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Abstract—The paper presents neural dynamic optimization
(NDO) as a method of optimal feedback control for nonlinear
multi-input-multi-output (MIMO) systems. The main feature
of NDO is that it enables neural networks to approximate the
optimal feedback solution whose existence dynamic programming
(DP) justifies, thereby reducing the complexities of computation
and storage problems of the classical methods such as DP. This
paper mainly describes the theory of NDO, while the two other
companion papers of this topic explain the background for the
development of NDO and demonstrate the method with several
applications including control of autonomous vehicles and of a
robot arm, respectively.

Index Terms—Dynamic programming, information time shift
operator, learning operator, neural dynamic optimization, neural
networks, nonlinear systems, optimal feedback control.

I. INTRODUCTION

NONLINEAR control system design has been dominated
by linear control techniques, which rely on the key as-

sumption of a small range of operation for the linear model to
be valid. This tradition has produced many reliable and effective
control systems [1]–[4].

However, the demand for control methods of complex non-
linear multi-input-multi-output (MIMO) systems has recently
been increasing for several reasons. First, most real-world
dynamical systems are inherently nonlinear. Second, modern
technology, such as high-performance aircraft and high-speed,
high-accuracy robots, demands control systems with much
more stringent design specifications, which are able to handle
nonlinearities of the controlled systems more accurately. Third,
along with the demand for high performance, MIMO control
systems often become preferred or required because of the
availability of cheaper and more reliable sensors and actua-
tors made possible by the advances in such technology. The
challenge for control design is to fully utilize this additional
information and degrees of freedom to achieve the best control
system performance possible. Fourth, controlled systems must
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be able to reject disturbances and uncertainties confronted in
real-world applications.

Unfortunately, there are few general practical feedback con-
trol methods for nonlinear MIMO systems [5], [6], although
many methods exist for linear MIMO systems. The behavior of
nonlinear systems is much more complicated and rich than that
of linear systems because of both the lack of linearity and the
associated superposition property [5], [7].

We present neural dynamic optimization (NDO) as a practical
method for nonlinear MIMO control systems. In order to handle
the complexities of nonlinearity and accommodate the demand
for high-performance MIMO control systems, NDO takes ad-
vantage of brain-like computational structures — neural net-
works — as well as optimal control theory. Our formulation al-
lows neural networks to serve as nonlinear feedback controllers
optimizing the performance of the resulting control systems.
NDO is thus an offspring of both neural networks and optimal
control theory.

This paper mainly describes the theory of NDO, while the
two other companion papers [8], [9] of this topic explain the
background for the development of NDO and demonstrate
the method with several applications including control of
autonomous vehicles and of a robot arm, respectively.

Four sections comprise this paper. Section II introduces NDO
as an approximate technique for solving the dynamic program-
ming (DP) problem based on neural network techniques. We
formulate neural networks to approximate the optimal feedback
solution. We introduce the learning operator and the informa-
tion time shift operator, which characterize the learning process
of the neural network in searching for the optimal feedback so-
lution. The analysis of the learning operator provides not only a
fundamental understanding of the learning process in neural net-
works but also some useful guidelines for selecting the number
of weights of the neural network. Section III proves the equiv-
alence of NDO to DP and feedforward optimal control (FOC)
for linear quadratic problems, which demonstrates a connection
between NDO and optimal control theory. Section IV has con-
clusions.

II. NEURAL DYNAMIC OPTIMIZATION

This section presents an approximate technique for solving
the DP problem based on neural network techniques that pro-
vides many of the performance benefits (e.g., optimality and
feedback) of DP and benefits from the numerical properties and
real-time performance capabilities of neural networks. We for-
mulate neural networks to approximate the optimal feedback so-
lution. We call this method NDO.
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A. Formulation

Let us consider the same discrete NTV-MIMO system, as in
the case of DP and FOC

(1)

with

(2)

where is the state vector, is the control
input vector, is an initial state, and denotes a proba-
bility distribution associated with .

Here we formulate NDO so that it can find the optimal time-
varying closed-loop solution and a family of trajectories over
state space. In order to find the closed-loop solution, we may
feed the state to the multilayer feedforward neural network
that is our controller. Since the multilayer feedforward network
itself produces only a static mapping from the inputs of the input
layer to the outputs of the final layer, the resulting feedback con-
troller will be time-invariant. However, by feeding time infor-
mation to the neural controller externally, we can allow the con-
troller to have explicit time-dependency so that it can approx-
imate the time-varying optimal feedback solution. In addition,
the neural controller may receive some desired reference inputs
to force the outputs of the system to follow them, depending on
the goal of control. Fig. 1 depicts the overall configuration of
the system and the neural controller. In order to find a family
of optimal trajectories associated with different values of initial
states, we treat the initial state as a random vector over state
space with a probability , as shown in (2).

Then, we apply an optimal control framework so that the
neural network can search the optimal feedback solution over
state space. In other words, our objective is to find the optimal
weight vector of the multilayer feedforward neural network

(3)

minimizing the same form of the cost function as in the case of
DP and FOC

(4)

The expectation operator is employed in the cost function be-
cause we optimize the performance of the closed-loop system
over an ensemble of trajectories associated with different values
of initial states in the average sense. The neural network should
be able to approximate the closed-loop optimal solution whose
existence DP confirms. We note that this is a parameter opti-
mization problem by treating as a set of unknown parame-
ters. Thus, we apply the calculus of variations to solve this pa-
rameter optimization problem.

B. Neural Euler–Lagrange (NEL) Equations

Let us find the optimal conditions for NDO. We treat both
the system and control equations as constraints, and adjoin to
the cost function (4) the system and the control equations, i.e.,

Fig. 1. Overall configuration of the system and the neural controller.

(1) and (3) with Lagrange multiplier vector sequences
and , respectively, as follows:

(5)

where we define

Define the Hamiltonian as

(6)

Substituting (6) into (5) and rearranging terms yields

(7)

Now consider differential changes in caused by differential
changes in , and

(8)

Since and are specified and fixed for each trajec-
tory, and are both equal to zero. Optimal solu-
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tions require that for all choices of , ,
and . Thus, we must satisfy the following equations:

the adjoint system equations—

(9)

(10)

for
with boundary condition—

(11)

the optimal condition—

(12)

Let us summarize the above derivations with the following the-
orem.

Theorem 1: For the given dynamic optimization problem of
minimizing the cost function

(13)

subject to

(14)

with

(15)

and

(16)

where , , and the function are specified, and is a
random vector over state space with a probability , the
optimal weight vector of the neural network is obtained from
the discreteNeural Euler–Lagrange(NEL) equations:

the system/control equations—

(17)

(18)

with

the adjoint system equations—

(19)

(20)

with
the optimality condition—

(21)

NEL consists of the system/control equations, the ad-
joint system equations, and the optimality condition. The
system/control equations have an initial condition at the initial
time . In contrast, the adjoint system equations have
an initial condition at the end of the time horizon .
This is a two-point boundary value problem (TPBVP). The
system/control equations, the adjoint system equations, and the
optimality condition are all coupled to each other because all
are involved with unknown parameters of at the same time.
Furthermore, since the optimality condition (21) is involved
with the expectation operator associated with a probability
distribution over different values of initial states, NEL cannot
be solved as simultaneous nonlinear algebraic equations, in
contrast with the case of EL. We must solve NEL numerically,
exploiting the sequential nature of the problem.

C. Numerical Solution with Stochastic Steepest Descent
Method

We may apply the stochastic steepest descent method, as does
the LMS algorithm [10], [11]. The stochastic steepest descent
algorithm for NDO consists of three steps:

1) forward sweep;
2) backward sweep;
3) update of the weight vector.

Step 1) Forward sweep

(22)

(23)

with .
The forward sweep equations consist of the

system and control equations, which are coupled
to each other through the state and the control
input .

In order to initiate the forward sweep, suppose
some desired reference inputs are specified,
depending on the goal of control. First of all, we ini-
tialize the weight vector of the neural network ran-
domly. Then we pick initial states over state space
with a probability , which is often recom-
mended to have a uniform distribution. Given the
chosen initial state and the specified reference
inputs , we can compute the state and the
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Fig. 2. Forward sweep of NDO.

Fig. 3. Backward sweep of NDO.

control input through to , using the
system and control equations. Fig. 2 depicts the for-
ward sweep.

Step 2) Backward sweep

(24)

(25)

with , .
The backward sweep equations are the same as

the adjoint system equations. Though these equa-
tions look complicated, they can be represented by
the block diagram illustrated in Fig. 3. We have
the co-state , two co-inputs
and derived from the cost func-
tion, and the co-output . In this case, the
co-output is fed to the co-state through

.
This is an anti-causal LTV system because the cur-

rent co-state depends on the future co-state
through (24) and the coefficients such

as and are explic-
itly time-dependent. However, we can compute
and backward in time because we have already
obtained the sequences of and from the for-
ward sweep.

TABLE I
STOCHASTIC STEEPESTDESCENTALGORITHM FOR NEURAL DYNAMIC

OPTIMIZATION

Step 3) Update of weight vector

(26)

(27)

Then we update the weight vector using the
co-outputs , according to (26) and (27). The
update of the weight vector can be viewed as a step
to transform the co-outputs into an incremental
weight vector and then generate a new weight
vector . Obviously, for all implies
that . In other words, there is no change in
the synaptic weight vector. We repeat the three steps
until is small.

In short, the forward sweep defines feasible trajec-
tories over which NDO searches for the optimal so-
lution. The backward sweep conducts the optimiza-
tion process over the feasible trajectories and gener-
ates the co-outputs . The update of the weight
vector transforms the co-outputs into the incre-
mental synaptic weight vector . The stochastic
steepest descent algorithm for NDO is summarized
in Table I.

The computation requirement of the NDO algo-
rithm for each iteration is composed of three com-
ponents: forward sweep, backward sweep, update
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of weight vector. The forward sweep requires ap-
proximately multiplications
and additions because it evaluates the system/con-
trol equations from to . The backward
sweep needs roughly
operations because it computes not only Jacobians

and but also cal-
culates at each time step.
The update of weight vector needs approximately

operations. So the total number of mul-
tiplications and additions for each iteration using the
NDO algorithm is approximately

(28)

which means that the NDO algorithm requires the
additional operations of , com-
pared to the FOC algorithm (see [8, eq. (36)]).

The memory requirement of the algorithm is ap-
proximately

(29)

since it stores not only the state and the control
input from to but also the old and
new weight vectors ’s. Note that the memory re-
quirement of NDO depends linearly on the dimen-
sion of the state , the number of control inputs

, and the number of weights . In contrast, the
memory requirement of DP depends exponentially
on the dimension of the state and the number of con-
trol inputs, which can be problematic for high-order
nonlinear systems.

D. Learning Operator

In this section, we introduce the learning operator, which
characterizes the learning process of the neural network in
searching for the optimal feedback solution. The learning
operator determines a mapping from information to knowledge
and plays a central role in finding the optimal feedback solution
in NDO. The analysis of the learning operator provides a
fundamental understanding of the learning process in neural
networks but also some useful guidelines for selecting the
number of weights of the neural network.

Let us start with the update of the weight vector in the sto-
chastic algorithm for NDO. The synaptic weight vector of the
neural network is updated for each iteration:

(30)

Rewrite the above equation in the form of matrices as follows:

...

(31)

where

(32)

(33)

where is the number of components of the synaptic weight
vector, is the time horizon, and is the number of
components of the control input vector to the system. The ma-
trix , the transpose of the Jacobian matrix, determines a
mapping from to . If we interpret as an information
and as an incremental memory or knowledge stored in the
neural network, then determines the learning process of the
neural network. We thus call the learning operator, which
makes sense because depends on the current knowledge1

and stimuli such as , , and of the system. The incre-
mental knowledge is simply a linear combination of the
columns of . The columns of the learning operator are
the gradient vectors of the neural network with respect
to the synaptic weight vector . Thus the incremental knowl-
edge lies along the negative gradient of with re-
spect to . We define additional terminology before we begin
the analysis of the learning operator.

Notation: We call the vector theinformation vector. We
call the vector space where belongs theinformation
space. We call the vector the incremental knowledge
vector. We call the vector space where belongs the
knowledge space. We call the vector theknowledge vector.

Let us discuss the operations of in the learning process
of the neural network. Suppose that the matrix has rank .
The learning operator has four fundamental subspaces. The
row space of , which is spanned by the rows of , we call
theinformation-receiving shell. The information-receiving shell
is a subspace of the information space . The information-
receiving shell has dimension, which is the same as the rank
of .

The nullspace of , which consists of all vectors such
that , we call theinformation-blocking shellbecause
any information in the nullspace has no effect on increasing the
knowledge (i.e., ). The information-blocking shell has
dimension and is the orthogonal complement of the
information-receiving shell in the information space . In
other words, the information-blocking shell contains everything
orthogonal to the information-receiving shell in the information
space . The column space2 of , which is spanned by
the columns of , we call theinformation-memorizing shell.
All the incremental knowledge stored in the neural net-
work is simply a linear combination of the columns of as
shown in (31). That is why we call the column space of the
information-memorizing shell. The columns of are the gra-
dient vectors of the neural network with respect to the
synaptic weight vector . The incremental knowledge is
in the direction of the negative gradient of with respect
to , as is simply a linear combination of the columns
of . The information-memorizing shell is a subspace of the

1We interpret the synaptic weight vectorW as the knowledge stored in the
neural network.

2The column space of a matrixA is often called the range of the matrixA in
the literature of linear algebra.
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memory space . The information-memorizing shell has the
same dimension,, as the information-receiving shell. In other
words, the dimension (i.e., size) of the received information is
the same as that of the stored information since the learning op-
erator is a matrix.

The left nullspace of , which consists of all vectors
such that , we call theuninfluenced-information
shell. The left nullspace cannot be reached by influence of the
information because the left nullspace is orthogonal to the
column space of that carries the information . That is why
we call the left nullspace of the uninfluenced-information
shell. The uninfluenced-information shell has the dimension of

, and is the orthogonal complement of the information-
memorizing shell in the memory space . In other words, the
uninfluenced-information shell contains everything orthogonal
to the information-memorizing shell in the memory space .

The learning operator has four important properties. First of
all, the learning operator is a matrix that determines a map-
ping from information vector to the incremental knowledge

stored in the neural network. Second, the learning operator
changes at each iteration, depending on the current knowledge

and the stimuli such as , , and of the system. Thus
its four fundamental subspaces change at each iteration. The
information-receiving shell moves around in the information
space, while the information-memorizing shell moves around
in the knowledge space at each iteration, depending on the cur-
rent knowledge and the stimuli. The learning process in the
neural network is dynamic in that sense. Third, the learning op-
erator , which determines a mapping from to , is a
rectangular matrix. It may not be an invertible mapping from

to . Nonetheless, the learning operator is always an
invertible mapping from its information-receiving shell to infor-
mation-memorizing shell because every incremental knowledge
vector in the information-memorizing shell comes from
one and only one information vector in the information-re-
ceiving shell. In addition, there is no expansion or contraction of
the dimension (size) of information processed (i.e., received and
memorized) by the learning operator because the information-
receiving and the information-memorizing shells of the learning
operator always have the same dimension. Fourth, the rank of
the learning operator determines the dimension (i.e., size) of
information the learning operator can handle (or process) for
each iteration of the training process because the information-
receiving and the information-memorizing shells of the learning
operator have the same dimension as the rank of the learning op-
erator. The rank of the learning operator plays a key role in the
processing of the learning operator. The rank of the learning op-
erator cannot exceed the number of its rows and columns,
as shown in Theorem 2 .

Theorem 2: The learning operator has a rank bounded
by the numbers of its rows and columns as follows:

and (34)

where and are the numbers of its rows and columns,
respectively.

Proof: The proof results from the well-known properties
of matrices [12], [13].

Let us analyze the operation of in terms of its rank. We
begin with the definition of full column rank of a matrix.

Definition 1: A matrix has full column rank if its rank is
the same as the number of its columns.

Conversely, we say that the matrixhas nonfull column rank
if its rank is not the same as the number of its columns. We
consider two cases: 1) nonfull column rank and 2) full column
rank.

1) Nonfull Column Rank:
Suppose that , i.e., the number of rows of the learning

operator, is smaller than , i.e., the number of columns.
In other words, the dimension (size) of the knowledge
space is smaller than that of the information space. Then
the learning operator is forced to have nonfull column
rank for all training processes (or all training iterations)
because according to Theorem 2. The infor-
mation-receiving shell of the learning operator, which has
dimension , cannot cover the entire region but only a part
of the information space. The information-blocking shell,
which consists of all vectors such that , covers
the rest of the information space and has dimen-
sion. Any information belonging to (or captured by) the
information-blocking shell will not be stored in the synaptic
weights of the neural network because .
Thus the information-blocking shell may cause a loss of
information during the learning process of even though
the net incremental-knowledge , which both the infor-
mation-receiving and the information-memorizing shells
produce, still lies along the negative gradient of
with respect to .

2) Full Column Rank:
Consider the alternative case, where the learning operator

has full column rank. The rank is equal to the number of
columns , which is equal to the dimension of the infor-
mation space. Then the information-receiving shell of the
learning operator covers the entire region of the information
space because its dimension is the same as the rank of the
learning operator, which turns out to be equal to the dimen-
sion of the information space because the learning op-
erator has full column rank. Then the information-blocking
shell, which consists of all vectors such that ,
contains only the zero vector. In other words, any informa-
tion vector except zero in the information space will con-
tribute to increasing the knowledge (i.e., ). Thus
there is no loss of information in the learning processing
of , which is desirable. In addition, the learning oper-
ator, which has full column rank, has the following impor-
tant structural property.

Theorem 3: If the learning operator has full column rank,
then the number of rows , i.e., the number of weights of
the neural network, is greater than or equal to the number of
columns , i.e., the dimension of the information space.

Proof: Assume that the learning operator has full column
rank. The rank is equal to the number of columns , which is
equal to the dimension of the information space. Then according
to Theorem 2 , the number of rows must be greater than or
equal to .
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However, the converse is not true. In other words, the condi-
tion that the number of the weights of the neural network
exceeds the dimension of the information spacedoes not
guarantee that the learning operator maintains full column rank,
because the rankof the learning operator may depend on the
current knowledge , the topology of the neural network, and
stimuli such as , , and for each iteration. Nonetheless,
the learning operator is likely to have full rank in practice as long
as the number of weights of the neural networkexceeds the
dimension of the information space . Increasing the number
of weights of the neural network may help to improve the
rank of the learning operator so that the operator can be more
likely to keep full column rank. But if we too much increase the
number of weights of the neural network , then the knowl-
edge space becomes extremely large and may exact an unnec-
essary storage and computation cost. Furthermore, the uninflu-
enced-information shell becomes extremely large because it has
the dimension of , which is effectively . The
learning process in the neural network becomes extremely lo-
calized because the dimension of the uninfluenced-information
shell, i.e., , becomes exceedingly larger
than that of the information-memorizing shell, i.e., . The
weights of the neural network are highly likely to be stuck in an
undesirable place and end up with a local minimum.

The above discussion leads to a guideline for selecting the
number of weights of the neural network as follows.

Rule 1: Choose a number of weights of the network greater
than the dimension of the information spacein order to avoid
a loss of information caused by the information-blocking shell
of the learning operator. However, picking too many weights for
the network may result in an undesirable local minimum.

NDO can handle finite horizon problems such as terminal
control since it runs finite time steps ahead. In addition, NDO
can handle infinite horizon problems such as regulation and
tracking by using a big enough time horizon; the solution
to a finite horizon problem converges to the solution to the cor-
responding infinite horizon problem if is made sufficiently
large.

For infinite horizon problems, however, Rule 1 apparently im-
plies that NDO may require extensive memory because it sug-
gests that we increase the number of weights of the network as

increases.
However, this is not necessarily true because Rule 1 is not

valid for such problems. For instance, consider an infinite
horizon problem such as regulation. Suppose that we have a
time-invariant system and select a cost function that has no
explicit time dependency. Then the optimal feedback solution
converges to a time-invariant solution as goes to infinity
[14], [15]:

(35)

(36)

If the closed-loop system is stable, then it reaches its equilib-
rium point as . Once the system arrives in steady
state, the system and control equations, (35) and (36) no longer
provide new information about its dynamical behavior because

the equilibrium is static. So when NDO trains neural networks
for such problems, the learning operator does not need to have
full-column rank because part of the information space
may contain no information. This observation leads to an ad-
ditional guideline as follows.

Rule 2: For infinite-horizon problems (e.g., regulation and
tracking control) where systems are time-invariant and cost
functions have no explicit time dependency, do the following:

1) Exclude explicit time dependency from neural networks.
2) Do not increase as the number of weights of the neural

network as time horizon increases.

E. Information Time Shift Operator

Backward sweep effectively produces the information vector
through minimization of the cost function. The information

contained in the information vector is stored in the synaptic
weights of the neural network by the learning operator, as
discussed in Section II-D. During the backward sweep the infor-
mation sequence , which is also called the co-output vector,
is generated backward in time because the current co-state
depends on the future co-state , and the initial condition
is specified at the the end of the time horizon

(37)

(38)

with , .
The current information sequence is fed to the cur-

rent co-state through the matrix ,
as shown in (37). The past information sequence
is computed from the current co-state by the ap-
plication of (38). So the current information sequence

makes contributions to creating the past information
through . On the contrary,

if , then the current information
sequence has no way to contribute to generating the
past information sequence . Thus we call the matrix

the information time shift operator, which
determines a mapping from to . The information
time shift operator is a matrix, where is the number
of components of the system state vector and is the
number of components of the control input vector . This
operator plays a central role in transferring the information
contained in the information sequence to the co-state

, as illustrated as in Fig. 4.

F. Linear Quadratic Problems

The application of NDO to linear quadratic problems is im-
portant because it allows us to find easily a connection between
NDO and DP as well as the duality of the forward and back-
ward sweep of NDO. Specifically, we use a linear — rather than
nonlinear — neural network as a general function approximator
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Fig. 4. Backward sweep of NDO.

since DP already proves that linear state feedback is the best
form of feedback for those problems.

Let us consider acontrollableLTI-MIMO system described
by a state equation of the form

(39)

with

(40)

where
state vector;
control input vector;
initial state treated as a random vector over state
space with a probability .

Here, we want to find the optimal weight matrix of the
linear neural network , minimizing a constant-
coefficient quadratic cost function of the form

(41)

with

and (42)

where the weight matrix is a matrix. In the linear
quadratic problem, we particularly exclude explicit time-depen-
dency as well as reference inputs from the neural network. Thus
the number of weights of the linear neural network3 is automati-
cally determined by the numbers of the states and the control in-
puts, in contrast with the general case of NDO. In addition, note
that we should select the matricesand so that they guar-
antee there exists a unique stabilizing optimal feedback solution
according to Theorem 4 of [8, th. 4]. By applying NEL and the
stochastic descent method to the linear quadratic problem, we
obtain the following three steps:

3The linear neural network is completely expressed by a single matrix because
the multiplication of any finite number of matrices produces a matrix.

Fig. 5. Forward sweep of NDO for linear quadratic problems.

Step 1) Forward sweep:

(43)

(44)

with .
The forward sweep equations consist of the

system and the control equations. Fig. 5 depicts
the forward sweep of NDO for linear quadratic
problems.

Step 2) Backward sweep:

(45)

(46)

with .
The backward sweep equations are the same

as the adjoint system equations, which can be
represented by the block diagram illustrated in
Fig. 6. We have the co-state , two inputs
and derived from the cost function, and
the output . In this case, the output is
fed to the co-state through the matrix
since simply reduces to
for linear neural networks. This is an anti-causal
LTI system because the coefficient matrices are
constant, and the current co-state depends on
the future co-state through (45), while the
forward sweep is the causal LTI system. A compar-
ison of Figs. 5 and 6 clearly reveals theduality of
the backward and forward sweeps.

Step 3) Update of weight matrix:

(47)

(48)

Then, we update the weight matrix using (47)
and (48). The update (47) has a much simpler form,
compared with (26) in the general case of NDO. It
says that the incremental knowledge is simply
a summation of the outer product of the state
and the co-output . The incremental knowledge
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Fig. 6. Backward sweep of NDO for linear quadratic problems.

is no longer dependent on the current knowl-
edge of the neural network, in contrast with the
general case of NDO. We repeat the three steps until

is small.
NDO should enable the linear neural network to

approximate the unique stabilizing optimal linear
feedback solution to the linear quadratic problem to
a desirable accuracy. Specifically, if we pick a big
enough time horizon , the values of the optimal
weight matrix that NDO produces should be very
close to those of the constant Kalman gainthat
the algebraic Riccati equation (ARE) produces for
the linear quadratic regulator. The next section will
prove that this is true. This fact demonstrates a con-
nection between NDO and DP because NDO can ap-
proximate the optimal feedback solution whose ex-
istence DP guarantees.

III. EQUIVALENCE OF NDO, DP,AND FOC

This section shows the equivalence4 of NDO, DP, and FOC.
In particular, we consider the use of these methods to solve the
linear quadratic problem. The mathematics of this problem is
simple. See [16] for a description of a more general class of
nonlinear problems.

A. Equivalence of NDO and FOC

NDO and FOC are different approaches and have different
forms of optimality conditions. Nonetheless, NDO and FOC
have a similar computation structure: forward sweep, backward
sweep, and update, as follows:

• FOC
Forward sweep—

(49)

Backward sweep —

(50)

(51)

4We call two methods equivalent if they produce the same solution.

Update of control vector sequence —

(52)

(53)

• NDO
Forward sweep —

(54)

(55)

Backward sweep —

(56)

(57)

Update of weight matrix —

(58)

(59)

In addition, according to Theorem 4 of [8, th. 4], there
exists a unique optimal solution if and only if is
controllable, is observable, , and time step

is sufficiently large. Before we show the equivalence of
NDO and FOC explicitly, we point out that the backward
sweep equations in NDO and FOC are identical except for
the term . So, if , then the backward
sweep equations are identical, regardless of the values of
weight matrix . In other words, the mechanics of back-
ward sweep in both FOC and NDO become identical.

Theorem 4: For the linear quadratic problems of minimizing

subject to

where is controllable is observable ;
supposing that the time horizon is sufficiently large, then
NDO and FOC are equivalent.

Proof: Suppose that FOC converges to the unique optimal
solution. Then , and should be approximately
zero, according to (52). So the mechanics of backward sweep in
FOC and NDO become identical. In addition, leads
to in NDO. Thus NDO converges to the optimal so-
lution. Conversely, suppose that NDO converges to the optimal
solution. Then . Equation (58) can be expressed as
follows:

where is the th component of state vector , and
is the th component of co-output vector . The th el-
ement of the matrix is , which is the
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inner-product of and trajectories. We are searching
for the optimal solution over state space, so can be any ar-
bitrary nonzero trajectory i.e., and such that . So

leads to for since
only zero vector is orthogonal to any arbitrary nonzero vector.
So for all . Thus, should be zero in FOC, ac-
cording to (52). FOC thus converges to the optimal solution.

B. Equivalence of FOC and DP

This section reviews the equivalence of FOC and DP, which
is known in [14], [15], and [17].

Let us begin with the application of FOC to linear quadratic
problems. Then, the Euler–Lagrange (EL) equations reduce to
a simpler form

the system equation—

(60)

with
the adjoint system equation—

(61)

with
the optimality condition—

(62)

From the optimality condition (62), the control input is
given by

(63)

The system and adjoint system equations with the control input
eliminated are

(64)

(65)

Now, assume that the co-state has a linear relationship with
the state

(66)

for some sequence of the matrix , because
holds at the end of the time horizon , as shown

in (61). If we can find a consistent formula for the postulated
, then (66) is a valid assumption.

Let us find a formula for . We substitute (66) into (64) to
get

(67)

Solving for yields

(68)

which is a forward recursion for the state. Now substitute (66)
into the adjoint system (65) to obtain

(69)

and substitute (68) into (69) to get

(70)

Since is nonzero, and this equation holds for all state se-
quence given any , evidently

(71)

or using the matrix inversion lemma [15], [17]

(72)

This is the Riccati equation, which is a backward recursion
for the postulated , completely specifying in terms of

and the known system and weighting matrices.
In order to determine the optimal control, use (66) and (63)

to get

(73)

(74)

(75)

or

(76)

Let us premultiply by and then solve for the control to
obtain

(77)

where , which
is the Kalman gain sequence. For linear quadratic problems,
thus, FOC yields the same form of the optimal solution that DP
produces. Thus FOC is equivalent to DP. Let us summarize the
above result with the following theorem.

Theorem 5: DP and FOC are one and the same thing for
linear quadratic problems.

C. Equivalence of NDO and DP

DP shows that the optimal feedback control for the linear
quadratic problem is obtained from the discrete Riccati equa-
tion, as shown in [8, th. 2]. As a result, DP proves that linear
state feedback is the best form of feedback for linear quadratic
problems. In addition, according to [8, th. 4], the time-varying
Kalman gain converges to a unique constant stabilizing gain as
time horizon increases if and only if is controllable,

is observable, and .
In contrast, NDO for the linear quadratic problem leads to

the following set of equations: forward sweep, backward sweep,
and update of the weight matrix:

• Forward sweep:

(78)

(79)
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• Backward sweep:

(80)

(81)

• Update of weight matrix:

(82)

(83)

Recall that the linear—rather than nonlinear—neural network is
employed as a general function approximator since DP proves
that linear state feedback control is best for those problems.

The following theorem states that NDO produces the same
optimal feedback solution that DP finds for linear quadratic
problems under certain conditions.

Theorem 6: For the linear quadratic problems of minimizing

subject to

where is controllable, is observable ;
supposing that the time horizon is sufficiently large, then
NDO and DP are equivalent.

Proof: The proof results from Theorems 4 and 5.
Now, let us suppose that NDO solves a finite horizon problem

using a large enough time horizon although the corresponding
problem is itself an infinite horizon problem like a linear
quadratic regulation. Then the following theorem states that as
we increase the time horizon, the weight matrix of the linear
neural network gets closer and closer to the constant Kalman
gain, which is obtained from the following ARE:

Theorem 7: For the linear quadratic regulator minimizing

subject to

where is controllable, is observable, and
; supposing that the time horizon is sufficiently large,

then NDO enables the linear neural network to approximate the
unique optimal constant gain feedback solution of the linear
quadratic regulation problem to any desirable accuracy.

Proof: The proof results from [8, ths. 4 and 6].

In a sense, Theorem 7 is consistent with the following ob-
servation: if a time horizon is sufficiently large, the solution
to a finite-horizon problem can approximate the solution to the
corresponding infinite horizon problems, just as a finite impulse
response (FIR) filter can approximate the corresponding infinite
impulse response (IIR) filter if its tap-delay line is large enough.

IV. CONCLUSION

We present neural dynamic optimization (NDO) as an
approximate technique for solving the DP problem based on
neural network techniques. We formulate neural networks to
approximate the optimal feedback solutions whose existences
DP justifies. We introduce the learning operator and the
information time shift operator, which characterize the learning
process of the neural network in searching for the optimal
solution. The analysis of the learning operator provides not
only a fundamental understanding of the learning process in
neural networks but also some useful guidelines for selecting
the number of weights of the neural network. We prove the
equivalence of NDO, DP, and FOC for linear quadratic prob-
lems, which demonstrates a connection between NDO and
optimal control theory.

As a result, NDO closely approximates — with a reasonable
amount of computation and storage — optimal feedback solu-
tions to nonlinear MIMO control problems that would be very
difficult to implement in real time with DP. Combining the pos-
itive features of both methodologies, NDO inherits its practi-
cality from neural networks and its generality from optimal con-
trol theory. NDO, however, has two potential drawbacks. First,
the NDO solution is not a complete DP solution: it approximates
the optimal solution. Local as well as global optima are possible.
Its domain of attraction can be limited. Second, the stability of
the weight update cannot be guaranteed because its analytical
condition has not been developed. In practice, however, these
two drawbacks can be overcome by retraining the neural net-
work with different values of its update (i.e., learning) rate or
initial weights, as illustrated in the subsequent paper [9] on this
topic.
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