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Abstract

The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the

quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an

ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution corresponds to noisy weights

and less than optimal performance.

In this work, two gradient descent adaptive algorithms are compared, the LMS algorithm and the LMS/Newton algorithm. LMS is simple

and practical, and is used in many applications worldwide. LMS/Newton is based on Newton’s method and the LMS algorithm.

LMS/Newton is optimal in the least squares sense. It maximizes the quality of its adaptive solution while minimizing the use of training data.

Many least squares adaptive algorithms have been devised over the years, but no other least squares algorithm can give better performance,

on average, than LMS/Newton.

LMS is easily implemented, but LMS/Newton, although of great mathematical interest, cannot be implemented in most practical

applications. Because of its optimality, LMS/Newton serves as a benchmark for all least squares adaptive algorithms. The

performances of LMS and LMS/Newton are compared, and it is found that under many circumstances, both algorithms provide equal

performance. For example, when both algorithms are tested with statistically nonstationary input signals, their average performances

are equal. When adapting with stationary input signals and with random initial conditions, their respective learning times are on

average equal. However, under worst-case initial conditions, the learning time of LMS can be much greater than that of LMS/Newton,

and this is the principal disadvantage of the LMS algorithm. But the strong points of LMS are ease of implementation and optimal

performance under important practical conditions. For these reasons, the LMS algorithm has enjoyed very widespread application. It is

used in almost every modem for channel equalization and echo cancelling. Furthermore, it is related to the famous backpropagation

algorithm used for training neural networks.
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1. Introduction

Learning systems take on many forms. Of special interest

here are the adaptive linear combiner of Fig. 1 and the

adaptive transversal filter of Fig. 2. The linear combiner is

the basic building block of almost all neural networks and

adaptive filters. The linear combiner and the adaptive filter

have found very wide application in practice (Widrow,

Mantey, Griffiths, & Goode, 1967; Widrow, Glover,

McCool, Kaunitz, Williams, Hearn, Zeidler, Dong &

Goodlin, 1975; Widrow & Stearns, 1985; Widrow &

Walach, 1996; Ghogho, Ibnkahla, & Bershad, 1998;

Proakis, 2001). For example, the present-day Internet

would not exist without adaptive filters in every modem.

A learning system is generally characterized as an operator

on signals, images, sounds, etc. that has adjustable parameters

and that has a mechanism, an adaptive algorithm, for

automatically adjusting the parameters in order to optimize

the operator’s performance. The adjustable parameters in

Figs. 1 and 2 are adjustable weights, indicated by circles with

arrows through them. The input signals are stochastic, and

information obtained from the inputs is used by the adaptive

algorithm to adjust the weights. The algorithm is thus a

consumer of data. An efficient algorithm minimizes the usage

of data while maximizing the quality of the solution, i.e.

achieving parameter adjustments close to optimum. Mini-

mizing data usage and maximizing solution quality are

generally antagonistic. Minimizing data usage corresponds to

fast adaptive convergence. But fast convergence based on a

small amount of data could lead to a solution of poor quality.

This tradeoff is present in all learning systems.
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2. The LMS and LMS/Newton algorithms

When referring to the linear combiner of Fig. 1, the set of

weights is designated by the weight vector

wk ¼

w1k

w2k

..

.

wnk

2
66666664

3
77777775
; ð1Þ

and the set of input signals to the weights is the input vector

xk ¼

x1k

x2k

..

.

xnk

2
66666664

3
77777775
: ð2Þ

The output signal yk is the inner product of xk and wk :

yk ¼ xT
k wk ¼ wT

k xk: ð3Þ

The subscripts k are a time index.

The desired response dk is an input training signal that is

obtained in practice from the physical context of the

application. Many examples of how desired responses may

be obtained are shown in Widrow and Stearns (1985) for a

variety of practical applications, such as prediction, noise

cancelling, sensor array processing, and so forth. The error

signal in Fig. 1 is ek; the difference between the desired

response and the actual output signal:

ek ¼ dk 2 yk: ð4Þ

Certain statistical properties of the inputs to the linear

combiner are of importance. Assuming that the input and the

desired response are stationary, the input autocorrelation

matrix, designated by R; is defined as

R W E½xkxT
k �; ð5Þ

and the crosscorrelation vector between the input xk and the

desired response dk is defined as

p W E½dkxk�: ð6Þ

For a given weight vector, with stationary input xk and

desired response dk flowing into the linear combiner, the

mean square error (MSE) is

j W E½e2
k� ¼ E½d2

k �2 2pTw þ wTRw; ð7Þ

where we dropped the subscript k from the vector w because

we do not yet wish to adjust the weights. The MSE is thus a

quadratic function of the weights. If there were only two

weights, the MSE could be plotted as in Fig. 3.

With many weights, the surface, known as the perform-

ance surface, is a hyperparaboloid. The gradient of this

Fig. 1. Adaptive linear combiner.

Fig. 2. Adaptive transversal digital filter. Fig. 3. Sample MSE for a two-weight system.
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surface, is a vector obtained by differentiation of Eq. (7):

7 W

›j

›w1

..

.

›j

›wn

2
66666664

3
77777775
¼ 22p þ 2Rw: ð8Þ

Assuming R is not singular, the optimal solution wp is found

by setting the gradient to zero:

wp ¼ R21p: ð9Þ

This weight vector is the best linear least squares solution

and is commonly known as the Wiener solution. The MSE

corresponding to the Wiener solution is designated by jmin:

The Wiener solution is of great theoretical interest, but it

cannot be used directly in many practical circumstances

because one would not know the statistics R and p: Input

data samples are available, and they can be used on an

iterative basis as they arrive for the adjustment or adaptation

of the weights. The weight adjustment process that is the

simplest and most widely used in the world today is the

Widrow-Hoff LMS algorithm, derived in 1959 (Widrow &

Hoff, 1960). This algorithm is based on the method of

steepest descent, using instantaneous gradients. It is

interesting to note that the backpropagation algorithm of

Werbos (1974) also utilizes the method of steepest descent

using instantaneous gradients in adapting the weights of a

neural network. Backpropagation is a remarkable general-

ization of the LMS algorithm. It is the most widely used

algorithm for adapting neural networks.

Steepest descent can be written as

wkþ1 ¼ wk þ mð27kÞ: ð10Þ

The next weight vector, wkþ1; equals the present weight

vector, wk; plus a change which is proportional to the

negative gradient. The proportionality constant is m; and this

is a design parameter that controls stability and rate of

convergence. The LMS algorithm is obtained from Eqs. (10)

and (4) as

wkþ1 ¼ wk þ 2mekxk;

ek ¼ dk 2 xT
k wk:

(
ð11Þ

The gradient for each iteration is instantaneous and is given

by 22ekxk; as shown in Widrow and Stearns (1985).

When using steepest descent to find the minimum of a

quadratic function of the weights, the weights progress

geometrically toward the Wiener solution. In fact, each

weight converges toward its Wiener value with a pro-

gression that is a sum of geometric progressions. Each of the

geometric progressions has an individual ‘time constant’

(the unit of time is the iteration cycle). It has been shown

(Widrow & Stearns, 1985) that there are as many distinct

time constants as there are distinct eigenvalues of the R

matrix. These time constants depend on the eigenvalues of

R and correspond to natural modes of the adaptive

algorithm. The relative amplitudes of the modes are

different from one weight to another and depend on the

initial conditions of the weight vector, i.e. its initial setting.

Since one rarely has a priori knowledge of the orientation

of the initial weight vector setting with respect to the

eigenvectors of the R matrix, it is difficult to predict the

relative amplitudes of the modes and therefore difficult to

predict the rate of convergence of the LMS algorithm. In

spite of this drawback, LMS is very widely used.

A more predictable algorithm is Newton’s method.

Assuming that R is not singular, it can be written as

wkþ1 ¼ wk þ mlaveR21ð7kÞ: ð12Þ

Here, the negative gradient is premultiplied by mlaveR21;

where lave is the average of the eigenvalues of R: Based on

Eq. (12) and using the instantaneous gradient 22ekxk; the

LMS/Newton algorithm can be written as

wkþ1 ¼ wk þ 2mlaveR21ekxk;

ek ¼ dk 2 xT
k wk:

(
ð13Þ

With Newton’s method, there is only one natural mode,

corresponding to one time constant. The learning rate of

Newton’s method is independent of the weight vector’s

initial conditions. It is interesting to note that Eq. (13) is

identical to Eq. (11) when all of the eigenvalues of R are

equal.

So, the good news about LMS/Newton is that its rate of

convergence is predictable and does not depend on initial

conditions. The bad news is that one cannot implement this

algorithm in practice because R21 is generally unknown.

LMS, based on steepest descent, has disadvantages, but it is

simple and easy to implement. Also, as will be shown, it

performs equivalently to LMS/Newton under many import-

ant conditions.

3. Learning with a finite set of data samples

The LMS/Newton algorithm is not only very predictable

in its convergence behavior, but it is also highly efficient in

its use of input data. It will be shown that in the least squares

sense, no other algorithm can be more efficient in its data

usage than LMS/Newton.

In order to study the question of efficiency for the

LMS/Newton algorithm, it is useful to contemplate training

the linear combiner with a finite number of data samples.

One data sample consists of an x vector and its associated

desired response. Assume that a set of N training input

samples and associated desired responses is drawn from a

given distribution. Define a matrix X for these training

samples as the set of N x-vectors:

X W ½ x1 x2 … xN �T: ð14Þ
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Define a desired response vector for these samples as

d W ½ d1 d2 … dN �T: ð15Þ

For a given weight vector w; the set of output responses is

y W ½ y1 y2 … yN �T ¼ Xw: ð16Þ

Define an error vector for these samples as

e W ½ e1 e2 … eN �T ¼ d 2 y: ð17Þ

The objective is to find a set of weights that will minimize

the sum of the squares of the errors for the training sample,

i.e. minimize eTe : Assuming X is full rank, one obtains the

optimal least squares solution either by differentiating eTe

with respect to w and setting the result to zero or by

invoking the orthogonality condition (Kailath, Sayed, &

Hassibi, 2000; Widrow & Stearns, 1985). The resulting least

squares solution is

wLS ¼ ðXTXÞ21XTd: ð18Þ

One could directly calculate this solution from the data, or

the same result could be obtained by training the weights

with the LMS algorithm or any other least squares

algorithm, recirculating the training data over and over

until the weights converge and stabilize. It should be noted

that if the number N were increased without bound, the

finite least squares solution of Eq. (18) would converge in

the mean-square sense to the true Wiener solution for the

given distribution of training samples and desired responses.

In practice, one would have only a finite number of data

samples available for training. The question is, given N

training samples, how well does the optimal solution of Eq.

(18) perform compared to the Wiener solution when

operating on an infinite set of samples drawn from the

same distribution? The true Wiener solution yields the

minimum MSE. The least squares solution based on N

training samples produces more MSE than the true Wiener

solution. There is an excess MSE. If a different set of N data

samples were randomly selected from the same distribution,

a different optimal solution (18) would result, with a

different excess MSE. Given an ensemble of randomly

selected data sets, each with N samples of data, there would

be an ensemble of optimal solutions (18) with an ensemble

of excess MSEs. One could take an ensemble average of the

excess MSEs and normalize with respect to the minimum

MSE of the true Wiener solution. This dimensionless ratio is

called the misadjustment due to training with N data

samples:

M W
ðaverage excess MSEÞ

ðminimum MSEÞ

¼
ðnumber of weightsÞ

ðnumber of training samplesÞ
¼

n

N
: ð19Þ

A derivation of this result is given in Widrow and

Kamenetsky (2003) and Widrow, McCool, Larimore, and

Johnson (1976). It was first reported by Widrow and Hoff at

a WESCON conference in 1960 (Widrow & Hoff, 1960).

Years of experience with adaptive filters and neural

networks lead one to accept a misadjustment of 10% as a

reasonable design value. This gives a performance that is

only 10% worse than that of the optimal Wiener solution.

When training a linear combiner, a 10% misadjustment is

obtained when the number of training samples is equal to 10

times the number of weights. When training a neural

network having only one neuron, the number of training

patterns would be equal to 10 times the number of weights.

When training an adaptive filter with a steady flow of

stationary input data, the parameter m should be chosen so

that the training time or convergence time (several time

constants of the learning curve) would be equal to 10 times

the length of its impulse response in order to have a

misadjustment of 10%. There is no similar law for

multilayered neural networks trained with backpropagation,

but one may speculate that for a network with many inputs

and a single output, regardless of the number of neurons and

layers, training with a number of patterns equal to 10 times

the number of inputs should give good performance.

4. Learning with LMS/Newton

Consider the linear combiner, with stationary input data

flowing in real time. Starting from an initial (non-optimal)

weight vector and adapting with the LMS/Newton

algorithm, the weight vector will geometrically (exponen-

tially) relax toward the Wiener solution, with noise

superposed. The noise originates from adapting with

instantaneous gradients. (Estimating the gradient with a

single data sample produces a noisy gradient). As the

weights relax toward the Wiener solution, the MSE also

relaxes exponentially toward the level of the minimum

mean square error jmin; with noise superposed. Because of

gradient noise, the weights do not converge on the Wiener

solution, but undergo Brownian motion about it. The MSE

is almost always greater than jmin and never goes below

it, because of the noise in the weights while adapting. A

plot of MSE versus number of iterations is shown in

Fig. 4, where jasy is the asymptotic MSE, and jexcess is the

difference between it and the minimum MSE jmin: This

type of plot is called the ‘learning curve’. Note that, in

general, jexcess . 0 because the misadjustment is not zero,

and thus, the asymptotic MSE jasy is greater than jmin;

which is reflected in Fig. 4.

After gross adaptive transients have died out (after about

four exponential time constants), the weights are in a steady

state Brownian motion and the MSE hovers randomly above

jmin; exhibiting ‘excess mean square error’. The misadjust-

ment for this situation is defined as the average of the excess

mean square error divided by jmin:

M W
ðaverage excess MSEÞ

ðminimum MSEÞ
: ð20Þ
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The bigger one makes m; the faster the algorithm converges,

and the greater is the misadjustment. It has been shown

(Widrow & Kamenetsky, 2003; Widrow & Stearns, 1985;

Widrow & Walach, 1984) that a good approximation for the

misadjustment is

M ¼ mTrðRÞ ¼
n

4tMSE

; ð21Þ

where TrðRÞ is the trace of R; and tMSE is the time constant

of the mean square error learning curve. The unit of time is

the iteration cycle. Time is marked by number of iteration

cycles, and since a new input training sample is used with

each iteration cycle, time can equivalently be marked by

number of training samples used.

5. Optimality of LMS/Newton in a stationary

environment

The LMS/Newton algorithm exponentially weights its

input data over time as it establishes its weight values. The

settling time of the adaptive process is of the order of four

time constants of the MSE learning curve. At any moment,

the weights are determined by adaptation that has taken

place over essentially the last four time constants worth of

data. Thus, in a steady flow situation, the training data

‘consumed’ or ‘absorbed’ at any time by the LMS/Newton

algorithm is essentially comprised of the most recent 4tMSE

samples. From Eq. (21), the misadjustment of the LMS/

Newton algorithm can therefore be expressed as

M ¼
n

4tMSE

¼
ðnumber of weightsÞ

ðnumber of independent training samplesÞ
: ð22Þ

When learning with a finite set of data samples, the optimal

weight vector is the best least squares solution for that set of

samples, and it is often called the ‘exact least squares

solution’. This solution, given by Eq. (18), makes the best

use of the finite number of data samples, in the least squares

sense. All of the data are weighted equally in affecting the

solution. This solution will of course vary from one set of

samples to another, and it has a misadjustment of

M ¼
ðnumber of weightsÞ

ðnumber of independent training samplesÞ
: ð23Þ

For the same consumption of data, it is apparent that LMS/

Newton and exact least squares yield the same misadjust-

ment. Although we are comparing ‘apples with oranges’ by

comparing a steady flow algorithm with an algorithm that

learns with a finite number of data samples, we nevertheless

find that LMS/Newton is as efficient as exact least squares

when we relate the quality of the weight-vector solution to

the amount of data used in obtaining it. Since the exact least

squares solution makes optimal use of the data, so does

LMS/Newton.

6. Transient learning with stationary input data

The LMS/Newton algorithm makes optimal use of its

training data. Its learning curve is exponential with a single

time constant. For practical purposes, its convergence time

is of the order of four time constants, although in principle,

convergence would take forever. Fast convergence is

desirable because, during the initial learning transient, the

MSE is excessive. The LMS algorithm has a learning curve

which is a sum of exponentials. But, when all of the

eigenvalues of the R matrix are equal, LMS has a single

exponential learning curve that is identical to that of

LMS/Newton; and LMS is therefore optimal. Generally, the

eigenvalues are not equal, and LMS has a different kind of

learning curve than LMS/Newton.

After learning transients die out, the steady state

misadjustment for LMS/Newton is

M ¼ mTrðRÞ; ð24Þ

and the steady state misadjustment for LMS is

M ¼ mTrðRÞ: ð25Þ

The derivations of Eqs. (24) and (25) are given in Widrow

and Kamenetsky (2003) and Widrow and Stearns (1985).

These misadjustment formulas are approximations of the

true misadjustment. It should be noted that more precise

formulas for misadjustment have been derived by, among

others, Butterweck (2001), Dabeer and Masry (2002),

Widrow and Walach (1996, App. A), and Yousef and Sayed

(2001). However, the formulas in Eqs. (24) and (25) have

been used for many years and have proven to be excellent

approximations for small values of M (less than 25%).

A fair and reasonable way to compare two algorithms is

to adjust their rates of convergence so that they would have

the same steady state misadjustment. One could always

make an algorithm ‘look good’ with fast adaptation, but this

Fig. 4. Sample learning curve with gradient noise.
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causes excessive misadjustment. To compare LMS with

LMS/Newton, their m-parameters should be set to the same

value.

Fig. 5 shows plan views of a quadratic MSE surface, Fig.

5(a) indicating adaptive steps for Newton’s method and Fig.

5(b) showing corresponding steps for the method of steepest

descent with equivalent initial conditions. These steps

correspond to three adaptive transient experiments, each

starting from a different point on the same contour of

constant MSE and operating with the same value of m: The

steps using Newton’s method are always directed toward the

bottom of the quadratic bowl, whereas those of steepest

descent follow the local gradient, orthogonal to the contours

of constant MSE.

Fig. 6 shows learning curves corresponding to the

adaptive steps illustrated in Fig. 5. All three learning curves

derived from Newton’s method are identical, since the

initial starting conditions are located on the same constant

MSE contour, and all three time constants are the same. Fig.

6 shows all three learning curves as a single curve labeled

‘Newton’s method’. The three steepest descent curves are

distinct, having individual time constants. The curves

corresponding to initial conditions falling on an eigenvector

(a principal axis of the elliptical contours) are pure

exponentials, whereas the curve corresponding to the initial

condition between the eigenvectors is a sum of two

exponentials.

Which algorithm converges faster? For some initial

conditions, LMS converges faster than LMS/Newton. For

other initial conditions, LMS is slower than LMS/Newton.

Yet for other initial conditions, LMS has multiple modes,

some faster than LMS/Newton and some slower than it. The

question is: which is faster, LMS or LMS/Newton?

7. Excess error energy

The question ‘which is faster’ prompts a new look at the

learning curve and at the issue of learning time. Regarding

the learning curves of Fig. 7, it is clear that during the

transient, the MSE is excessive. One strives to reduce this

MSE to jmin as fast as possible. The area under the curve and

above jmin; the shaded area, is defined as the excess error

energy. This area is a sum of MSE over time. One would

like this area to be as small as possible.

The learning curve shown in Fig. 7(a) is an exponential

having a single time constant. The area under this curve, the

excess error energy, is equal to the amplitude of the

exponential (its initial excess MSE) multiplied by the time

constant. The learning time for this curve may be considered

to be four time constants. This is somewhat arbitrary, but

reasonable. Accordingly, the learning time for the single

Fig. 5. Illustration of Newton’s method versus steepest descent: (a)

Newton’s method, (b) steepest descent. The Wiener solution is indicated

by p . The three initial conditions are indicated by W.

Fig. 6. Steepest descent and Newton’s method learning curves.
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exponential is defined as

ðlearning timeÞ W 4 £
ðexcess error energyÞ

ðinitial excess MSEÞ
: ð26Þ

The learning curve shown in Fig. 7(b) is a sum of two

exponentials. Its excess error energy is the same as that of

the single exponential learning curve of Fig. 7(a), and the

initial excess MSE of both curves is the same. The learning

times of both curves are therefore the same and are both

given by Eq. (26). In general, the learning time of a learning

curve which is a sum of any number of exponentials will be

defined hereby as given by Eq. (26). Starting from the same

initial MSE, the convergence times of two different learning

curves are defined as being identical if their respective

excess error energies are equal. Excess error energy is

proportional to learning time as it is defined here.

The question remains, which has the greater learning

time, LMS or LMS/Newton? Referring to Fig. 6, one can

see that LMS/Newton has a fixed learning time, but the

learning time of LMS depends on initial conditions.

Sometimes LMS is faster than LMS/Newton, sometimes

slower. Under worst-case initial conditions, LMS can have a

much greater learning time than LMS/Newton. However, it

has been shown (Widrow & Kamenetsky, 2003) that with

random initial conditions, the average learning time with

LMS is identical to the unique learning time of LMS/

Newton. LMS/Newton is optimal and its performance is the

benchmark. It is important to realize that the average

performance of LMS is identical to that of LMS/Newton,

when comparing both algorithms starting from the same

randomly chosen initial conditions. One must be careful to

note that this does not mean that the learning curves of LMS

and LMS/Newton are identical, even when averaged over

initial conditions. On the contrary, it can be shown that the

average initial convergence of LMS is faster than that of

LMS/Newton, whereas the average final convergence of

LMS is slower than that of LMS/Newton (Widrow &

Kamenetsky, 2003). However, their average learning times

and average excess error energies are the same.

8. LMS and LMS/Newton in a nonstationary

environment

With statistically stationary inputs, the quadratic per-

formance surface is fixed, and the Wiener solution is fixed.

With nonstationary inputs, this surface changes randomly,

and the Wiener solution is not fixed but is a randomly

moving target. There is an analogy between, on the one

hand, transient adaptation from an ensemble of random

initial conditions toward a fixed Wiener target and, on the

other hand, steady state adaptation toward a randomly

moving Wiener target. In this section, a comparison is made

of the performances of the LMS algorithm and the

LMS/Newton algorithm when adapting with nonstationary

inputs of a simple form.

Filtering nonstationary signals is a major area of

application for adaptive systems. When the statistical

character of an input signal changes gradually, randomly,

and unpredictably, a filtering system that can automatically

optimize its input-output response in accord with the

requirements of the input signal could yield superior

performance relative to that of a fixed, non-adaptive system.

The performance of the conventional steepest descent LMS

algorithm is compared here with LMS/Newton (which, as

demonstrated above, possesses optimality qualities), when

both algorithms are used to adapt transversal filters with

nonstationary inputs. The nonstationary situations to be

studied are highly simplified, but they retain the essence of

the problem that is common to more complicated and

realistic situations.

The example considered here involves modeling or

identifying an unknown time-varying system by an adaptive

LMS transversal filter of length n: The unknown system is

Fig. 7. Idealized learning curves (no gradient noise): (a) single-exponential,

(b) two-exponential. The shaded area represents the excess error energy.
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assumed to be a transversal filter of the same length n whose

weights (impulse response values) vary as independent

stationary ergodic first-order Markov processes, as indicated

in Fig. 8. The input signal xk is assumed to be stationary and

ergodic. Additive output noise, assumed to be stationary and

ergodic, of mean zero and of variance jmin; prevents a

perfect match between the unknown system and the

adaptive system. The minimum MSE is, therefore, jmin;

and it is achieved whenever the weights of the adaptive

filter, wk; match those of the unknown system. The latter are

at every instant the optimal values for the corresponding

weights of the adaptive filter and are designated as wp
k ; the

time index indicating that the unknown ‘target’ to be tracked

is time-varying.

The components of wp
k are generated by passing

independent white noises of variance s2 through identical

one-pole low-pass filters. The components of wp
k therefore

vary as independent first-order Markov processes. The

formation of wp
k is illustrated in Figs. 8 and 9.

According to the scheme of Fig. 8, minimizing the MSE

causes the adaptive weight vector wk to attempt to best

match the unknown wp
k on a continual basis. The R matrix,

dependent only on the statistics of xk; is constant even as wp
k

varies.

The desired response of the adaptive filter, dk; is

nonstationary, being the output of a time-varying system.

The minimum MSE, jmin; is constant. Thus the MSE

function, a quadratic bowl, varies in position while its

eigenvalues, eigenvectors, and jmin remain constant.

In order to study this form of nonstationary adaptation

both analytically and by computer simulation, a model

comprising an ensemble of nonstationary adaptive pro-

cesses has been defined and constructed as illustrated in

Fig. 9. Throughout the ensemble, the unknown filters to be

modeled are all identical and have the same time-varying

weight vector wp
k : Each ensemble member has its own

independent input signal going to both the unknown system

and the corresponding adaptive system. The effect of output

noise in the unknown systems is obtained by the addition of

independent noises of variance jmin: All of the adaptive

filters are assumed to start with the same initial weight

vector w0; each develops its own weight vector over time in

attempting to pursue the moving Markovian target wp
k :

For a given adaptive filter, the weight-vector tracking

error at the kth instant is vk W wk 2 wp
k : This error is due to

both the effects of gradient noise and weight-vector lag and

may be expressed as

vk ¼ wk 2 wp
k ¼ ðwk 2 E½wk�Þ|fflfflfflffl{zfflfflfflffl}

weight-vector noise

þ ðE½wk�2 wp
kÞ|fflfflfflffl{zfflfflfflffl}

weight-vector lag

: ð27Þ

The expectations are averages over the ensemble. Eq. (27)

identifies the two components of the error. Any difference

Fig. 9. An ensemble of nonstationary adaptive processes.

Fig. 8. Modeling an unknown time-varying system.
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between the ensemble mean of the adaptive weight vectors

and the target value wp
k is due to lag in the adaptive process,

while the deviation of the individual adaptive weight

vectors about the ensemble mean is due to gradient noise.

Weight-vector error causes an excess MSE. The

ensemble average excess MSE at the kth instant is

ðaverage excess MSEÞk ¼E½ðwk 2wp
kÞ

TRðwk 2wp
kÞ�: ð28Þ

Using Eq. (27), this can be expanded as follows:

ðaverage excess MSEÞk

¼E½ðwk 2E½wk�Þ
TRðwk 2E½wk�Þ�þE½ðE½wk�Þ

2wp
kÞ

TRðE½wk�2wp
kÞ�þ2E½ðwk 2E½wk�Þ

T

3RðE½wk�2wp
kÞ�:

ð29Þ

Expanding the last term of Eq. (29) and simplifying since wp
k

is constant over the ensemble,

2E½wT
k RE½wk�2wT

k Rwp
k 2E½wk�

TRE½wk�þE½wk�
TRwp

k�

¼ 2ðE½wk�
TRE½wk�2E½wk�

TRE½wk�2E½wk�
T

3Rwp
kþE½wk�

TRwp
kÞ ¼ 0:

ð30Þ

Therefore, Eq. (29) becomes

ðaverage excess MSEÞk

¼E½ðwp
k 2E½wk�Þ

TRðwk 2E½wk�Þ�þE½ðE½wk�

2wp
kÞ

TRðE½wk�2wp
kÞ�: ð31Þ

The average excess MSE is thus a sum of components due to

both gradient noise and lag:

ðaverage excess MSE due to lagÞk

¼E½ðE½wk�2wp
kÞ

TRðE½wk�2wp
kÞ�

¼E½ðE½w0
k�2w0pkÞ

T ^ ðE½w0
k�2w0pkÞ� ð32Þ

ðaverage excess MSE due to gradient noiseÞk

¼E½ðwk 2E½wk�
TÞRðwk 2E½wk�Þ�

¼E½ðw0
k 2E½w0

k�Þ
T ^ ðw0

k 2E½w0
k�Þ�; ð33Þ

where w0
k WQTwk; w0pk WQTwp

k ; ^ is a diagonal matrix of

the eigenvalues of R; and Q is the modal matrix of R: The

total misadjustment is therefore a sum of two components,

that due to lag and that due to gradient noise. These

components of misadjustment have been evaluated by

Widrow et al. (1976). The total misadjustment for

adaptation with the LMS algorithm is

Msum ¼ ðmisadjustment due to gradient noiseÞ

þ ðmisadjustment due to lagÞ

¼mTrðRÞþ
ns2

4mjmin

:

ð34Þ

Since Msum is convex in m; an optimal choice of m that

minimizes Msum can be obtained by differentiating Msum with

respect to m and setting the derivative to zero. Optimization

takes place when the two terms of Eq. (34) are made equal.

When this happens, the loss in performance from adapting

too rapidly (due to gradient noise) is equal to the loss in

performance from adapting too slowly (due to lag).

It is interesting to note that Msum in Eq. (34) depends on

the choice of the parameter m and on the statistical

properties of the nonstationary environment but does not

depend on the spread of the eigenvalues of the R matrix. It is

no surprise, therefore, that when the components of

misadjustment are evaluated for the LMS/Newton algorithm

operating in the very same environment, the expression for

Msum for LMS/Newton turns out to be

Msum ¼ ðmisadjustment due to gradient noiseÞ

þ ðmisadjustment due to lagÞ

¼ mTrðRÞ þ
ns2

4mjmin

; ð35Þ

which is the same as Eq. (34). From this we may conclude

that the performance of the LMS algorithm is equivalent to

that of the LMS/Newton algorithm when both are operating

with the same choice of m in the same nonstationary

environment, wherein they are tracking a first-order Markov

target. The optimum value of m is the same for LMS/

Newton as for LMS. Since LMS/Newton is optimal, we may

conclude that the LMS algorithm is also optimal when

operating in a first-order Markov nonstationary environ-

ment. And LMS is likely to be optimal or close to it when

operating in many other types of nonstationary environ-

ments, although this has not yet been proven.

9. Conclusion

An adaptive algorithm is like an engine whose fuel is input

data. Two algorithms adapting the same number of weights

and operating with the same misadjustment can be compared

in terms of their consumption of data. The more efficient

algorithm consumes less data, i.e. converges faster. On this

basis, the LMS/Newton algorithm has the highest statistical

efficiency that can be obtained. The LMS/Newton algorithm

therefore can serve as a benchmark for statistical efficiency

against which all other algorithms can be compared.

The role played by LMS/Newton in adaptive systems

is analogous to that played by the Carnot engine in

thermodynamics. They both do not exist physically. But
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their performances limit the performances of all practical

systems, adaptive and thermodynamic, respectively.

The LMS/Newton algorithm uses learning data most

efficiently. No other least squares learning algorithm can be

more efficient. The LMS algorithm performs identically to

LMS/Newton when all eigenvalues of the input autocorrela-

tion matrix (the R matrix) are equal. In most practical cases,

however, the eigenvalues are not equal. Regardless of

eigenvalue spread, the LMS algorithm performs equiva-

lently, on average, to LMS/Newton in nonstationary

environments and under transient learning conditions with

random initial conditions. However, under ‘worst case’

initial conditions, LMS can converge much more slowly

than LMS/Newton. Under ‘best case’ initial conditions,

LMS converges much faster than LMS/Newton. On

average, their convergence rates are equivalent in terms of

their excess error energies. Along with its simplicity, ease of

implementation, and robustness, the equivalent perform-

ance between LMS and LMS/Newton is one of the major

reasons for the popularity of the LMS algorithm. Dr.

Widrow has discussed this with Dr Paul Werbos, and both

conclude that the backpropagation algorithm is popular for

similar reasons.
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