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Property I: Let a E Pn and separate a into its even and odd 
parts, ae and a,, 

a(.) = ae  + a ,  = a,(s2)  + s i i , (s2 )  (35) 

where the notation a, ( sz) and i io( s 2 )  IS used to enhance the fact that 
a, and ii, contain only even powers. Then, a is Hurwitz if and only 
if there exists A,, E 3 ,  and c E R satisfying 

a,(-& = (A, - d ” ( X 2  - 2 ) .  . . ( L / Z  - 4 
i i ,(-JZ) = c(F1 - W 2 ) ( € 2  - 2 ) .  . . (En,z-l - W Z )  

(36) 
(37) 

where c > 0 and 0 < A i  < €1 < X z  < ( 2  < . ’ .  < Xn/z.  

Lemma I: Consider a Hunvitz polynomial q and let qe and yo 
denote its even and odd parts. Then there exists an even function U 

and an odd function 2’ satisfying 

qe(s )u (s )  + q o ( s ) v ( s )  = 1. (38) 

Proofi Equation (38)  is a Bezout identity and its satisfaction is 
equivalent to the statement that ye (s) and yo (s) are coprime. To show 
this, we reason by contradiction. Suppose ye and qo are not coprime. 
In this case we must have, 

= a(s)f(s)  (39) 
q o ( s )  = b ( s ) f  ( s )  (40) 

for some nontrivial polynomial f( s). In this case, one of the following 
must be true, 

f even + n even and b odd (41) 

f odd +- (1 odd and b even. (42) 

We assume without loss of generality that (41) holds and q is even. 
In this case, qe and qo can be rewritten as follows, 

q e ( S 2 ) = a ( S ~ ) f ( S 2 ) = ( a l  + a 2 s 2 + a 4 s 4 + . . . )  

x (f, + f z s2  + f 4 s 4  + . . .) 

x (fo + f2sZ + f4s4 + .  . .) = S.&(SZ). 

qo(s2) = s b ( s 2 ) f ( s 2 )  = s(bl + b3sz +bjs4 +...) 

Thus, if (61, CZ, -.., Cm} are the roots of f ( - W 2 ) ,  we have 

q,(-.L?) = a ( - L 2 ) ( G  - w l ) ( C z  - 2 ) .  . * ( C m  - 2)  
q J - 2 )  = b ( - W 2 ) ( C 1  - d 2 ) ( C 2  - 2). . f (Cm - 2).  

It follows that q is not Hurwitz, since the m roots of q,(-w2) 
and qo(-u2) contained in f ( - d 2 )  do not satisfy Property 1. This 
contradicts the assumptions. To complete the proof of Lemma 1 there 
remains to show that U and U are respectively even and odd. This is 
a straightforward consequence of the Euclidean algorithm (see, for 
example, [ 14]), by which U and U can be determined, and the even 

0 property of mu + nu = 1 .  
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the Advantages of the LMS Spectrum Analyzer Over 
Nonadaptive Implementations of the Sliding-DFT 

FranGoise Beaufays and Bemard Widrow 

Abstract-Based on the least mean squares (LMS) algorithm, the 
LMS spectrum analyzer can be used to recursively calculate the discrete 
Fourier transform (DFT) of a sliding window of data. In this paper, we 
compare the LMS spe.ctnun analyzer with the straightforward nonadap- 
tive implementation of the recursive DFT. In particular, we demonstrate 
the robustness of the LMS spectrum analyzer to the propagation of 
roundoff errors, a property that is not shared by other recursive DFT 
algorithms. 

I. INTRODUCTION 

In some signal processing applications, a discrete time signal must 
be continuously analyzed in the frequency domain. At each instant, 
the N most recent samples of the input sequence are transformed 
by an N-point DFT. As a new data sample becomes available, the 
input window is shifted by one position forward in time, and a new 
DFT is evaluated. This is sometimes refered to as the sliding-DFi” 
[l]. To save computations, the new DFT can be calculated recursively 
from the previous one. However, the propagation and accumulation of 
noise due for example to roundoff errors in floating point arithmetic 
makes it necessary to often reset the DFT. This increases the overall 
number of computations and adds to the complexity of the circuitry. 

The LMS spectrum analyzer [2 ]  can also perform the recursive 
computation of a sliding-DR but because it relies on an adaptive 
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Fig. 1. The LMS spectrum analyzer. 

technique, it automatically adjusts for possible errors. We show that 
actually any error appearing in the D l T  is attenuated as it propagates 
over time, and is completely eliminated after a number of iterations 
equal to the length of the DFT. 

11. THE LMS SPECTRUM ANALYZER 
The LMS spectrum analyzer is represented in Fig. 1. The signal to 

be Fourier transformed is used as the desired output d k  of a linear 
adaptive filter. The input to the filter at time k is the complex phasor 

where T denotes the transpose. The series of phasors X O ,  
X I , .  . . X N - I ,  X N , .  . satisfies two important properties: first the 
series is periodic with period N ,  second { X O ,  X I , .  . *  X N - I }  form 
an orthonormal basis in the N-dimensional space. 

The filter weight vector w k  is adapted with the complex LMS 
algorithm [3] 

W k + l  = w k  + 2 p e k X k ,  (2) 

where p is the learning rate, X k  is the complex conjugate of x k ,  

and e k  is the error signal defined as e k  = d k  - X F W k .  widrow et 
al. showed [2] that by setting the learning rate to 1/2, by iterating 
over k from the initial conditions WO = 0, and by using the above- 
mentioned properties of the input phasors, one finds for the weight 
vector 

k - I  

w k =  d ,X, .  (3) 
m = k - N  

With the same notation, the DFT of the data samples d k - N ,  ... 
d k - 1 ,  can be expressed as 

k - 1  

D F T k =  1 d m X m - k .  (4) 
m = k - i V  

The phasor X m - k  is related to x, by the formula 
X m - k  = P-’Xx , ,  where the diagonal matrix P is defined 
as pgdiag{ 1, e 1 2 * / N ,  e12*2 /hr  . . . eJ2*(N--1)/N }. Comparing (3) 
and (4), one finds 

E - 1  k - 1  

At each instant k, the weight vector of the LMS filter is proportional 
to the DFT of the past N data samples. 

It should be noted that the behavior of the LMS algorithm in the 
LMS spectrum analyzer is somewhat “special” in the sense that the 
LMS filter does not converge asymptotically and with misadjustment 
noise to its optimal solution as it usually does. Rather, it provides at 
each iteration the exact desired solution. 

111. NONADAFTIVE RECURSIVE IMPLEMENTATIONS OF THE D m  

By iteratively updating w k ,  the LMS spectrum analyzer evaluates 
the sliding-DFT recursively. A more straightforward but nonadaptive 
recursive implementation of the sliding-DFT [4] can be obtained by 
comparing the DFT at times k and k + 1 and by observing that 

The operations performed by the LMS spectrum analyzer are very 
similar. The weight vectors at times k and k + 1 (see (3)) can be 
related by the formula 

which is identical to (6) since the DFT and the weight vector at 
time k differ only by a multiplicative factor Pk (5). Although the 
nonadaptive sliding-DFT and the LMS spectrum analyzer perform 
very similar operations, their behaviors in limited precision arithmetic 
differ drastically. 

Iv. PROPAGATION OF ROUNDOFF ERRORS IN THE SLIDING-DlT 

In software and hardware implementations, limited precision 
causes roundoff errors that propagate from iteration to iteration. 
In the sliding-DFT, since the elements of the multiplicative diagonal 
matrix P in (6) all have modulus one, roundoff errors propagate 
unattenuated and accumulate over time. The LMS spectrum analyzer, 
on the contrary, has a “built-in” error cancellation mechanism. 

Consider a situation where the weight vector of the LMS filter 
is free from errors up to time k - 1. At-time IC, a noise vector 

Ek is deliberately introduced in w k .  Let w k  = w k  - Ek be the 
perturbated weight vector. The LMS error signal at time k is given by 

&?k = d k  - X E W k  = d k  - X f  W k  + x,’ E k .  (8) 

Assuming that the learning rate p is equal to 1/2, the weight vector 
at time k + 1 is given by 

- 

where I is the N x A’ identity matrix. Similarly, the weight vector 
can be evaluated at times k + 2 ,  k + 3, ... and in general, for any 
time k + j ,  one has’ 

3 - 1  - 
W k + J  = W k + j  - n (1 - a k + m X f + + m  E k .  (10) 

m=O 

’ It can be verified that the order in which the matrix multiplies are effected 
is irrelevant. This justifies the otherwise ambiguous notation n,. 
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Recursive implementations of the DFT with limited precision. Fig. 2. 

Without lost of generality, it can be assumed that IC = N so that 

m) E N  

As seen previously, the vectors {XO, XI,. . XN--1) form an 
orthonormal basis in the N-dimensional space. Similarly, the vec- 
tors { Xo, XI. . . . XAL-I} form another orthonormal basis in the 
same space. Any error vector E ~ %  can be decomposed into its N 
components in this last basis: 

_ -  - 

V - I  

= 1 cn:(n)Xn. (12) 
n =O 

The product R, EN can then be evaluated as 

Rm EN = (I-XmX$) E N  

N-1 

= (I - x,x;) “ n ) X ,  
n =O - 

= E N  - €N(m)Xm. (13) 

The multiplication of the error by the matrix R, eliminates its mth 
component and leaves the other components unchanged. Multiplying 
the residual error vector by R,+l will cancel out its (m + 1)th 
component, and so on. As iterations proceed, the modulus of the error 
vector decreases monotonically. After N iterations, all its components 
have been canceled, and the error reduces to zero. 

For illustrative purposes. consider the signal z(k) = 
s i n ( 2 ~  f , k / N )  + s i n ( 2 ~ f i k / N )  and its 32-point DFT. We 
wrote a C program implementing the nonadaptive sliding-DFT and 
the LMS spectrum analyzer algorithms. To demonstrate the effect 
of limited precision, we rounded off to 7 b the mantissas of the 
floating point results of all arithmetical operations.’ For comparison, 
we also coded the exact DFT of z(k). Fig. 2 represents the sum of 

*In the IEEE standard for floating point arithmetic, the mantissa occupies 
23 b, the fraction 8, and the sign one). 

the square modulus of the DFT components, IDFT,(i)I2,  as 
a function of time, for fl = 0.03 and f2 = 1.1. The DFT given 
by the LMS spectrum analyzer practically coincides with the exact 
DFT. The nonrecursive sliding-DFT follows the exact D R  for a 
while but it eventually diverges. 

V. CONCLUSION 
While the nonadaptive sliding-DFT allows roundoff errors to 

accumulate over time, the LMS spectrum analyzer uses its adaptation 
loop to automatically eliminate errors in a number of iterations 
equal to the length of the DFT. It does not require significantly 
more operations per iteration than the nonadaptive sliding-DFT. 
These results naturally extend to other transforms once implemented 
adaptively (see [5] for a generalization of the LMS spectrum analyzer 
to other orthonormal transforms). For these reasons, we recommand 
the use of the LMS spectrum analyzer for any application where a 
sliding orthonormal transform must be performed over long trains of 
data. 
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A Class of Second-Order Integrators 
and Low-Pass Differentiators 

Mohamad Adnan Al-Alaoui 

Abstract-A novel class of stable, minimum phase, second-order, low- 
pass IIR digital differentiators is developed. It is obtained by inverting 
the transfer functions of a class of second-order integrators, stabilizing 
the resulting transfer functions, and compensating their magnitudes. 
The claps of second-order integrators is obtained by interpolating the 
traditional Simpson and trapezoidal integrators. The resulting integrators 
have a perfect -90’ phase over the Nyquist interval and could better ap- 
proximate the ideal magnitude response than either of the two traditional 
integrators. In addition to the above two integrators, the Tick integrator 
is also a member of the class. The resulting integrators and differentiators 
extend the frequency range of operation beyond that possible by using 
either of the two traditional integrators. The low order and high accuracy 
of the filters make them attractive for real time applications. 

I. INTRODUCTION 

The basic concept came from observing that the ideal integrator 
response lies between the responses of the traditional trapezoidal and 
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