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Neural Dynamic Optimization for Control
Systems—Part Il: Theory

Chang-Yun Seongviember, IEEEand Bernard WidrowLife Fellow, IEEE

Abstract—The paper presents neural dynamic optimization be able to reject disturbances and uncertainties confronted in
(NDO) as a method of optimal feedback control for nonlinear real-world applications.
multi-input-multi-output (MIMO) systems. The main feature Unfortunately, there are few general practical feedback con-
of NDO is that it enables neural networks to approximate the trol thods f i MIMO t 51 [6] alth h
optimal feedback solution whose existence dynamic programming U0' Methods for nonlinear systems [3], [6], althoug
(DP) justifies, thereby reducing the complexities of computation Many methods exist for linear MIMO systems. The behavior of
and storage problems of the classical methods such as DP. Thisnonlinear systems is much more complicated and rich than that
paper mainly describes the theory of NDO, while the two other of |inear systems because of both the lack of linearity and the
companion papers of this topic explain the background for the associated superposition property [5], [7].

deve_lopment_ of NIZ_)O and demonstrate the metho_d with several . S .
applications including control of autonomous vehicles and of a We present ”?Ufa' dynamic optimization (NDO) as a practical
robot arm, respectively. method for nonlinear MIMO control systems. In order to handle
. o _ ) the complexities of nonlinearity and accommodate the demand
Index Terms—bynamic programming, |_nform_at!on time shift for hiah-perf MIMO trol t NDO tak d-
operator, learning operator, neural dynamic optimization, neural or nigh-per Ormance Co_n rol systems, akes a
networks, nonlinear systems, optimal feedback control. vantage of brain-like computational structures — neural net-
works — as well as optimal control theory. Our formulation al-
lows neural networks to serve as nonlinear feedback controllers
optimizing the performance of the resulting control systems.
ONLINEAR control system design has been dominatddDO is thus an offspring of both neural networks and optimal
by linear control techniques, which rely on the key assontrol theory.
sumption of a small range of operation for the linear model to This paper mainly describes the theory of NDO, while the
be valid. This tradition has produced many reliable and effectitwo other companion papers [8], [9] of this topic explain the
control systems [1]-[4]. background for the development of NDO and demonstrate
However, the demand for control methods of complex nothe method with several applications including control of
linear multi-input-multi-output (MIMO) systems has recentlyautonomous vehicles and of a robot arm, respectively.
been increasing for several reasons. First, most real-worldFour sections comprise this paper. Section Il introduces NDO
dynamical systems are inherently nonlinear. Second, mode@shan approximate technique for solving the dynamic program-
technology, such as high-performance aircraft and high-spesting (DP) problem based on neural network techniques. We
high-accuracy robots, demands control systems with mutdrmulate neural networks to approximate the optimal feedback
more stringent design specifications, which are able to hanglelution. We introduce the learning operator and the informa-
nonlinearities of the controlled systems more accurately. Thitipn time shift operator, which characterize the learning process
along with the demand for high performance, MIMO contradf the neural network in searching for the optimal feedback so-
systems often become preferred or required because of lthigon. The analysis of the learning operator provides not only a
availability of cheaper and more reliable sensors and actdandamental understanding of the learning process in neural net-
tors made possible by the advances in such technology. Terks but also some useful guidelines for selecting the number
challenge for control design is to fully utilize this additionabf weights of the neural network. Section Il proves the equiv-
information and degrees of freedom to achieve the best contadgnce of NDO to DP and feedforward optimal control (FOC)
system performance possible. Fourth, controlled systems miggtlinear quadratic problems, which demonstrates a connection
between NDO and optimal control theory. Section IV has con-

clusions.
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A. Formulation CONTROLLER ... THENTV-MIMO SYSTEM ...
(NEURAL NET) ‘ \

Let us consider the same discrete NTV-MIMO system, as il "¢ +1 ; ulk ok +1]
the case of DP and FOC . : £l ulk] & :
(k] g(zlk],r[k + 1], ks W) L zlk] f(z[k],ulk], k) :

alk + 1] = f(lk], ulk], k) () T,

with -

2[0] = zg ~ P(xq) 2 s :

wherez[k] € R™ is the state vectoy[k] € R™ is the control Fig. 1. Overall configuration of the system and the neural controller.

input vector,z is an initial state, and>(x,) denotes a proba- _ o

bility distribution associated witkx. (1) and (3) with Lagrange multiplier vector sequen¢ésik|}
Here we formulate NDO so that it can find the optimal timeand{6.[k]}, respectively, as follows:

varying closed-loop solution and a family of trajectories over - T

state space. In order to find the closed-loop solution, we may S =E{$N) + 6, [0] (w0 — 2[0])

feed the state[k] to the multilayer feedforward neural network

that is our controller. Since the multilayer feedforward network

itself produces only a static mapping from the inputs of the input T

layer to the outputs of the final layer, the resulting feedback con- + 6 [F](g(ks W) — u[R]))} ®)

trollgr will be time-invariant. However, by feeding time mfor-Where we define

mation to the neural controller externally, we can allow the con-

N-1
+ ) (L(k) + 85Tk + 1(f(k) — 2k + 1)
k=0

troller to have explicit time-dependency so that it can approx- f(k) éf(x[k]’u[k]’ k)

imate the time-varying optima_l feedback sqlution. In addiFion, L(k) 2L(2[k], ulk], &)

the neural controller may receive some desired reference inputs A

to force the outputs of the system to follow them, depending on ¢(IV) fd)(x[N]’ N)

the goal of control. Fig. 1 depicts the overall configuration of g(k; W) =g(x[k], rlk + 1], ks W).

the system and the neural controller. In order to find a fam
of optimal trajectories associated with different values of initi
states, we treat the initial statg as a random vector over statel]’ B[
space with a probability’(z¢), as shown in (2). H 2 L+ 8T+ 1108 + 8l a(l: W 6

Then, we apply an optimal control framework so that the (k) (k) 8, [k + 117 (k) + 8, [Fla(ks W) (6)

neural network can search the optimal feedback solution o\&iibstituting (6) into (5) and rearranging terms yields
state space. In other words, our objective is to find the optimal

il
ﬁefine the Hamiltonian asH (k) = H(z[k],ulk],r[k +
k+ 1], 6ulk], k. W)

weight vectoW of the multilayer feedforward neural network T :E{d)(N) — 6T [N]z[N] + 85 (0]
ulk] = gl rlk + 1.k W) ®) T ©
o - + Y (HO) - o3l - 31 . ()
minimizing the same form of the cost function as in the case of k=0
DP and FOC Now consider differential changes ih caused by differential
N-1 changes ixo, {z[k]}, {u[k]}, {r[k + 1]}, andW
5= B{oalnl N + Y a0 ) @ e
xr

The expectation operator is employed in the cost function be- N1
cause we optimize the performance of the closed-loop system Z <8H(k) _ 6T[k]> da[k]
over an ensemble of trajectories associated with different values = \ Ox[k] ’
of initial states in the average sense. The neural network should N-1 om
be able to approximate the closed-loop optimal solution whose + Z <J — 6T [k]) dulk]
existence DP confirms. We note that this is a parameter opti- Aulk]
mization problem by treating/” as a set of unknown parame- N-1 OH (k)
ters. Thus, we apply the calculus of variations to solve this pa- + Z mdr[k +1]
rameter optimization problem. k=0 o[k +1]

N-1

OH (k

B. Neural Euler—Lagrange (NEL) Equations + %dW}. (8)

Let us find the optimal conditions for NDO. We treat both k=0

the system and control equations as constraints, and adjoirStocez, and{»[% + 1]} are specified and fixed for each trajec-
the cost function (4) the system and the control equations, iy, dzo and{dr[k + 1]} are both equal to zero. Optimal solu-
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tions require thatl.J = 0 for all choices of{dz[k]}, {du[k]},
anddW. Thus, we must satisfy the following equations:
the adjoint system equations—

rry _ OH(E)
_OL(k) 19f(k)
_8[k]+6[k+1] D]
+o, ) ©)
_9H(k)
oLk =5
OL(k) 9f (k)
B—[k] + 6z [k + 1]Ta—[k] (10)
fork=0,...,N—1
with boundary condition—
8. [NV] aaﬁ([%]) (12)
the optimal condition—
= 9H(k)
-2 %)
—E{Zé k]Tang)}. (12)
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the adjoint system equations—

@m:%%é[ H+%$
% .[k] (19)
=G A+l S @)
with §,.[N] = (9¢(N)/0z[N])T, k=N -1,N -2,...,0
the optimality condition—
N-1 . T
E { Y k) mk]} = (21)
k=0

NEL consists of the system/control equations, the ad-
joint system equations, and the optimality condition. The
system/control equations have an initial condition at the initial
time k 0. In contrast, the adjoint system equations have
an initial condition at the end of the time horizén = N.

This is a two-point boundary value problem (TPBVP). The
system/control equations, the adjoint system equations, and the
optimality condition are all coupled to each other because all
are involved with unknown parametersidf at the same time.
Furthermore, since the optimality condition (21) is involved
with the expectation operator associated with a probability
distribution over different values of initial states, NEL cannot
be solved as simultaneous nonlinear algebraic equations, in
contrast with the case of EL. We must solve NEL numerically,

Let us summarize the above derivations with the following theypjoiting the sequential nature of the problem.

orem.

Theorem 1: For the given dynamic optimization problem ofC. Numerical Solution with Stochastic Steepest Descent

minimizing the cost function

J=E {d)(w[NL N+ Z L(x[H, ulk], k)} (13)
subject to
z[k + 1] = f(z[k], ulk], k) (14)
with
2[0] = xo ~ P(x0) (15)
and
ulk] = g(x[k], [k + 1], k; W) (16)

where N, r[k], and the functionf are specified, andy is a
random vector over state space with a probabiftty:,), the
optimal weight vectolV of the neural network is obtained from
the discreteNeural Euler—LagrangéNEL) equations:

the system/control equations—

z[k + 1] =f(«[k], u[k], k)
ulk] =g(z[k], r[k + 1], k; W)

with z[0] = zo ~ P(zo), k =0,1,...

(17)
(18)

N -1

Method

We may apply the stochastic steepest descent method, as does
the LMS algorithm [10], [11]. The stochastic steepest descent
algorithm for NDO consists of three steps:

1) forward sweep;

2) backward sweep;

3) update of the weight vector.

Step 1) Forward sweep

z[k + 1] =f(z[k], u[k], k)
ulk] =g(z[k], [k + 1], ks W)

with 2[0] = 2¢ ~ P(z9), k=0,...,N — 1.

The forward sweep equations consist of the
system and control equations, which are coupled
to each other through the statf:] and the control
input u[k].

In order to initiate the forward sweep, suppose
some desired reference inpJytgk]} are specified,
depending on the goal of control. First of all, we ini-
tialize the weight vector of the neural network ran-
domly. Then we pick initial states over state space
with a probability P(x¢), which is often recom-
mended to have a uniform distribution. Given the
chosen initial state:, and the specified reference
inputs»[£], we can compute the statgk] and the

(22)
(23)
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TABLE |
STOCHASTIC STEEPESTDESCENTALGORITHM FOR NEURAL DYNAMIC
OPTIMIZATION

CONTROLLER THENTV-MIMOSYSTEM
rlk+1] (NEURAL NET) o
z[k] glz[k}r{k + 1}, kW) <[4 F(alk] ulk], K) zlk+1])
I k 21
i

o Enter a time horizon N, an update rate y, and an initial guess of W.
o Repeat {
1. Pick z[0) = zo ~ P(xzg) over state space.
2. Set the specified reference inputs r[k], depending on the goal of
control.
3. Forward sweep.
-Fork=0,1,...,N — 1, compute

zlk + 1) = f(z[k], ulk), k),

ulk] = g(a[k],r{k + 1], ks W).

- Store both z[k] and u[k], k= 1,2,...,N.
4. Backward sweep.

with §,[N] = (9¢(N)/0z[N)T, k= N—1,...,0.

The backward sweep equations are the same as
the adjoint system equations. Though these equa-
tions look complicated, they can be represented by
the block diagram illustrated in Fig. 3. We have
the co-states,[k], two co-inputs(OL(k)/dx[k])™
and (OL(k)/ou[k])T derived from the cost func-
tion, and the co-output,[k]. In this case, the
co-outputé,[k] is fed to the co-staté,.[k] through
(Dg(k; W) J0u[k])™.

This is an anti-causal LTV system because the cur-
rent co-stated,[k] depends on the future co-state
8.[k + 1] through (24) and the coefficients such
as(af(k)/ox[k])T and(0f(k)/Oulk])™ are explic-
itly time-dependent. However, we can compéitg:|
ands,, [k] backward in time because we have already
obtained the sequencesgk] andu[#] from the for-
ward sweep.

T
| age)T (@) Set 2 [N] = ST4
6:::[k] (b)Fork:N—l,I\IIV—Z,...,l,compute
of(k) T _ UmT aL(k) ™
Balk| : Sulk] Bulk] lke+1]+ dulk]
_ 8imT oL(k)T | Bg(ksW)T
E bz(k] = I 1]+ 5otk Sulk].
..................... T‘s["] 5. Update W.Fork=N —1,N —2,...,0, compute
aL(k)T Nl .
oz(k _ '\ Og(ks W)
AW = —p k; 5 ulkl,
Fig. 3. Backward sweep of NDO.
W +— W + AW.
control inputw[k] throughk = 0 to N, using the ~_} until AW is small.
system and control equations. Fig. 2 depicts the for-
ward sweep. _
Step 2) Backward sweep Step 3) Update of weight vector
6x[k] I—af(k)Té [k +1] + OL(k)* = ags W)
IR d[k] AW =—py  =om— bulk] (26)
k=0
ag(k; W) ™ W —W + AW. 27
AN A1 24 =W+ AW. 27)
By OolH (24)
T T . .
5.[K] _9f(k) 5.k + 1] + aL(k) (25) Then we update the weight vectdd using the
dulk] Sulk] co-outputsé, [k], according to (26) and (27). The

update of the weight vector can be viewed as a step
to transform the co-outputs [£] into an incremental
weight vectorAW and then generate a new weight
vector W. Obviously,é,[k] = 0 for all k& implies
that AW = 0. In other words, there is no change in
the synaptic weight vector. We repeat the three steps
until AW is small.

In short, the forward sweep defines feasible trajec-
tories over which NDO searches for the optimal so-
lution. The backward sweep conducts the optimiza-
tion process over the feasible trajectories and gener-
ates the co-outputs,[£]. The update of the weight
vector transforms the co-outputg[%] into the incre-
mental synaptic weight vectakW. The stochastic
steepest descent algorithm for NDO is summarized
in Table I.

The computation requirement of the NDO algo-
rithm for each iteration is composed of three com-
ponents: forward sweep, backward sweep, update
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of weight vector. The forward sweep requires apwhere
proximately(n(n 4+ m) +n,,) x N multiplications

R77aNA 1wy T Np X Tony
and additions because it evaluates the system/con- G = [% . BaNLW) } € R (32)
trol equations fromk = 0 to V — 1. The backward Su 216400] ... 6uN—1]]" € R (33)

sweep needs roughlys x n 4+ m X n 4+ ny) x N

operations because it computes not only Jacobiaggeren,, is the number of components of the synaptic weight
(0f (k)/0=[k])* and(0f(k)/Oulk])* but also cal- yvector,n,, 2 N xm is the time horizon, angh is the number of
culates(dg(k; W) /0x[k])* 6., [k] at each time step. components of the control input vector to the system. The ma-
The update of weight vector needs approximateljx ;T the transpose of the Jacobian matei, determines a
N xm xn,, operations. So the total number of mulhmapping froms, to AW . If we interprets, as an information
tiplications and additions for each iteration using thgnd A1 as an incremental memory or knowledge stored in the
NDO algorithm is approximately neural network, the@ determines the learning process of the
(2n(n +m) + nw(m + 2))N (28) neural network. We thus caff? the learning operator, which
makes sense becausé depends on the current knowledgié
which means that the NDO algorithm requires thand stimuli such as[k], »[k], andk of the system. The incre-
additional operations df.,(m + 2) —m)N, com- mental knowledgeAW is simply a linear combination of the
pared to the FOC algorithm (see [8, eq. (36)]).  columns of GL. The columns of the learning operatGf, are
The memory requirement of the algorithm is apthe gradient vectors of the neural netwgtl; W) with respect
proximately to the synaptic weight vectd# . Thus the incremental knowl-
edgeAW lies along the negative gradient gfk; W) with re-
(n+m)N +2 X (29)  spect tow'. We define additional terminologg befo)re we begin
since it stores not only the stat:] and the control the analysis of the learning operator.
inputw[k] fromk = 0to N — 1 but also the old and  Notation: We call the vecto®,, thenformation vector We
new weight vector$¥’s. Note that the memory re- call the vector spac&™ whereé, belongs thenformation

quirement of NDO depends linearly on the dimenspace We call the vectorAW the incremental knowledge
sion of the staten, the number of control inputs vector We call the vector spacR™ where AW belongs the

m, and the number of weights,,. In contrast, the knowledge spacé\Ve call the vecto¥V theknowledge vector
memory requirement of DP depends exponentially Let us discuss the operations Gf in the learning process
on the dimension of the state and the number of coff the neural network. Suppose that the mai} has rank.

trol inputs, which can be problematic for high-ordef he learning operata®! has four fundamental subspaces. The

nonlinear systems. row space of7., which is spanned by the rows 6fL, we call
theinformation-receiving shelllhe information-receiving shell
D. Learning Operator is a subspace of the information spaké~. The information-

In this section, we introduce the learning operator, whicigc€iving shell has dimensien which is the same as the rank
characterizes the learning process of the neural network 9hG- i .
searching for the optimal feedback solution. The learning 1€ nullspace ofz;, which consists of all vectors, such
operator determines a mapping from information to knowledé%atq?u‘su = 0, we call theinformation-blocking shebecause
and plays a central role in finding the optimal feedback solutigHy information in the nulispace has no effect on increasing the
in NDO. The analysis of the learning operator provides kowledge (i.e. AW = 0). The information-blocking shell has
fundamental understanding of the learning process in neufinension(n., — ) and is the orthogonal complement of the
networks but also some useful guidelines for selecting tHiformation-receiving shell in the information spa&e. In -
number of weights of the neural network. other words, the information-blocking shell contains everything

Let us start with the update of the weight vector in the st@thogonal to the information-receiving shell in the information

chastic algorithm for NDO. The synaptic weight vector of th&PaceR "~ . The column spaceof Gy, which is spanned by
neural network is updated for each iteration: the columns of#}, we call theinformation-memorizing shell

- All the incremental knowledgé&\ W stored in the neural net-
ag(k; W work is simply a linear combination of the columns@f, as
AW = —p Z (aW ) Bulk]- (30) shown in (31). That is why we call the column spaceS@]‘Ethe
k=0 information-memorizing shell. The columnsGf, are the gra-
Rewrite the above equation in the form of matrices as followsiient vectors of the neural netwogkk; W) with respect to the
AW = — uGT6, synaptic weight vectoW . The incremental knowledgaW is
W in the direction of the negative gradientgfc; W) with respect

N—-1

" T 8.[0] to W, asAW is simply a linear combination of the columns
=—u [% . 2NCLW) } : of GT. The information-memorizing shell is a subspace of the
bu [N - 1] 1we interpret the synaptic weight vectdr as the knowledge stored in the
N-1 ag(k' W) T neural network.
=—p Z W 8u[k] (31) 2The column space of a matrix is often called the range of the matrikin

k=0 the literature of linear algebra.
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memory spac®™~ . The information-memorizing shell has the Let us analyze the operation 6f% in terms of its rank. We

same dimension;, as the information-receiving shell. In otherbegin with the definition of full column rank of a matrix.

words, the dimension (i.e., size) of the received information is Definition 1: A matrix G has full column rank if its rank is

the same as that of the stored information since the learning ¢ige same as the number of its columns.

eratorGl is a matrix. Conversely, we say that the matfixhas nonfull column rank
The left nullspace of7L, which consists of all vectorAW if its rank is not the same as the number of its columns. We

such thanWTGE = 0, we call theuninfluenced-information consider two cases: 1) nonfull column rank and 2) full column

shell The left nullspace cannot be reached by influence of thank.

information 6,, because the left nullspace is orthogonal to th )

column space off! that carries the informatiofy,. That is why (i) Nonfull Column Re}nk. .

we call the left nullspace off} the uninfluenced-information Suppos'e that,,, i.e., the nymber of rows of the learning

shell. The uninfluenced-information shell has the dimension of operator, is smaller th"’?“m* €., the_ number of columns.

In other words, the dimension (size) of the knowledge

(ny — ), and is the orthogonal complement of the information- : . .
memorizing shell in the memory spaé-. In other words, the space is smaller than that of the information space. Then
' the learning operator is forced to have nonfull column

uninfluenced-information shell contains everything orthogonal K I traini Il training iterati
to the information-memorizing shell in the memory sp&ce-. rban or)a< raining proces;es t(or‘rﬁ ralnlgg_llher:?l |19ns)
The learning operator has four important properties. First of ecause = n. <y, according to theorem 2. The nfor-
mation-receiving shell of the learning operator, which has

all, the learning operator is a matrix that determines a map- dimensionr. cannot cover the entire region but only a part

ping from information vectoé,, to the incremental knowledge f the inf i The inf tion-blocki hell
AW stored in the neural network. Second, the learning operator of the nformation space. 1he in orma|Ton— ocking shetl,
which consists of all vectors, such that7 6, = 0, covers

changes at each iteration, depending on the current knowledge . . .

1 and the stimuli such asik], r[], andk of the system. Thus _te rest of the information space and ffa, — r) dimen-
its four fundamental subspaces change at each iteration. The'O"- An_y |nform§1t|0n belor_lgmg to (or captured by) th_e
information-receiving shell moves around in the information qurmaﬂon-blockmg shell will not be stored mtThe synaptic
space, while the information-memorizing shell moves around weights of.the neu.ral netwo.rk becausdV” = G,d, = 0.

in the knowledge space at each iteration, depending on the cur—.Thus thg |nformat|on—block[ng shell may cause a loss of
rent knowledgé? and the stimuli. The learning process in the mformajuon during the learning proce;s@ﬁ even th.ough
neural network is dynamic in that sense. Third, the learning op- the _net mcre_mental-knowle_dgEW, Wh'Ch both t_h_e infor-
eratorGE, which determines a mapping frofy to AW, is a matlon-rece_lwr_lg and the mforma_tlon-mer_nonzmg shells
rectangular matrix. It may not be an invertible mapping from pror:juce, still lies along the negative gradientygh, W)

8, to AW. Nonetheless, the learning operaf®f is always an with respect tov'. )

invertible mapping from its information-receiving shell to infor-2) Full Col_umn Rank: : .
mation-memorizing shell because every incremental knowledge h C(:nlfldelr the alterkna_:_t;:/ N canske_, wherel the farmng;perfator
vector AW in the information-memorizing shell comes from as 1ufl colmn ran'. The rankis equa to_t € numoer 0
one and only one information vectéy, in the information-re- colu_mnSnm, which is equ_al to the_ d|mens!o_n of the infor-
ceiving shell. In addition, there is no expansion or contraction of mation space. Then the |nform§t|on-r_ece|vmg ghell of t-he
the dimension (size) of information processed (i.e., received and learning operator covers the entire region of the information
memorized) by the learning operator because the information- space because its d|r_nen5|on is the same as the ranl_< of the
receiving and the information-memorizing shells of the learning Ie_arnlng operator, W_h'Ch trns out to be equal to th_e dimen-
operator always have the same dimension. Fourth, the rank of sion of the information space,. becau_se the Ie_:arnlng op-
the learning operator determines the dimension (i.e., size) of erator ha; full colymn rank. Then the mformatlTon-bIocklng
information the learning operator can handle (or process) for sheII,.wh|ch consists of all vectoty such that,,6,, = 0,

each iteration of the training process because the information- gontams only the zero v_ector. I.n other \{vords, any mforma_
receiving and the information-memorizing shells of the learning tion vector except zero in the mform_atlon space will con-
operator have the same dimension as the rank of the learning op-tr'bUte_ to increasing the kno_wledge (.eaW 7& 0). Thus .
erator. The rank of the learning operator plays a key role in the thereTls no IOS.S of mformauon m_the learning processing
processing of the learning operator. The rank of the learning op- of Gy, V.Vh'Ch is desirable. In addition, the Iear_mng oper-
eratorGL cannot exceed the number of its rows and columns, ator, which has full column rank, has the following impor-

as shown in Theorem 2 . tant structural property.

Theorem 2: The learning operatdf;, has arank bounded  Theorem 3:If the learning operator has full column rank,

by the numbers of its rows and columns as follows: then the number of rows,,, i.e., the number of weights of
the neural network, is greater than or equal to the number of
7 < ny, andr <y, (34) columnsn,,, i.e., the dimension of the information space.

Proof: Assume that the learning operator has full column
wheren,, andn,, are the numbers of its rows and columngank. The rank is equal to the number of columns,, which is
respectively. equal to the dimension of the information space. Then according

Proof. The proof results from the well-known propertieso Theorem 2 , the number of rows, must be greater than or
of matrices [12], [13]. equal ton,,.
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However, the converse is not true. In other words, the condite equilibrium is static. So when NDO trains neural networks
tion that the number of the weights of the neural netwegk for such problems, the learning operator does not need to have
exceeds the dimension of the information spagedoes not full-column rank because part of the information spdte:
guarantee that the learning operator maintains full column ramRay contain no information. This observation leads to an ad-
because the rankof the learning operator may depend on thditional guideline as follows.
current knowledgéV, the topology of the neural network, and Rule 2: For infinite-horizon problems (e.g., regulation and
stimuli such as:[k], [k], andk for each iteration. Nonetheless,tracking control) where systems are time-invariant and cost
the learning operator is likely to have full rank in practice as lonfginctions have no explicit time dependency, do the following:

as the number of weights of the neural netwarkexceeds the 1) Exclude explicit time dependency from neural networks.

dimension of the information spaeg,. Increasing the number  2) Do not increase as the number of weights of the neural
of weights of the neural network,, may help to improve the network as time horizodV increases.

rank of the learning operator so that the operator can be more

likely to keep full column rank. But if we too much increase th&. Information Time Shift Operator

nzmber of Ws |ghtrsn of th;rn?rl:r?l Initwomlr%d tr:en thxe ktnO\r/]vI- N Backward sweep effectively produces the information vector
€dge space becomes extremely farge a dy exact an u ,e(fhrough minimization of the cost function. The information
essary storage and computation cost. Furthermore, the unin g

: ) . contained in the information vector is stored in the synaptic
enced-information shell becomes extremely large because it ﬁghts of the neural network by the learning operaid, as

the dimension ofn., —r), which is effectively(n.,, — n.). The iscussed in Section II-D. During the backward sweep the infor-

. . i
Iearnlng process In thg ”eufa' network pecomes e)ftremelyfﬂétion sequencg, [k], which is also called the co-output vector,
calized because the dimension of the unlnfluenced—lnformau%n

hell. i N b dinalv | generated backward in time because the current coéstéde
shell, i.e.,(n —7) & (n., —n.), becomes exceedingly largery o ys on the future co-statdk+ 1], and the initial condition
than that of the information-memorizing shell, i:es: n,,,. The

weights of the neural network are highly likely to be stuck in a||:1S specified at the the end of the time horizon
undesirable place and end up with a local minimum.

. . S . T T
The above discussion leads to a guideline for selecting the :af(/f) IL(k)
: 6.k Oxlk+ 1] +

number of weights of the neural network as follows. dx[k] O k]

Rule 1: Choose a number of weights of the network greater Ag(k; W)T
than the dimension of the information spaggin order to avoid T oxlk] bulk] (37)
a loss of information caused by the information-blocking shell 9 ()T OL(E)T
of the learning operator. However, picking too many weights for bulk] :ﬁ 8ok + 1]+ IL(k) (38)
the network may result in an undesirable local minimum. Iulk] Iu[k]

NDO can handle finite horizon problems such as terminal
control since it runs finite time steps ahead. In addition, ND®ith 6;[N] = (9¢(N)/0z[N])T, k= N —1,...,0.
can handle infinite horizon problems such as regulation andThe current information sequenégk] is fed to the cur-
tracking by using a big enough time horizdf; the solution rent co-stateé,[k] through the matrix(dg(k, W)/dx[k])T,
to a finite horizon problem converges to the solution to the coas shown in (37). The past information sequefigg — 1]
responding infinite horizon problem i¥ is made sufficiently is computed from the current co-statg[k] by the ap-
large. plication of (38). So the current information sequence
For infinite horizon problems, however, Rule 1 apparently in¥[k] makes contributions to creating the past information
plies that NDO may require extensive memory because it sug{s — 1] through (9g(k, W)/0z[k])*. On the contrary,
gests that we increase the number of weights of the networkiigdg(k, W)/0z[k])* = 0, then the current information
N increases. sequence’, [k] has no way to contribute to generating the
However, this is not necessarily true because Rule 1 is st information sequend@g. [t — 1]. Thus we call the matrix
valid for such problems. For instance, consider an infinitég(k, W)/0z[k])* the information time shift operator, which
horizon problem such as regulation. Suppose that we havéeiermines a mapping from, [k] to 6.[k]. The information
time-invariant system and select a cost function that has e shift operator is @& x m matrix, wheren is the number
explicit time dependency. Then the optimal feedback solutig components of the system state vectgk] andm is the
converges to a time-invariant solution a6 goes to infinity number of components of the control input vectdk]. This
[14], [15]: operator plays a central role in transferring the information
contained in the information sequenéglk] to the co-state
o[ = (@ [k], u(k) (35) 8.[k], as illustrated as in Fig. 4.
u(k) =g°(x[k]). (36) F. Linear Quadratic Problems

The application of NDO to linear quadratic problems is im-
If the closed-loop system is stable, then it reaches its equilipertant because it allows us to find easily a connection between
rium point asN — oo. Once the system arrives in steadfNDO and DP as well as the duality of the forward and back-
state, the system and control equations, (35) and (36) no longeard sweep of NDO. Specifically, we use a linear — rather than
provide new information about its dynamical behavior becausenlinear — neural network as a general function approximator
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dg(k;W T
o[k

Fig. 4. Backward sweep of NDO.

since DP already proves that linear state feedback is the best

form of feedback for those problems.
Let us consider @ontrollableLTI-MIMO system described
by a state equation of the form

z[k + 1] = Az[k] + Bulk] (39)

with
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CONTROLLER THE LTI-MIMO SYSTEM
INEAR NN) 7o oo
ulk] + z[k+1]
W B
¥
A 2!
(k]

Fig. 5. Forward sweep of NDO for linear quadratic problems.

Step 1) Forward sweep:

zlk + 1] =Az[k] + Bulk] (43)
ulk] =Wz[k] (44)

W|th.’IZ’[0]=.’L’0NP(.’IZ0), k=0,...,N—1.

The forward sweep equations consist of the
system and the control equations. Fig. 5 depicts
the forward sweep of NDO for linear quadratic
problems.

Step 2) Backward sweep:

x[0] = z¢ ~ P(z0) (40)

where

xz[k] € R™ state vector;

u[k] € R™ control input vector;

Tg initial state treated as a random vector over state

space with a probability’ (o).

Here, we want to find the optimal weight matriX of the
linear neural network:[k] = Wz[k], minimizing a constant-
coefficient quadratic cost function of the form

J =E{ %xT[N]S[N]a:[N]

N-1

+3 X (T HQeI T HRGD ) (4D
k=0
with
S[N]>0,@ >0, andR >0 (42)

§x[k] =AY, [k + 1] + Qu[k] + W6, [K] (45)
Su[k] =BY6,[k + 1] + Rulk] (46)

with 6,[N] = S[N]z[N], k=N —-1,...,0.

The backward sweep equations are the same
as the adjoint system equations, which can be
represented by the block diagram illustrated in
Fig. 6. We have the co-statg[£], two inputsQx[k]
and Ru[k] derived from the cost function, and
the outputé,[k]. In this case, the output,[k] is
fed to the co-staté, [k] through the matrixw™
since (9g(k; W)/9z[k])* simply reduces tow™
for linear neural networks. This is an anti-causal
LTI system because the coefficient matrices are
constant, and the current co-staigk] depends on
the future co-staté, [k + 1] through (45), while the
forward sweep is the causal LTI system. A compar-
ison of Figs. 5 and 6 clearly reveals thaality of
the backward and forward sweeps.

where the weight matriXV is am x n matrix. In the linear  Step 3) Update of weight matrix:

quadratic problem, we particularly exclude explicit time-depen-
dency as well as reference inputs from the neural network. Thus
the number of weights of the linear neural netwagkautomati-
cally determined by the numbers of the states and the control in-
puts, in contrast with the general case of NDO. In addition, note
that we should select the matric@sand R so that they guar-
antee there exists a unique stabilizing optimal feedback solution
according to Theorem 4 of [8, th. 4]. By applying NEL and the
stochastic descent method to the linear quadratic problem, we
obtain the following three steps:

3The linear neural network is completely expressed by a single matrix because
the multiplication of any finite number of matrices produces a matrix.

N—-1

AWT = — 1y~ alk]o) [k] (47)
k=0

Wt —w?T 4 AWT, (48)

Then, we update the weight mati¥ using (47)
and (48). The update (47) has a much simpler form,
compared with (26) in the general case of NDO. It
says that the incremental knowledgéV is simply
a summation of the outer product of the stafé]
and the co-output, [%]. The incremental knowledge
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...... THELTIMIMOSYSTEM Update of control vector sequence —
o Salk+1] Aulk] = — pd,[k] (52)
: ulk] —ulk] + Aulk] (53)
AT z « NDO
/L Forward sweep —
o ofk -+ 1] =AslK] + Buf#] (54)
(S +T AAAAAAAAA ST : ul[k] =W x[k] (55)
Qzlk)

Backward sweep —
Fig. 6. Backward sweep of NDO for linear quadratic problems.
5[k =AY [k + 1] + Qu[k] + W6, [K] (56)

_nT
AW is no longer dependent on the current knowl- Sulk] =B~ 85 [k + 1] + Ru[H] 57)

edgeW of the neural network, in contrast with the

. Update of weight matrix —
general case of NDO. We repeat the three steps until P 9

AW is small. N-1
NDO should enable the linear neural network to AWT = — 4 Z z[k]6X K] (58)

approximate the unique stabilizing optimal linear k=0

feedback solution to the linear quadratic problem to Wt —wt 4 AW?, (59)

a desirable accuracy. Specifically, if we pick a big

enough time horizorV, the values of the optimal In addition, according to Theorem 4 of [8, th. 4], there

weight matrix that NDO produces should be very ~ €Xists a unique optimal solution if and only(if, B) is

close to those of the constant Kalman géinthat controllable 4, /Q) is observablez > 0, and time step

the algebraic Riccati equation (ARE) produces for &V is sufficiently large. Before we show the equivalence of

the linear quadratic regulator. The next section will ~ NDO and FOC explicitly, we point out that the backward

prove that this is true. This fact demonstrates a con- ~ Sweep equations in NDO and FOC are identical except for
nection between NDO and DP because NDO canap-  the termW™*é,[k]. So, if 6,[k] = 0, then the backward
proximate the optimal feedback solution whose ex- ~ sweep equations are identical, regardless of the values of

istence DP guarantees. weight matrixW . In other words, the mechanics of back-
ward sweep in both FOC and NDO become identical.
1. EQUIVALENCE OF NDO, DP,AND FOC Theorem 4: For the linear quadratic problems of minimizing
This section shows the equivalenag NDO, DP, and FOC. 1 1ML
. . T T T
In particular, we consider the use of these methods to solve thd = 5z [N]Qz[N] + 5 > @ KQx[K] + w" (K] Rulk])
linear quadratic problem. The mathematics of this problem is k=0

simple. See [16] for a description of a more general class gipject to

nonlinear problems.
z[k + 1] = Az[k] + Bulk]

A. Equival f ND F
quivalence o O_ and FOC ~ where(A4, B) is controllable(A, /@) is observable? > 0;
NDO and FOC are different approaches and have differegfipposing that the time horizaN is sufficiently large, then
forms of optimality conditions. Nonetheless, NDO and FORDO and FOC are equivalent.

have a similar computation structure: forward sweep, backward  pyoof: Suppose that FOC converges to the unique optimal

sweep, and update, as follows: solution. ThenAw[k] = 0, andé,,[k] should be approximately
* FOC zero, according to (52). So the mechanics of backward sweep in
Forward sweep— FOC and NDO become identical. In additiof,[k] = 0 leads

to AWT = 0in NDO. Thus NDO converges to the optimal so-
lution. Conversely, suppose that NDO converges to the optimal
solution. Theml@AW™ = 0. Equation (58) can be expressed as
follows:

z[k + 1] = Az[k] + Bulk], (49)

Backward sweep — N1
AWS = =i 3 alkls ] = = [Tl kb, (4]
5[k =AT8. [k + 1] + QK] (50) k=0
Sulk] =B 6.k + 1] + Rulk] (51)  wherex;[k] is theith component of state vectofk], ands,, []
is the jth component of co-output vectéy[k]. The(z, j)th el-
“We call two methods equivalent if they produce the same solution. ement of the matrbA W™ is Ei\:_()l z;[k]6.,; [K], which is the
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inner-product ofe;[£] andé,,, [k] trajectories. We are searchingand substitute (68) into (69) to get

for the optimal solution over state spaceusfk] can be any ar-

bitrary nonzero trajectory i.e3i andk such that;[k] # 0. So ~ S[klz[k] =ATS[k 4+ 1J(I + BR™* BT S[k + 1)) ™" Ax[k]
AW?T = 0 leads tos,,[k] = 0 for k = 0,...,N — 1 since + Qx[k]. (70)
only zero vector is orthogonal to any arbltrary nonzero vector.

So6,[k] = 0 for all k. Thus,Au[k] should be zero in FOC, ac- Sincezx[k] is nonzero, and this equation holds for all state se-
cording to (52). FOC thus converges to the optimal solution. quence given any[], evidently

Slk] = ATS[E+1](I + BR'BYS[E+1)"*A+Q (71)

B. Equivalence of FOC and DP na th o on| 151 117
r using the matrix inversion lemma ,
This section reviews the equivalence of FOC and DP, whi&w using P IVerst [15], [27]

is known in [14], [15], and [17]. S[k] =AT(S[k + 1]

Let us begin with the application of FOC to linear quadratic T 15T
problems. Then, the Euler-Lagrange (EL) equations reduce to Stk +1]BB7Sk+11B + B)™ B Sk +1])4
a simpler form +Q. (72)

the system equation— o . . . o :
y q This is the Riccati equation, which is a backward recursion

alk +1] = Az[k] + Bu[k], k=0,...,N -1 (60) for the postulated[k], completely specifying[%] in terms of
S[k + 1] and the known system and weighting matrices.

with z[0] = ¢ In order to determine the optimal control, use (66) and (63)
the adjoint system equation— to get
6x[k] = AT, [k +1] +Quz[k], k=N —1,...,0 (61) ulk] = — R™'BT6,[k + 1] (73)
=— R 'BYSlk + 1]k +1] (74)

with 8,[N] = S[N]2[N]
the optimality condition— = — R™'BYS[k + 1](Ax[k] 4+ Bulk])  (75)

0=DBY6,[k+ 1]+ Ru[k], k=N —1,...,0. (62) or

From the optimality condition (62), the control inpuftc] is (I +R *BTS[k+1]B)u[k] = —R ' BT S[k+1]Ax[k]. (76)

given by i
Let us premultiply byR and then solve for the contralk] to

ulk] = —R7'BY8, [k +1]. (63) obtain

The system and adjoint system equations with the control input ulk] = —K[k]|z[k] @7
u[k] eliminated are
whereK[k] = (BYS[k + 1]B + R)~'BTS[k + 1]A, which
z[k + 1] =Az[k] — BR™'BY6,[k + 1] (64) is the Kalman gain sequence. For linear quadratic problems,
S.[k] =AT 8, [k + 1] + Qu[k]. (65) thus, FOC yields the same form of the optimal solution that DP
produces. Thus FOC is equivalent to DP. Let us summarize the
Now, assume that the co-statdk] has a linear relationship with above result with the following theorem.
the stater[k] Theorem 5:DP and FOC are one and the same thing for
linear quadratic problems.
8:[k] = S[klz[k], k=N —-1,...,0
) C. Equivalence of NDO and DP
for some sequence of thex n matrix S[k], because, [ V] = DP shows that the optimal feedback control for the linear

S[N]z[N] holds atthe end of the time horizén= NV, as shown
in (61). If we can find a consistent formula for the postulateﬂuadrat'c problem is obtained from the discrete Riccati equa-
tion, as shown in [8, th. 2]. As a result, DP proves that linear

[lt]ettzg?irggz) ;zr;\(ﬂ?oagfkl]{n\]/sgzzbstitute (66) into (64) to state feedback |s.t_he best form of feedback for Ilngar quad.ratlc
get problems. In addition, according to [8, th. 4], the time-varying
Kalman gain converges to a unique constant stabilizing gain as
z[k + 1] = Az[k] — BR™'BTS[k + 1]z[k + 1]. (67) time horizonN increases if and only ifA, B) is controllable,
(A,/Q) is observable, an& > 0.
Solving forz[k + 1] yields In contrast, NDO for the linear quadratic problem leads to

T . the following set of equations: forward sweep, backward sweep,
alk+1] = (I + BR™"B"S[k + 1))~ Ax[k] (68) and update of the weight matrix:

which is a forward recursion for the state. Now substitute (66) * Forward sweep:
into the adjoint system (65) to obtain olk + 1] =Az{k] + Bulk] (78)

S[klek] = ATS[k + 1)k + 1] + Qu[k] (69) u[k] =Wz[k] (79)
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» Backward sweep:

6. (K =AT8, [k +1] + Qafk] + W75, (80)

6u[k] =BT 8, [k + 1] + Ru[k] (81)
» Update of weight matrix:
N-1
AWT = — 10~ 2k [K] (82)
k=0
W Wt + Aaw?, (83)

Recall that the linear—rather than nonlinear—neural networkeils
employed as a general function approximator since DP pl’O\éjé)
that linear state feedback control is best for those problems.

The following theorem states that NDO produces the sam
optimal feedback solution that DP finds for linear quadrati

problems under certain conditions.

Theorem 6: For the linear quadratic problems of minimizin

N—-1

J = S NI0aN] + 1 3 el + oA
subject to

z[k + 1] = Az[k] + Bulk]

where (A, B) is controllable,( 4, /Q) is observable? > 0;
supposing that the time horiza is sufficiently large, then
NDO and DP are equivalent.

Proof: The proof results from Theorems 4 and 5. O
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In a sense, Theorem 7 is consistent with the following ob-
servation: if a time horizoV is sufficiently large, the solution
to a finite-horizon problem can approximate the solution to the
corresponding infinite horizon problems, just as a finite impulse
response (FIR) filter can approximate the corresponding infinite
impulse response (IIR) filter if its tap-delay line is large enough.

IV. CONCLUSION

We present neural dynamic optimization (NDO) as an
approximate technique for solving the DP problem based on
neural network techniques. We formulate neural networks to
roximate the optimal feedback solutions whose existences
justifies. We introduce the learning operator and the
information time shift operator, which characterize the learning
p?ocess of the neural network in searching for the optimal
olution. The analysis of the learning operator provides not
only a fundamental understanding of the learning process in
%heural networks but also some useful guidelines for selecting
the number of weights of the neural network. We prove the
equivalence of NDO, DP, and FOC for linear quadratic prob-
lems, which demonstrates a connection between NDO and
optimal control theory.

As a result, NDO closely approximates — with a reasonable
amount of computation and storage — optimal feedback solu-
tions to nonlinear MIMO control problems that would be very
difficult to implement in real time with DP. Combining the pos-
itive features of both methodologies, NDO inherits its practi-
cality from neural networks and its generality from optimal con-
trol theory. NDO, however, has two potential drawbacks. First,

Now, let us suppose that NDO solves a finite horizon problethe NDO solution is not a complete DP solution: it approximates
using a large enough time horizon although the correspondithg optimal solution. Local as well as global optima are possible.
problem is itself an infinite horizon problem like a lineants domain of attraction can be limited. Second, the stability of
quadratic regulation. Then the following theorem states that #® weight update cannot be guaranteed because its analytical
we increase the time horizon, the weight matrix of the lineabndition has not been developed. In practice, however, these
neural network gets closer and closer to the constant Kalm@yp drawbacks can be overcome by retraining the neural net-
gain, which is obtained from the following ARE: work with different values of its update (i.e., learning) rate or

initial weights, as illustrated in the subsequent paper [9] on this

ulk] = — Kzl[k] topic.

K =(BTSB + R)"*BTSA
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