliﬁr feedback flow graph [10],[11], usedrby‘control and
communications engineers, in a multidimensional sense to express
relations (i2), (13), ahd,(14) in an equivalent manner. A feedback
model is highly appropriate, since in a reai sense the grédient isvlike
the "error" signal’in‘én n-dimensional servomechanism which controls the
adjustment or design of the adaptive filter. The bigge; the gradient,
the greater is the required weight-vector carrection; when the gradient
is zero, make no correction, and turn off the actuator since the "error”
in the weight settings is$zero. This form of feedback has been called

"performance feedback” by this author in previous papers [12], [13].

Flow-Graph Model

A flow graph incorporating relations (12), (13), and (14) is shown
in Fig.‘4. The "signals" at the nodes are indicated by row vectors.
The transfer function of each branch is a matrix, as indicated on the
flow graph. The signal vector flowing out of each branch is that
flowing in multiplied by the matrix transfer function of‘the branch.

The matrix transfer function of two parallel branches of such a graph

is the sum of the matrix transfer functions of the branches. The matrix

13 SEL-66-126
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transfer function of two branches in'cascade is the product of ihe
matrix transfer functions arranged in the order of signal flow, since
the signal vectors are represented by row vectors.

In the flow éraph qf Fig.=4, the symbol I répresents a qnit matrix
‘transfér function. The symbol.ii-l is the "ffequenéy dohéin" or
Z-transform [14], [15], [16], [17) representatioﬁ of a delay'bf one
iteration cycle; 2-1 I 1is the matfix transfer function of a unit 4
delay branch, etc. This graph :épresents a first-ﬁrder muifidimensiohal
sampled-datavsystem. o

Transient phenomena in W will take place in the flow-graph

d
model exactly as they will in the actual hill-climbing process if the

flow graph is initially quiescent, and if at zero time the initial

guess is injected into the W node. This is indicated by the once-

) ‘
only closure of the switch at the start of the zeroth cycle. Transients

in the weight components can be studied by examining the natural behav-

ior of the flow graph. The output of the graph is the "present” weight

vector W, .
o

If the flow graph is stabie, the hill-climbing process is stable.
The steady-state conditions in the graph represent the steady-state
values of the‘weight components. These conditions can be determined by
inspection of the graph. The signal at the node labeled "the gradient” |

will be zero in steady state. Under this condition, W W will be equal

I—J——J

to W, , indicating no change in W_, , since the signal flowing through
N P v o .

the branch labeled ksI will be zero. 1In order for this to be so, the

following must be true:

2 & [w'(x,x)] v= 2 ¢(x,d), .

15 SEL-66-126



w i t t v
If . is set equal to LMS

s —

(10a), verifying that in equiiibrium the flow graph (and the actual

, this expression corresponds to equation

hill-climbing process) produces the IMS-optimal weights.

Each branch in the fldw‘graph of Fig. 4 has a diagonal-mafri#
transfer funétian except for the branch labeled ‘2[¢(x,x)],“%1ha§enéral,
this latter branch matrix will have finite off-diagonal elements. As
a’result, transients will crosscouple from one component of thé wéight
vector to the nexi. This somewhat coﬁplgcatés the study of transient

phenomena in the hill-climbing process. f

Diagonalization of Flow Graph

The first step in the analysis of transients is to diagonalize-
the flow graph. To do this, return to the original expression for
mean-square error given by Eq. (5).

2 2 .
€5 =4 - 2 0Gx,d) W] 49, [otx,0]W] . %

Using (5), (10b), and (11), the mean-square error mﬂy be expressed in

the following way:

O - W [eG0]0 -V, 0] L a8

The [¢(x,x)] matrix is real, symmetric, and of a positive semidefinite

' 2
quadratic form, since Ej 2 0.
The characteristic equation of the [¢(x,x)] matrix is

|o(x,x) - 1] =0 . (16)

The eigenvalues of [¢(x,x)] are

)\1’ ).2’ ---'a\p’ s e e ln o‘ » (17)

Assume that they are distinct. The pth eigenvector qp is then
—y

SEL-66-126 16



determined by

a, [o(x,x)] = dp 9p 18)

Normalize each eigenvector to have unit length. A square matrix of

normalized eigenvecto;s,;the normalized modal matrix, is giVen by

a, -

3
.

@1

L

Q9)

All eigenvectdrs of the symmetric matrix [¢(x,x)] are mutually orthog-
onal, and since all rows of Y[Q] are normalized, the matrix [Q] is

orthonormal. Generaliiing on Eq. (18) yields
(@] [o(x,@] = [A] [Q] , (20)

where the matrix [A] is the diagonal eigenvalue matrix.

[~ .

[A] & : o (2D

| *n
Premultiplying both sides of (20) with [Q]-l allows the [¢(x,x)]

matrix to be expressed as

[oGx, 0] = [ [A] [Q] . (22)

Even when the eigenvalues of [¢(x,x)] are not all distinct, this

matrix can still be expressed as in (22). Then a more elaborate
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procedure [18], [19] than the one above is needed to find ({Q].

Since the modal matrix {Q] 1is orthonormal,

Q™ = Q" , ~ (23

and therefore i s S i
lotx,0] = [Q)7[A] [q] - (29)
Now substituté relation (24) ‘into Eq. v(IS).' i'his yields k

B T S T N
€min +'(w = "ms), {,9] ‘“HQ]M‘" = "ms’] {25) i

J

A new set of coordinates may be defined as follows:

MiTE
N
- Wiyg), Q] “’.(' Yius’, s

| '{g] w] 2 w'] . |
Q] o - wms)] 2w "x'.ns’] i C

The mean-square error may now be expressed in terms of the primed

coordinates as

Z_2 g T - W '
€ = €pin * O - Wing) 14 O - WIMS)] . (27

Since [A] 1is a diagonal matrix, Eq. (27) expresses the mean-square
error in diagonal canonical form [20], [2iI, [22] in the primed
coordinates (normal coordinates) .- The gnnd coordinates are the

principal axes of the quadratic mean-square-error surface. The primed

coordinétes are an orthogonal set, rotatec from the original set of
coordinates by the linear transformatior {Q}T, as représented by Egs.

(26) .
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Normal State Variables

The weight variables comprise a set of state variables, since the
‘complete:past history of the adapti&e pfocess~as it relates to future
weight values is contained in the present’set of weight values. The
weight variables may therefore be called the "weight state variables”.
The primed variables are derived fiem the weight stateivariabies by
the linear orthogonal transformation [Q] and they too comprise a
set of state variables, which may be called the primed weight state

variables” or the "normal state variables."

‘The natural modes of the
steepest-descent process will be shown to be isolated in the normal or

primed coordinates,

Transients in the Normal State Variables

Refer once again to the flow-graph model of‘steepest descent,
shown in Fig. 4. It is desirable to determine the frequencies or
decay rates of the natural modes of the process represented by this
grsgh. The graph is orthogonalized by expressing the transients along
the primed coordinates--i.e., in terms of the normal state variables.
In the priﬁed-coordihate system, each primed variable has its own
natural decay rate.

Figure 5 shows a series of steps involvicg reduction (simplifica-
tion) of the multidimensional flow graph of Fig. 4 to anvofthogonalized‘
graph. Each step proceeds from the previous step, with care taken to
preserve the proper ordering of the matrix multiplications. The alge-
" braic expressions (22), (23), and (265 have been used. Figufe S5a is
essentially the same as Fig. (4), except that the transformation [Q]“1

is shown which projects the transients in Wj into the transients in
—
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Fig. 5. Transfo;mation steps from unprimed to primed coordinates
(normal state variables).
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the normal state variables W'. Note that in Fig. S5e, all cross-
—

coupling is removed from within the feedback loop.

In order to study transient phenomena, it is convenient to eliminate

4

the constant "reference" input p(x,@) , wpich has no bearing on

transients in any event. This has‘beEn done in Fig. 5f. The two
parallel feedback branches of Fig. 5e have been combined there. Note

that the putput'variéﬁlé in Fig. 5f is W o- W rather than W!' .

~ This 18 due to the‘fact'that the constant input ld>(x.d) has been

omitted.
The individual components of the vector 'W} do not interact. This

is clear from Fig. (5f). The diagonalized flow graph corresponds to n

independent one-diménsional flow graphs. Each cbmponentrof WS' is one
[
dimensional‘and can be treated separately, in the manner Fig. 6.2

In Fig. 6a, a method of exciting aftificial tr?nsients in a one-
dimensioﬁal sampled-data flqw graph is shown. If a unit impulse is
applied at the input terminal, a sequence of impulses as shown inrrig.
6b will appear at the output terminal [14],[15],[16],[17]. The ampli-
tudes of succeeding pulses attenuate in geometric progression, and the
common ratio r is the feedback-loop gain.

The‘purpose of inducing the artificial transients is to permit
Study of time cons£ants in and stability of the processes represented

by the flow graphs.

2Figures 3a and 3b illustrate that transients in the weights are
independent and simple discrete exponentials along the principal
axes of the mean-square—error surfaces.
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Fig. 6. A one-dimensional flow graph (a), and its impulse response (b).
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Time Constants

If the unit of time is taken to be one iteration cycle, a "time
constant” can be defined for the one-dimensional flow graph as the time
constant of an exponential envelope of the geometric'pulse sequence.

As such,

e 8—1/1 -

1 - - s ‘ : (28)

A
+

Let the time constént be large, i.e., T >> 1. Then
r=1 -

For purposes of analysis, assume that

"

"

e B

1
Al

(29)

" This is Assumption 1.
It can be seen from Fig. 5f that the pth geometric ratio between

successive pulse amplitudes is equal to the pth feédback-loop gain, or

r =1+2k C . 30
p s lp . (30)
From (29) and (30),

r =1+2k 3 =1-—

P s 1p a T

P
=1
T = . (31)
P 2kslp i

This is the time cqnstant of the pth normal state variable. The number
of'natural modes is equal to the number of coordinates n.
Stability

Stability of the one-dimensional flow graph is assuréd when the

magnitude of the geometric ratio is less than one.
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[rl <1 . j " (32)

It may therefore be concluaed that the flow graph of Fig. 5f is stable
if for all p,

175 ) nax < B € X )

The pth geometric ratio is given by Eq. (30). The eigenvalues of
[¢(x,x)] are such that lp 2 for all p. Therefore, the only way that
the stability condition (33) could be met is for

~ks‘< 0, and

(34)

lks lmaxl <1,

where Npax is defined as the maximum eigenvalue of [&¢(x,x)]. From
these considerations, it follows that a necessary and sufficient
condition for the sfability of the steepest-descent adaptation process

is that
1

<ks<0 . (35)
max

It should be observed from (31) and (35) that the rate of adapta-

tion and stability can be controlled by setting k_.

THE LMS ADAPTATION ALGORITHM
The method of steepest descent requires determination of the
gradient vector at successive points on the performance surface (mean-
square-error surface). In practice, the true values of these gradiénts
are seldom available. To overéome this difficulty, the "ILMS adaptation
algorithm” (least-mean-squares-error algorithm)[4], [23] offers a
practical procedure for implementing the method of steepest descent.
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This algorithm uses measured gradient estimates in place of true gradient
values. These estimates may be "noisy" --i.e., contain errors--but the
effect of the gradient-measurement errors ("'noise™) can be minimized

through careful apﬁlication‘bf the adaptation algorithm.

Method of Gradient Estimation

A method of measuring gradients of the mean-square-error perfor-

mance surface which does not require squaring, averaging, or differen-

tiating is as follows:

; S 3
Let the mean-square error ¢

J

the square of the jth error value. Accordingly,
h

be represented approximately by the

single sample €2

j,
th . : . , t
the i component of the gradient is approximately given by the i

partial derivative of e§ with respect td the weight wi.
2 2
Bej aej aej _ :
y. zW=2 ej g‘ . : (36)
i i i )
Differentiating Eq. (1) with respect to wi gives
Oe .
sal = -X_. . (37)
i X
Accordingly, _
2 2
aej o€, '
= = =2 . ' 38

fhe,entire gradient vector may therefore be approximated as

2 2
Ve, =Ve,=-2 €, X. . (39)
w4 o J, J

Thus all one needs to know in order to estimate the gradient is the

present input-signal vector xj and its associated scalar error Ej'
[ .
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The ith component of the gradient estimate V 52 may be obtained

. 3
in summation form by differentiating Eq. (2) with respect to w_.
~ 2 . . ;
=-2d, x,.  +2 woOX . X,. . :
531 ; J iJ , ¢ iJ 23 : _ (140

2

The expected value of this expression, taken over j,' is

) o
| . -Zdeij-l-z 'wz'xijx“

A

-2 ¢(xi,d) +.2 2 wJc ¢(xi,xz) s (41)

Inspection of Eqs. (8) and (41) makes it clear that

7 <2\ 32
oc’,
J J
Y —y . A (42)
i .
Therefore,
2 )
fv €. v e . (43)
A/ Jy v
2 2 ,
Thus the gradient estimate V € has an expected value, v €.), which
w_J, — eJ5
is exactly the same as the true gradient V e? given by Eq. (9).

—_—
Therefore, the gradient estimate given by Eq. (39) is an unbiased

estimate.

Procedure in Using the IMS Algorithm
' The IMS algorithm applies the fundamental steepest-descent rela-
tionships given by Egqs. (12), (13), and (14), except that now the
approximate gradient vector (measured gradient estimate) V’ez is used
| — A
in place of the true gradient vector E:EEJ. " Thus Eq. (12) is replaced

by (44):

w. =W +ksV€. ’ (44)
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and Eq. (14) is replaced by (39):

2 2 )
Ve,=Ve, ==-2 X . 9
L J, I, e‘.j. j, A (39)

An adaptation cycle will proceed with the arrival of each new input

vector X. , X
wJ p j+1,’

(adaptation) procedure comprising the LMS algorithm is completely

ees . From Eqs; (39) and (44), the weight-changing

represented by (45a) or (45b):

Matrix form W, . =W, -2k ¢c.X, . 45

— L J+l'”. jl 'S €J| j' : (452)
Vector form v =W, -2k _¢.X . 45b
———e—— j+1 J J 7 (45b)

VIn other words, to compute the next weight vector, add fbe input veétor
séaled by the product of the errorr(before adaptation) and a constant
2(-ks) to the present wéight vector. In accord with condition (35), it
is necessary thag ks < 0 for stébility. Its magnitude controls the
rate of adaptation. The time constants of’the adaptive process using
the LMS algorithm are given by Eq. (31).

A useful parameter is the fraction of the error corrected in

jl

each adaptation cycle. The change in error is

Ta)
Aﬁj = ngeJ . (46)

The minus sign in Eq. (46) is necessary in order for uj to be defined

as a positive error-reduction factor. Since the error is

c.=d, -W - ij , @)
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the change in error Aﬁj due to weight-vector change is

Bey = - AW - X (47a)
= - -W . .
! (Wj+1 J) XJ. (§7b)

Substituting the value of {wj+i - WS) from the IMS algorithm, Eq./(45b),

- -
AeaszGX'xj

J Jd

” .
=2k . 48

s €5 I (48)

From (46) and (48) it is now possible to relate My k_, and "ijﬂzz

»> 2
==2k |IX. . 49
by=- 2k X (49
Adaptation with .ks fixed generally requires pj to vary from

cycle to cycle: remains fixed only when llijnz is constant for

"3
all j, i.e. when all input vectors are of constant magnitude. Binary
input-signal vectors whose component values are either +1 or -1 are
examples of constant-magnitude input-signal vectors. Since the p

parameter is generally variable, it is convenient to ‘work in terms of its

average (over j). From Eq. (49),

= 12
Mavg = = 2 kg I X, I (50)

Time Constants

The time constants may be expressed in terms of “avg' From Eq.

(31) the pth time constant is

Tp:i_ul—‘_ (ﬁj'ﬁ

p avg

Note that the expected value of I]ijnz is
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= 52 .
HXJH = z xfj = 2 a(xi,xi) = Tr[o(x,x)] ,
i , .

~ where Tr[¢(x,x)] means the trace of [¢(x,x)]. The pthktimé'constant
can now be expressed as

Uiy ; ; » . ;
T = —— Tr [o(x,x)] . ' (51)
- P fxﬂiavg : : . : T

The time—éonstanf expressioh becomes especially simple fdf”{he
case whefe all 1nput;signa1 cémponents are~mutually dhcorrélatedﬂadd_
have eédal mean sqdérés; In iﬁ;évcésg,:théb'[Q(x,x)] nafrix is diagéhal
with all elements equal and is equal té it§ own matrix of eigéh#alues.
Accordingly, the unique time constant is '

a;.—.i—-l—— Tr [o(x,x)] = X}‘An = === (52)
uavg ' pavg uavg

Although expression (52) is precisely derived for special circumstances,
this expression gives one an approximate measure of the rate of learning
for a given average value of the error-correction constant uavg fqr a
wide range of [Q(x,x)] matrices. For a given uavg; the learning
fime generally increases linearly with the number of weights, n.

Stability of the LMS Algorithm

When the IMS algorithm is utilized, stability is completely
determined by condition (35). In order‘to apply this condition, how-
eéér, one would need to know the maximum eigenvalue lmax of the input-
signal correlation matrix [¢(x,x)]. Sometimes this eigenvalue can bé
computed, but in most cases such a computation is difficult or impossible
to.perform. Stability’can be assured without knowing lmax’ ho&ever,
as long as the error correction factor “j is kept within certain
bounds. These bounds do not depend on [o(x,x)].
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1 4]

If the IMS algorithm is Stéble, transients musf die out. If the
algoriﬁhm is unstable on the other hand, the weight-veétor magnitude
will grow vithout bound. Stability conditions on “j will now be
developed that will prevent yhe weight-vector magnitude from growing,
and indeed will force it to diﬁiﬁish»if the iterative process is
started with a weight vector ofilarge magnitude. ‘

Let the jth weight vecto;‘magnitude ﬂ w&u become arbitrarily
large, i.e., | ﬁsu‘* w. It ﬁi;l be shown that the result of ghé jth
adaptation cycle will then be a diminution of || ﬁ&", that is,

W, + A& W
19, &< I

under the following conditions:
(a) 2>”j>0’

(b) udj is finite and bounded.
It can be seen from Eq. (46) that
€. +0e. =€, -un) .
3 3= @ -wy

The magnitude of the error ej ﬁill always be reduced after adaptation

when 2 > pj > 0. When “j is chosen in this range,

1¢5 + A eJI = Iej a - pj)l < lejl . (53)

From (1) and (47a)

It follows that

- M) - X d, - W, - X . 54
Idj (W’+ij)>j|<‘3 J,xl (54)
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By the original hypothesis, ‘djl is finite and bounded and

lle" -+ » . Therefore,

. (55)

The only exceptions to (55) are the cases where || fjﬂ = 0, ‘and where

ij is perfectly orthogonal to W&. The first case is of no interest,

since no adaptation takes place when || i&" = 0. The second case occurs
with probability zero when input signals are taken from natural pro-
cesses.

As a consequence of (55), inequality (54) may be written as

_ I(WJ SN -i{'j],< AIWJ . le . . (56)

The input vector f&, the weight vector Wj' and the weight-

change vector EW‘ are pictured in Fig. 7 in thé hyperplane determined

J

-> - —
by Xj and kﬁi;. Note that the weight-change vector AWJ

to the input-signal vector ij’ in accord with the basic IMS algorithm.

is parallel

.

Let a'circle be drawn in the hyperplane through the tip of ‘Wj, as

shown in Fig. 7. The weight-change vector 'Zﬁj must lie along the

dotted chord (parallel to is) of this circle, and within this circle

_in order to satisfy (56). It is clear from the figure that whether the

- ->
angle between W_. and X

J J

~is acute (as drawn) or obtuse,
Wy o+ < W0 | D

This indicates stability of the IMS adaptation process when uj is
positive and always less than 2, when ]djl is bounded, and when the

input-signal vectors.'i are not orthogonal to the'weight vectors WJ.

J
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(It should be noted that the above demonstration does not- prove that the
IMS algorithm is necessarily unstable if these conditions are not all
met.)

In practice, the boundedness of id and nonorthogonality of

51
is and »WJ occur naturally in almost every circumstance. Insuring
that 2 > pj > 0  is usually not difficult. From (49), it is clear

‘that a value of ks should be chosen in the range

R e

If the maximum input-vector magnitude is not known g priori, if can
be estimated and updatéd as more and‘more input-signal observations are
made. Other considerations thaﬁ just stability alone are usualiy
involved’iq‘the choice of ks. This parameter controls-the4tim§4§on—
stants of the adaptive pfocess; the time constants in turn affeét the
rate of leérning of the system and the quality of performance. In the
next sections, formulas will be derived which relate the rate of

adaptation to system performance.

GRADIENT~-MEASUREMENT NOISE
It has been pointed out that the'gradient estimates used in the
IMS algorithm, though unbiased, are not perfect. Differences exist

2 : ‘
between the measured estimates V € and the true values of the
' — 3,

2
gradients V ¢
—J
measurement noise. .

. These differences will be referred to as gradient-

When the IMS adaptive process is stable, transients in the adjust-

ments essentially die out after three to five time constants of the
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slowest mode elapse. In steady state, the wgight values will experience
random fluctuations about the respective LMS-optimal weight values,
and the amplitudes of these random excursions will depend on the rate
of adaptation. ’The;random flucﬁuations are caused by gradiegt—measure?
ment noise. 1t,will«bé,shown that slowness in adaptation can serve
as a noise filtering prbcéss to reduce the de;ete;ious;effects of
weight-adjustment fluctuations upon system performance.

The mean-square error, as avfunction<o£ the weights projected in
the primed (principal-axis) coordiﬁates may‘be expressed in a manner

similar to Eq. (27) as follows:

-2 _2 ] ] [ 4 . '
€ = Coin * (wj - Wi O [A] (wj - wms)] e (59)

—_— )

The mean-square error, a function of the present w3 , 1is the expected
value of the squared error. Let this expected value be represented by
the symbol yj. Then (59) may be expressed alternatively as the

following summation:

A2 T2 z , , 2
y.=€_=¢€_._ + A, W' -w ), (60
J J min 5 P  PJ Prus

where p indexes the normal-state-variable number.

Excess Mean-Square Error Due to Adaptation

Any departure at any time of one or more of the weights from its
optimal value will cause an increase in yj. In steady state, after

: 2 . 2
gross adapting transients have died out, increases in y'j above emin
will be caused by random excursions in the weights about their optimal
values. The expected value of yj is (once again taking expectation

over j):
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7, = *Zl W -w )2 (61)
min 3 P pJ pLMS

In steady state, the mean-square efror exceeds the minimum mean-square
error by the sum of Qﬁriances of the’fluctuations of the normal state
variables weighted by the respective eigenvalues. Thus'the excess mean-
square error due to the adaptive process is

- ' ' 2 .

Prus

To evaluate this excess mean~square error, one needs to compute

2 .

w', - w' ), the variance in the fluctuation of the pth normal state
J pUMS

variable, for p=1, 2, ..., n.

~ Covariance Matrix of Gradient-Measurement Noise

Define'a gradient-measurement noise vector I, with components

-

15’ v2J cene an . Then from (38),.the error (noise) in the estimate

of the i th component of the gradient is

V

Be% 3e2
aTJ - 5;,1 < Vij o’ (63)
i i J

where vij will be referred to as the ith gradient-measurement noise
component for the jth igput vector. Since the gradient estimates are

ﬁnbiased,

<

ij.g 0 for i = }, 2, ... n.

The questions to be considered next are,

2
= ? =7
vij ViJ V‘GJ
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That is, what are the variances of the gradient-noise components and
what are their covariances?

Assnme tha; the weight adjustments are setvvery close to the,‘
minimum qf thg mean—square-error tunction,’that is, that the adéptive“

process is close to convergence, so that

= 0, for all v,

AR

This is Assumption 2.

From Assumption 2, definition (63), and Eq. (37):

2
Qe bej
v,,. == = =2 =2 X, . 64
5T, g, =2 Ny (69)
The square of vij is
v2 =4 éz x2
ij kI &
~ The variance of Vij is therefore
2 2 2
v,, =4 x . 65
13 ej 13 (65)

The covariances of two gradient-measurement noise components may be

expressed by using Eq. (64).

—i 2 '

v,, v, =4 X . X . (66)
15 V43 €5 %13 Ta3

It is desirable to express the variances and covariénces of the

gradient-measurement-noise components somewhat differently. To do this,

assume that 4 -

2 2 2\ [2
€5 %15 " (EJ) *3) 0 en
and more generally '
ej xij xtj = (ej) (?ij xzj) e (68)
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This is Assumption 3. The assumption will be met with a high degree of

consistency when there are a large number of input-signal components.

In this case, the error minus‘its mean, (ej - E}) , and the square

~ thereof, (e -E—
W J

signal minus its mean, ( ij = ij)’ and with products of palrs

("13 13) ( 23~ 43

Using (65) and (66) and Assumption 3, the variance and povs:;ance _:

2 ,
‘) B tend to be uncorrelated with the ind1vidual input

of the gradientvméaSurememt-noisg components can be.writtem gSf

T

iy J ij/ -
e S
vij £j= ’e.j xij xu .

When operat1ng in the vicinity of the minimum mean-square error

(69)

(consistent with Assumption 2, expressions (69) can be written as

%) 2 2 (=2 \. :
vij =4 (emin)(;ij) =4 (;min)Q(xi’ xi) . (70)

The covariance is therefore

'13 33 ( “mi ( ij za) (emln)°(x1’ x) - 1)

The gradient-measurement-noise covariance matrix can therefore be

expressed as

- . N -

Vi5Y13 Y1325 Y13Y33

A 1 v,.v, . ]
4 = , . (72
[o(v,1] n&] n, 25"13 | (72)

Yn3"nj

Using (71) and (7),

: 2
[e(v,»)] = 4 (emin) [e(x, )] . (73)
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Propagation Path of Gradient-Measurement Noise

Deriving the gradient-measurement noise covariénce matrix is an
important step towér& calculating the variances of the Steady-state
fluctﬁations in thé ndrmal sﬁaté vafiables, as required fpr determining
the excess méan;squ#ré‘e}rof,‘Eq. (62).‘ The gradient-méésurement'noise
components propagate and interact with the normal stateliariables in a
way that can be modeled by means of signal flow graphs.

The flow:graph of Fig. 5a is a precise modei for the method of
steepest descent when acting upon a quédratic performance surface.
During each iteration cycle, use is made of the true gradient values.

In order to use this model to represent steepest descent via the IMS
algérithm, however, the differences between the true an§ the estimated
gradient valﬁes must be accounfed for. This is accomplished in the flow
graph of Fig. 8a whefe fhe gradient—measureﬁent noise JEL is shown
added into the "gradient node" to represent the actual measured "noisy
gra§ient."

Fig. 8b can be obtained from Fig. 8a by series of flow-graph
reduction steps which are analagous to the steps shown in Fig. § which
connect Fig. 5a to Fig.‘Se. Notice that in Fig. 8b, the gradient
measurement noise ‘Ez. propagates into the graph via a branch of transfer
function [Q]-l.

Now define a "primed gradient-measurement noise' Nﬁ such that
| S |

n; énj Q! . , (19

o

The vector I' is therefore the projection of Il onto the normal or
() - A '

principal-axis set of coordinates. In accord with (74), the noise hj
ey

is replaced in Fig. 8c by the ncise N' which in turn propagates into

N
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Fig. 8. The gradient-measurement-noise propagation path.
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the graéh via a branch whose transfer function is I.
It can be seen from the flow graph of'Fig. 8c that the sighal flow

path from the point where the noise MN! is injected, to the "output"”
. T ey T PR )
point Wé , does not include anyjbfanches in which crosscoupling could
—l ; ‘ 5
take place. The transfer function of this path can be obtained by

inspection. This is

k_ z -2 a- 2k mt. S (79)

Fig. 8d represents sjmbolically*thé transmission of the noise ﬂﬁ
; : . —_—
through this transfer function to cause the fluctuations in the com-

IMS. The variénces of these fluctuations will be

ponents of Wé - W
R O et |

" calculated next.

Fluctuations in Normal State Variables

It is now necessary to obtain the covariance matrix [e(v',v')] of

' the projected (primed) moise W) . The covariance matrix of N, is
wJd K A I
known from (72) and (73). From these, with (22) and (26), it is possi-

ble to calculate [Q(v',?')]:

v vy D F v _ -1
[otv',v")] -ﬁj] '.____,ﬁJ"AQ] n &[Q]

4(:2 n)[q][ux,x)][cz]'l

mi :
4(;§;€) (Al . : - (76)

It is interesting to note from (76) that the components of hﬁ >are
b
mutually uncorrelated, since the covariance matrix [o(v',v")] 1is

diagbnal. The noise n& propagates through the transfer function (75),
—dy ~

as was pointed out previously. ‘Since the transfer-function matrix (75)

is diagonal, each component of nﬁ propagates independently, so that
— SR ,
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there are simply n mutually uncorrelated noises propagating in n

independent one-dimensional linear discrete paths. Thus, it can be

seen from (75) that the pth component of the noise vector h&A propa-
: : WY ‘
gates thrbugh a one-dimensional transfer function
k_z !
s

o1 N 4))
1 -2 (1+‘21gs;‘p) .

to reach the pth normal state variable.
It will be assumed that each of the indiﬁidual éomponents of the
A , ; i

noise N' = v

v!'. ... v'. is "white", i.e.,
o, 13 23 °77 'mj yom AT

- v. y O =O, = ’2’ L .' . I
(va+1)(va) p=1 n - (78)

This is Assumption 4. This assumptién is easily met’when inﬁutfsignal
vectors aie chosen at random. When they ﬁre segments of a time,séries,
the assumption is still met approximately because of the varigbility of
the input. signals, and also the variability of the weight vector due to
the adaptatién process.

The pth component of Eﬁ; is thus an uncorrelated discrete process
which is an input to the discrete tfansfer function (77). This transfer
function has unit impulse response represented by the sequence

2 3 ~ '
o, ks, ks r, ks rp, ks rp s iees 'y (79)

P
where the‘gebmetric ratio rp is given by
r =1+2k . ; (30)
P s XP
It has been shown that when the input signal to a linear discrete

(sampled-data) system is "white”, the variance of the output signal
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equals the variance of the input signal multiplied by the sum of the
squares of the amplitudes of the impulses in the unit impulse response

[14][15]. The sum of the squares of the sequence (79) is

2
. Kk :
A2 ,
sy L2kl ert L) —2% L (80)
R 5 p P 1-r2
P
From Eq. (31), ks can be expressed as
=1 S
PP
Combining (80) and (81) gives
1 (82)

(SUM SQ) _ = )
P 2 2/2 1
41 A"~ 3
PUPlT, o
| o/

In accord with Assumption 1, Tp S>> 1. The sum of squares may therefore

be written as

1
(suM SQ)p =7 - (83)

8
™ M

The variance of the pth component of hé as obtained from (76) is
, -y .

or 42 2
(ij) = 4(€min) kp .

The "sum of squares' for the pth propagation path is given by (83).
The variance of the steady-state fluctuation in the pth normal state

variable is therefore
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~
€
|
€
~
|

2
= (v! )" (SuM SQ)

, — .
= 4(€ . ) by 1
min P 81 lz
: , 'p

P

= — . (84)
271
It is now possible to calculate the excess meah-square error due

to adaptation. Refer to Eq. (62). Substitute (84) into (62). The

.excess mean-square error is
y Z —9-—'““) S DL (85)
V5 ° 2-: 1 min 5 T .

Notice from this simple formula that fhe excess mean—sduaré error
depends only on the value of the minimum mean-square error and the
adaptive time constants. The excess mean-square error céuld be made
as small as one pleases by adaéting slowly, i.e., by making the 1p's

large.

MISADJUSTMENT
Where the purpose of adaptation is the minipization of mean-square
error, the excess mean-square error is an important factor. -HoweQer,
.it alone does not have as‘much'physical meaning‘and/or usefulness as
the relative excess mean-square erior, i.e., the excess mean-square
error normalized with fespect to.the minimum mean-square.error. This
fundamental dimepsionless measure of the performance of an Qdaptive

system has been called the "misadjustment” [12][13]. Thus
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Misadjustment M = (86)

The misadjustment allows one to:compare the performance of an
adaptive system with that of an "ideal" system whose mean-square error

is ez

in ——i.e., with a Wiener filter designed on the basis of perfect

a priori knowledge of the Secqnd-order statistics of the signals to be
processed.‘

Misadjustmentbrormulas

A simple formula for misadjustmentvresults from substituting (85)

n .
> =, @D

p=1

in (86).

NIH
o

where n is the number of adjﬁstment variables (number of weights).
'The time constants are controlled by the parameter ks’ in accord with
Eq. (31).

1 Some insight can be obtained by considering the important special
cése in which all time constants are equal. This case results when

[o(x,x)] is diagonal with all elements equal; Tp = 1 for all p.

n
o E —1-='n ) (88)
=3 T

. p=1 -

Then

-

From this speciél caée, it can be seen that M increases linearly with
the number of weights and varies inversely with the time-constant of the

adaptation process. As the speed of adaptation approaches zero, M

approaches zero, and the mean-square error therefore approaches €nin °

For this special case, M may be expresSed‘in terms of ks. Using
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(31) and (88),

n ,
This formula may also be expressed in terms of the average error

correction factor "avg’ in accord with Eq. (52).

M*zrf‘< 2 : (,90)

Equation (88)'¢5h be used as an épproximate, fairly:generai
relationghip betWeeh‘5pee&16fa§dépf$t;dn‘hhd éuality of péff&fmanéé;
without requiriﬁg detailéd knowledge of the individual time constants.
As an‘example, let the adaptive filter shown in Fig. i have 25 taps
on its tapped delay linel The question is, how fast could such a
filter be adapted? Assume that a steady-state misadjustment of 10

percent would be satisfactory. Using Eq. (88),

M=0.1-= ;

NI!@
Al

R
27
T = 125 iteration cycles, apprpximately.

Assuming that adapting transients would die out invthree time-constant
intervals, the settling time of the adaptive process for T = 125 cycles
Qould bg approximately 375 adaﬁtation cycles, or 375 input-sample
periods.

Efficiencies of Adaptation Processes

It is useful to define a figure of merit, or efficiency measure,
for adaptive‘processes. Such a definition will be made here which
allows the effectiveness of several specific adaptation schemes to be

compared. Define the figure of merit as

ve.number of weights , (91)
(settling) (M)
\ time ‘
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where '"settling time" can arbitrarily but reasonably be defined in
terms of the largest adaptive time constant Tnax as

(settlipg) A

time =3 Tpax - : ‘ (92)

The figure of merit was defined above so that with fixed M, F.M.
increases with reduction of settling time per number of weights.
The figure of merit of the LMS adaptation process when all time

constants turn out to be equal is, using (91) and (88)

n n 2 :
F.M. = Gnm - 3 (u) =3 ‘ (93)
. T —-—-‘
27

The figure of merit of the IMS adaptation process in general is,

using (91), (92), and (87):

F.M. =- L - =-§- 1 (94)
bfide) TRE
max/\2 T n T
\“ =1 %p =1 'p
Since
2 T
l max > 1
n T ’
p=l 'p
it follows that
ru. S2 . (95)

The figure of merit of the IMS process is less when the time constants
differ from one another, than when they are all the same. Thus the
greater the disparity among the eigenvalues of [¢(x,x)] the lower
will be the efficiency of the adaptation process. Lower efficiency
means ionger settling time for the same level of misadjustment for the

same number of weights.
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At the cost of increased complexity, the IMS algorithm can be
implemented by using Newton's method [8][9] instead of steepest descent;
Newton s method causes all time constants to be equal thus improving

 the figure of merit to the value 2/3. It will be recalled that the
steepest-descent LMS algorithm requires that the input vector x be

oA

scaled by the error € and then added to the weight vector. The use

J
of Newton's method would require in addition that the input vector X

i
be postmultiplied by ,{Q(x,xb] . This matrix multiplication is
costly and in additioe, keowleage of [0(x,x)] and its inverse aferv
required. 1In most ceses, the loss of efficiency of the conventional
(steepest-descent) IMS algorithm is more than ofiset by its inherent
simplicity, stability, and ease of implementation.‘ X

If a finite number'of input-vector samples N areavailable and if
these data can be stored and repeated over and over again to train the

adaptive system, it has been shown that adaptation with small ks' will

cause the weights to approach a solution dﬁ, given by

-1
J= oG,d) [tb(x,x)]N ) (96)

. : ) -1
where ¢(x,d) N is the sample crosscorrelation vector and [@(x,g)]
is the inverse of the sample input correlation matrix [23]. It can be
shown without making any new assumptions [13][24] that a system so

adapted will have a misadjustment of

X | (9D

In this case, the system settling time, or averaging time, is N
sample periods. The figure of merit of this "data-repeated-again-and-

again" adaptive process is therefore
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n

F.M. = - (%) =1 . | ~ (98)

It is interesting to note that fhe LMS adaptation process described
herein, which uses 1ts input dafa Qﬁ a one-pass, one-pattern-at-a-time
basis, has a figufe of meritfwhich is only one third less thsn thst
" of a process which‘could require‘the storage of all past input data.
'However, to schieve the same level of misadjustment (the same signal-
processing performance) as 1s achleved in the data-repeating process,
the settling time or averaging window of the one-pattern—at-a—tlme
process would have to be fifty percent longer than the averéging time

of the data-repeating process.

APPLICATION OFvADAPTIVE FILTERS TO_NONSTATIONARY SIGNALS

When the input to an adaptive system is a statioﬁary process, as
has been assumed in the preceding analysis, the mean-square-error |
surface is fixed in shape, orientation, and ﬁosition. When on the
other hand the system input is nonstationary, it is possible to define
a quasi-static mean-square-error surface whose characteristics would
vary relatively slowly with changes in the statistical characteristics
of the input signal.

When the IMS algorithm is implemented in connection with a slow
adaptive process (small 'ks, long time constants), it causes the
adjustﬁents of an adaptive system to approach very close}y the
minimum of a stationary mean~square-efror surface. The slower the
adaptive process, the nearer the system adjustments come to, and the

more closely they remain at, the "bottom of the bowl.” 1In steady state,
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the excess mean-square error is proportional to the speed of adaptation

[see Eq. (85)]. This type of excess mean-square error may be considered

to be due to adapting too rapidly.

In the nonstationary-input case, the boéition of the instantaneous
mean-square-error surface minimum is constantly changing, and if the
timé constant of the adaptive proceés is not too great, thebnms
algorithm will allow'the adjustments of an adaptive system continually
to "track" the surface minimum. This process is analysed in some
detail in [13], and it is shown there that if the position of the
surface minimum chanées slowly and randomly, another excess mean-
square-error component develops (due to lag in the tracking process)

whose amplitude is directly proportional to the square of ;he time

constant of adaptation. This type of excess mean-square error ;ay be

considéred to be'due to adapting too slowly. Thus in the nonstationary

case, there are two components and causes of excess mean-square error.
If is shown in [13] that their sum is minimized by setting T to
‘satisfy the following criterion:

"The rate of adaptation is optimized when the loss of perfdrmance
resulting from adapting too rapidly equals twice the losé in performance

resulting from adapting too slowly."

OTHER FORMS>OF>ADAPTIVE.FILTERS
The adaptive filter shown in Fig. 1, to which the analysis in this
paper relates, has the following atﬁributes: It is disc;ete;’quasi-
statically linear, of finite memory (having a finite number of delay-

line taps), and it has no signal feedback paths from its output sj to
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any of its inputs Xj. Several other kinds of filters are described
— '

in this section which differ from the filter of Fig. 1 is one or more

of these attributes.

A Continuous Adaptive Filter

Figure 9a shows a possible confiéuration for a continuous, quasi-
statically-linear filter that uses the adaptive,cpmbinatorial system
of Fig. 2. The inputs to the variasle weights come from a series of
continuous filters that may be passive RLC elecfric cigéuits. Each of
these circuits is assumed to have different sets of poles and zeros.
The entire system could have all the poles of all the RLC fiiters. The
variable weights can be regarded as controlling the residues of these
poles.

For this system, the mean—-square error is a quadratic functiqn of
the weights. The IMS algorithm can be used directly to minimize wmean-
square error. However, the algorithm needs to be ekpressed in con-
‘tinuous rather than in discrete form as it was in Eq. (45a) . The
Vlattér could be written:

wj+1

-W. =-2k €.X . (99)
R LN T s

34
The difference equation (99) can be transformed to a differential
equation to give a continuous form of the IMS algorithm:

d

-d?|w (t)' = 2 kS e(t) ‘X(t)' . (100)
The weights are then obtained by integration.

W), = - z'ks./f}(t),X(t),dt i o)

This algorithm can be implemented using analog cémputing techniques.
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Fig. 9. Additional forms of adaptive filters: (a) continuous; (b)
nonlinear; (c) feedback.
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A Nonlinear Adaptive Filter

The filter form shown in Fig. 9b may be continuous or discrete.
The input 51gnals to the weights are derived from a series of nonlinear
devices. If the nonlinearities are such that the outputs of these
devices are stationary when the system input is stationary [1], [25],
[26] then once again the mean—square—error surface is quadratic.
Under this condition, the system can be adapted by the IMS algorithm.
An adaptive filter of a similariform, using various-polynnmial functions
of the input siénalssfor the indicated nonlinearities, was built and

analysed by Gabor et al [27].

A Feedback Adaptive Filter
The discrete adaptive filten shown in Fig. 9¢ has variably-weighted
signal feedback paths. This filter does not exhibit a quadratic
performance surface. Indeéd, the performance surface of this system
generally has relative minima. A method fof.adapting such a filter has
been devised by Mnntey [28], [29] which will converge on a unique
mingnum. This method involves breaking the feedback link during the -
"adapt mode” and exciting the feedback branch with the desired response
as shown in the figune. In this mode, adnptation can proceed using
the LMS algorithm. Mantey has shown that this adaptation yields
weights which give the best estimate of the desired response based onr
we1ghting the past inputs and the desired responses. If the minimum
mean-square error of this minimization is small then the system\
kwhen returned to the "opergte mode" yields very satisfactory performance.
In the specialized éase of a "feedback-only"7filtef, where only

the present input is used in conjunction with the past outputs to form
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the new output, Mantey has shown for white inputs that use of the LMS
algorithm, wifh the desired response exciting the feedback branch,
guarantees a stable system when restored to thev"operate mode"”. The
resultant system in this pase has a frequency respoﬁse which is the
best least-squares approximation tb that implied by the ratio of the
transforms of input and‘desired output. In this sense the result is
said to be oﬁtimal. For cases where the inéut is not white and/or‘
feedforward weights are used, the only-instabilities generéted in the
numerous cases which have been similated could be attributed to,problemé

of computer accuracy.

CONCLUSIONS

It has been shown that a simple linear combinatorial system
coupled to a tapped.delay line can be used as the basis for an adaptive
filter that adjusts its own parameters to fit the given problem. In
this filter, the prlnciple of "performance feedback” is used to control,
not the signals, but the "design" of the adaptive filter--i.e.,
the actual values of the variable parameters (weights). In this form _
of feedback process, the "feedback error signal” is the gradient of the
mean-square-error pérformance surface, which in many important cases
is a quadratic functibn of the fiiter adjustments.

The LMS algorithm, based on the method of steepest descent, is:
used to search the mean-square error surface for a min1mum. State-
space methods, which are wldely used in modern control theory, have

been applied to the analysis of stability and time constants. Consider-

able simplifications in analysis have been realized by expressing
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transient phenomena of the system adjustments (which take place during
the adaptation process) in terms of the normal coordinates of the
system. The time constants are given by

1

T =_'_-_ y P=1, 2, ";‘n'
P 2(-k) A,

where 19 is the bth‘eigenbélué of the matrix [6¢(x,x)], the input-
signal correlation hatrix,,and ks is a design parameter which controls
the rate of adih%atibn,ﬂi L S SR ¢y
The LMS algorithm ﬁses measured gradient estimates which are noisy
but unbiased. The effect of random fluctuations in the weight values
due to "gradient—measureﬁent noise” in the LMS-steepest descent process
can be minimized by using a sufficiently slo& rate of adjustment of
the filter parameters.
A measuremenf M of relative excess mean-square error caused by

the adaptatibn process has been derived and evaluated as

n
1

T
p=1l 'p

N

~ ' Misadjustment M =

The value of the misadjustment depends on the time constants
(settling times) of the filter adjustment weights. When all of these
time constants are equal, M is proportional to the number of dimen-

sions and inversely proportional to the time constant. That is,

Although the above results specifically apply to stétistically
stationary processes, the LMS algorithm can also be used with non-
stationary processes, in which case "the rate of adaptation is optimized

when the losé of performance resulting from adapting too rapidly equals
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twice the loss in performance resulting from adapting too slowly.”

Advantages, Limitations, Applications

AAdaptive filtering techniques will prbbably turn out to be most
useful under circumstances when almost no a priori statistical infor-
mation is available. In such circumstances, the powerful methods of
Wiener and of Kalman and Bucy could not ‘be used well, and the adaptive
approach may present the only reasonable possibillty.

The IMS slgorithm presented here is quite simple to implement but
it does require a de51red‘response input signal, at least during
adaptation. This is a limitation' however, the desired response can
be made available in a number of applications such as noise filtering
.and prediction,~modeling, pattern recognition, certain adaptive control-
systems applications, adaptive antennas, adaptive equalizers for
telephone systems, and»many others. Several of these applications have
been successfully realized in the labdratory, either by computer simu-
lation or by actual physical realization of digital and/orkanalog
adaptivevcircuits. Ihese applications and other extensions of adaptive

filtering techniques will be discussed in subsequent papers.

Suggestions for Future Work

Much work remains to be done in the aforementioned areas of
application. New areas of application should be explored both from a'
theoretical,standpeint and from a practical one. The applicability of
adaptive filters to statistically nonstationary processes presents some
highly challenging mathematical and statistical problems; and perhaps
is the area in which the strongest applications of adaptive techniques

will be made.
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