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J ust four years ago, the only widely reported commercial application of neural network

technology outside the financial industry was the airport baggage explosive detection system

[27] developed at Science Applications International Corporation (SAIC). Since that time

scores of industrial and commercial applications have come into use, but the details of most of

these systems are considered corporate secrets and are shrouded in secrecy. This hastening trend

is due in part to the availability of an increasingly wide array of dedicated neural network

hardware. This hardware is either in the form of accelerator cards for PCs and workstations or a

large number of integrated circuits implementing digital and analog neural networks either

currently available or in the final stages of design. An assortment of tools and development

systems is provided by the manufacturers of most of these products.

Complementing the hardware are
scores of commercial software pack-
ages now available. Many packages
can be quickly tailored to provide
low-cost turnkey solutions to a broad
spectrum of applications. A very use-
ful list containing 64 of these soft-
ware and hardware tools together
with their prices and the names, ad-
dresses, and phone numbers of the
vendeors is published in a recent issue
of the magazine PC Al [17]. Other
valuable lists of neural network tools
and vendors can be found in the Feb-
ruary issue of Dr. Dobb’s Journal [11]
and the June 1992 issue of Al Expert.
That these lists are not complete is an
indication of the rapid growth the
field is presently enjoying. It is not
possible in a short article to cite all of

the existing applications. The exam-
ples described herein are meant only
to be representative samples.

Linear Neural Network
Applications

The first successful applications of
adaptive neural networks were de-
veloped by Widrow and Hoff in the
1960s, They employed single-neuron
linear networks trained by the LMS
algorithm [32]. Single-element and
multielement linear networks are
equally easy to train and have found
widespread commercial application
over the past three decades. A few of
these applications include:

® Telecommunications.  Modems
used in the high-speed transmission
of digital data through telephone

channels use adaptive line equalizers
and adaptive echo cancellers. Each
adaptive system utilizes a single-
neuron neural network., The most
significant commercial application of
neural networks today is in this area.
¢ Control of sound and vibration.
Active control of vibration and noise
is accomplished by using an adaptive
actuator to generate equal and oppo-
site vibration and noise. This is being
used in air-conditioning systems, in
automotive systems, and in industrial
applications.

¢ Particle accelerator beam control.
The Stanford Linear Accelerator
Center (SLAC) is now using adaptive
techniques to cancel disturbances
that diminish the positioning accu-
racy of opposing beams of positrons
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Gerber Baby Foods uses neural networks (o
belp manage its trade in cattie Futures.. Spicgel is using
software to determine which customers get their catalogs.

and electrons in a particle collider.
The accuracy is being held to within
2 microns in order to have a satisfac-
tory number of collisions. The effi-
ciency of this 3-kilometer long, bil-
lion dollar machine is being
enhanced by the use of linear adap-
tive noise cancelling.

Multielement Nonlinear
Network Applications

Unlike their linear counterparts
which have a long track record of
success, nonlinear multielement neu-
ral networks have begun proving
themselves in commercial applica-
tions only recently. This is largely
because the most useful neural net-
work algorithm—backpropagation
—did not become widely known
until 1986, when it was published in
Rumelhart and McClelland’s two-
volume PDP set [21]. Also important
in the timing of the current boom in
nonlinear neural network applica-
tions has been the rapid advance of
computer and microprocessor per-
formance, which continues to im-
prove the feasibility and cost-effec-
tiveness of computationally intensive
algorithms. Although nonlinear neu-
ral networks are not currently being
used as widely as linear networks,
they are applicable to a much
broader range of problems than
their linear counterparts. Further-
more, the applications for which they
are best suited often involve complex
nonlinear relationships for which
acceptable classical solutions are un-
available.

Successful commercial applica-
tions of nonlinear multielement neu-
ral networks in most cases currently
rely on the backpropagation algo-
rithm, with some use of back-
propagation-through-time [30], ra-
dial basis functions [11], genetic
algorithms [3, 24], Kohonen’s Learn-
ing Vector Quantization (LVQ) [9],
and a number of other algorithms.
Whatever the paradigm, neural net-
works are currently being used

throughout business and industry to
satisfy a diverse assortment of needs.
Most neural network applications
address problems described by one
of the following three categories:
1) pattern classification, 2) prediction
and financial analysis, and 3) control
and optimization. Examples from
each category follow:

Pattern Classification

Credit card fraud detection. Several
banks and credit card companies in-
cluding American Express, Mellon
Bank, First USA Bank, and others
are currently using neural networks
to study patterns of credit card usage
and to detect transactions that are
potentially fraudulent [8, 10, 26].
Credit card fraud is a growing prob-
lem that threatens the entire indus-
try. Some institutions are using
home-grown software, while others
are using commercial products de-
veloped by Nestor, HNC, and other
companies.

Machine-printed character recog-
nition. Commercial products per-
forming machine-printed character
recognition have been introduced by
a large number of companies and
have been described in the literature.
Among these products are those
made by Sharp Corp. [9, 26], Mitsu-
bishi Electric Corp. [9], VeriFone
Inc. [8, 9, 11, 26], Hecht-Nielsen
Corp. (HNC) [11], Nestor Inc. [33],
Calera Recognition Systems Inc. [11],
Caere Corp. [11], and Audre Recog-
nition Systems [11]. Sharp’s Optical
Character Recognition (OCR) system
is used to recognize Japanese charac-
ters. It contains approximately 10
million weights and uses a variant of
Kohonen’s LVQ algorithm. It out-
performs existing conventional sys-
tems in speed and accuracy. Mitsubi-
shi is currently developing a similar
system [9]. VeriFone’s Onyx Check
Reader provides an accurate, low-
cost system for reading identification
numbers on checks by using a custom
analog neural net chip made by Syn-

aptics. Calera Recognition Systems
markets a product, FaxGrabber,
which automatically converts incom-
ing faxes to text using a modified
radial basis function neural network
to perform OCR. Highlighting the
secrecy with which many firms guard
their reliance on neural network
technology, Calera did not acknowl-
edge their use of the technology
(which began in 1986) until 1992
when competitor Caere Corp. an-
nounced the use of neural nets in
Caere’s highly successful AnyFax
OCR engine. AnyFax is used in
Caere’s FaxMaster software and is
licensed for use in other products
including Delrina Technology Inc.’s
WinFax Pro 3.0 fax software. Audre
Recognition Systems uses a variant of
the backpropagation algorithm in its
OCR product, the Audre Neural
Network, which not only reads stan-
dard alphanumerics but can also be
trained to recognize specialized sym-
bols on engineering drawings [11].

Hand-printed character recogni-
tion. HNC’s Quickstrokes Auto-
mated Data Entry System is being
used to recognize handwritten forms
at Avon's order-processing center
and at the state of Wyoming’s De-
partment of Revenue. In the June
1992 issue of Systems Integration Busi-
ness, Dennis Livingston reports that
before implementing the system,
Wyoming was losing an estimated
$300,000 per year in interest income
because so many checks were being
deposited late. Cardiff Software of-
fers a product called Teleform which
uses Nestor’s hand-printed character
recognition system to convert a fax
machine into an OCR scanner. Poget
Computer, now a subsidiary of Fu-
jitsu, uses Nestor’s NestorWriter
neural network software to perform
handwriting recognition for the pen-
based PC it announced in January
1992 [25].

Cursive handwriting recognition.
Neural networks have proved useful
in the development of algorithms for
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on-line cursive handwriting recogni-
tion [20]: A recent startup company
in Palo Alto, Lexicus, beginning with
this basic technology has developed
an impressive PC-based cursive
handwriting system.

Quality control in manufactur-
ing. Neural networks are being used
in a large number of quality control
and quality assurance programs
throughout industry. Applications
include contaminant-level detection
from spectroscopy data at chemical
plants [11, 14] and loudspeaker de-
fect classification by CTS Electronics
[1]. According to Justin Kestelyn in
the June 1990 issue of AI Expert, neu-
ral networks are also being used by
the Florida Department of Citrus to
perform orange juice purity evalua-
tion. Applied Intelligent Systems of
Ann Arbor, Mich., has built into its
vision computers neural recognition
features that are used for quality
control in factories [11].

Event detection in particle accel-
erators. Research into the feasibility
of using neural networks to detect
notable events in high-energy parti-
cle colliders has been performed at
the European Center for Particle
Physics (CERN), and at a number of
other research organizations [5].
Steven Kasow of CERN has reported
that scientists there are using fast
analog neural networks in real-time
triggering systems for detectors. This
permits the distillation of an enor-
mous number of candidate events
into a manageable set of “interesting”
events which can be recorded on
mass-storage devices and studied
further. Neural networks are prov-
ing especially useful and cost-effec-
tive when used in experiments for
which complex criteria are needed to
differentiate between interesting and
uninteresting events. Similar work is
taking place at the Fermi National
Accelerator Laboratory, Batavia, IIl.,
using Intel's high-speed analog
ETANN neural network chip, ac-
cording to the June 1993 issue of the
Cognizer Report newsletter.

Petroleum exploration. Oil com-
panies including Arco and Texaco
are using neural networks to help
determine the locations of under-
ground oil and gas deposits [25].

War on drugs. Yes, neural net-
works have even made their debut in

the U.S. government’s famous war
on drugs. PC-based software emulat-
ing a multilayer neural network is
being used on a daily basis at the
North Carolina State Bureau of In-
vestigation (NCSBI) to help forensic
experts identify cocaine samples
originating from the same batch. J. F.
Casale and J. W. Watterson report in
the March 1993 issue of the Journal of
Forensic Sciences that the information
helps undercover agents put to-
gether drug-related criminal cases.

Medical applications. Commer-
cial products by Neuromedical Sys-
tems, Inc. are used for cancer screen-
ing and other medical applications
[8,9, 11, 19, 26]. The company mar-
kets electrocardiograph and pap
smear systems that rely on neural
network technology. The pap smear
system, Papnet, is able to help cyto-
technologists spot cancerous cells,
drastically reducing false/negative
classifications. The system is used by
the U.S. Food and Drug Administra-
tion [6].

Prediction and Financial Analysis
Financial forecasting and portfolio
management. Neural networks are
used for financial forecasting at a
large number of investment firms
and financial entities including Mer-
rill Lynch & Co., Salomon Brothers,
Shearson Lehman Brothers Inc., Cit-
ibank, and the World Bank [3, 9, 24,
25]. Gerber Baby Foods reportedly
uses neural networks to help manage
its trade in cattle futures [6]. Using
neural networks trained by genetic
algorithms, Citibank’s Andrew Colin
claims to be able to earn 25% returns
per year investing in the currency
markets. A startup company, Prom-
ised Land Technologies, offers a
$249 software package that is
claimed to yield impressive annual
returns [24].

Loan approval. Chase Manhattan
Bank reportedly uses a hybrid system
utilizing pattern analysis and neural
networks to evaluate corporate loan
risk. Robert Marose reports in the
May 1990 issue of Al Expert that the
system, Creditview, helps loan offi-
cers estimate the credit worthiness of
corporate loan candidates.

Real estate analysis. HNC’s Areas
Automated Property Valuation Sys-
tem [8] is being used by Foster Ous-

ley Conley to evaluate the value of
residential property in California.

Marketing analysis. The Target
Marketing System developed by
Churchill Systems is currently in use
by Veratex Corp. to optimize mar-
keting strategy and cut marketing
costs by removing unlikely future
customers from a list of potential
customers [8]. Likewise, Spiegel Inc.
is using software created by Neural-
Ware Inc. to determine which cus-
tomers should receive their mail
order catalogs. Spiegel’s director of
market research expects savings of at
least $1 million per year based on
increased sales and reduced catalog
mailings [25].

Airline seating allocation. The
Airline Marketing Assistant/Tacti-
cian developed by BehavHeuristics
Inc. uses neural networks to predict
passenger demand and allocate seat-
ing for carriers including Nationair
Canada and USAir [8].

Control and Optimization

Electric arc furnace electrode posi-
tion control. Electric arc furnaces are
used to melt scrap steel. The Intelli-
gent Arc Furnace controller systems
installed by Neural Applications
Corp. [8, 28] are reportedly saving
millions of dollars per year per fur-
nace in increased furnace through-
put and reduced electrode wear and
electricity consumption. The control-
ler is currently being installed at fur-
naces worldwide.

Semiconductor process control.
Kopin Corp. has used neural net-
works to cut dopant concentration
and deposition thickness errors in
solar cell manufacturing by more
than a factor of two [9].

Chemical process control. Pavil-
ion Technologies has developed a
neural network process control pack-
age, Process Insights, which is help-
ing Eastman Kodak and a number of
other companies reduce waste, im-
prove product quality, and increase
plant throughput [4, 8, 9, 11, 12].
Neural network models are being
used to perform sensitivity studies,
determine process set points, detect
faults, and predict process perfor-
mance.

Petroleum refinery process con-
trol. Texaco's Puget Sound Refinery,
which processes 120,000 barrels of
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oil a day, has integrated neural net-
works into the plant’s process control
systems. As described in the June
1990 issue of Af Expert, one of these
networks i1s used in the control of a
debutanizer, a system which sepa-
rates hydrocarbons according to
their molecular weights. This re-
quires precise monitoring of temper-
atures, pressures, and flow rates.
The 17-hour batch cycle subjects the
process to constant instability. A neu-
ral network has been built and
trained to help ensure product qual-
ity during periods of change and in-
stability. The seven-input, two-
output network, which was trained
with roughly 1,600 data samples, is
usually able to correct errors in the
control parameters before they ap-
pear. A feedback mechanism helps
reduce unexpected errors that do
occur,

Continuous-casting control dur-
ing steel production. A neural con-
trol system is in operation in Japan at
plants owned by Fujitsu Ltd. and
Nippon Steel Corp. The system has
reduced costs by several million dol-
lars a year by eliminating the damage
and downtime caused by “breakout,”
when imperfect control allows spill-
age of molten steel (9, 26, 30]. The
system uses a feedforward network
trained by backpropagation to detect
breakout before it occurs, allowing
corrective measures to be taken. The
control system has been operating
since early 1990.

Food and chemical formulation
optimization. Neural networks are
used to optimize formulations at the
Glidden Co., the Lord Corp. [7], and
at M&M/Mars. Researchers at the
first two companies report success
using Al Ware’s CAD/Chem package
to search for improved chemical for-
mulations. CAD/Chem has been used
by Lord Corp. in the process of
formulating a new adhesive product
[7] by an iterative search technique.

Nonlinear Applications on the
Horizon

A large number of research pro-
grams are developing neural net-
work solutions that are either likely
to be used in products in the near
future or, particularly in the case of
military applications, that may al-
ready be incorporated into products,

albeit unadvertised. This category is
much larger than the toregoing, so
we present here only a few represen-
tative examples

Missile guidance and detonation.
David Andes at the U.S. Naval Air
Warfare Center, China Lake, Calif.,
has worked for several years using
analog neural networks and the
MRIII algorithm [2] in missile guid-
ance and other military applications
[26]. He has found that when fast
decisions are required, neural net-
works have enormous advantages
over conventional methods.

Fighter flight and battle pattern
guidance. Defense contractors have
apparently developed software using
neural networks to integrate multi-
source data for flight and batte pat-
tern guidance of Lockheed’s YF-22
Advanced Tactical Fighter based on
real-time predictions of the immi-
nent actions of an enemy aircraft. It
is unclear, however, if such a system
is operational [24].

Optical telescope focusing. Neu-
ral networks can be used to compen-
sate for atmospheric disturbances by
adaptively deforming mirror ele-
ments in response to atmospheric
activity that can blur images. In stra-
tegic defense initiative-related work,
Lockheed Missiles and Space Co. has
developed a proprietary neural mi-
crochip that drives an adaptive fo-
cusing system for laser/mirror sys-
tems. This allows relatively small
telescopes to rival much larger and
more expensive ones. Colin Johnson
reports in the November 19, 1990
issue of the Electronic Engineering
Times that the first generation of the
system had 69 piezoelectric actuators
mounted on the back of the mirror to
adjust it to the desired shape. Experi-
ments with a similar idea utilizing a
multiple mirror telescope are also
described in the literature [22].

Vehicular trajectory control.
Neural networks can be used to solve
highly nonlinear control problems. A
two-layer neural network containing
26 adaptive neural elements has
learned to back up a computer-
simulated trailer truck, even when
initially “jackknifed.” The neural net
was able to learn of its own accord to
do this, regardless of initial condi-
tions. Experience gained with the
truck backer-upper should be appli-

cable to a wide variety of nonlinear
control problems [15].

Automotive applications. Ford
Motor Co., General Motors, and
other automobile manufacturers are
currently researching the possibility
of widespread use of neural net-
works in automobiles and in automo-
bile production. Some of the areas
that are yielding promising results in
the laboratory include engine fault
detection and diagnosis, antilock
brake control, active-suspension con-
trol, and idle-speed control. General
Motors is having preliminary success
using neural networks to model sub-
jective customer ratings of automo-
biles based on their dynamic charac-
teristics to help engineers tailor
vehicles to the market.

Electric motor failure prediction.
Siemens has reportedly developed a
neural network system that can accu-
rately and inexpensively predict fail-
ure of large induction motors [26].
The system achieves 80% to 90%
overall failure prediction accuracy in
comparison to 30% achieved by the
best conventional techniques. The
predictor will be integrated into Sie-
mens’s existing Advanced Motor
Master System (SAMMS) controller.

Speech recognition. The Stanford
Research Institute (SRI) is currently
involved in research combining neu-
ral networks with hidden Markov
models (HMM) and other technolo-
gies in a highly successful speaker-
independent speech recognition sys-
tem. The technology will most likely
be licensed to interested companies
once perfected.

Mass spectra classification. Bo
Curry of Hewlett-Packard Labs col-
laborated with David Rumelhart on
the design of a feedforward neural
network to classify low-resolution
mass spectra of unknown com-
pounds according to the presence or
absence of 100 organic substruc-
tures. Described in HPL Technical
Report 90-161, 1990, the neural
network MSnet was trained to com-
pute a maximum-likelihood estimate
of the probability that each substruc-
ture is present. MSnet classifies mass
spectra more reliably than other
methods reported in the literature, is
much faster than the standard
nearest-neighbor  techniques, and
because of the probabilistic interpre-
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Many neural net applications are under development
in the telecommunications industry
for solving control problems.

tation of the classification output, can
readily be combined with other in-
formation sources.

Biomedical applications. Neural
networks are rapidly finding diverse
applications in the biomedical sci-
ences. They are being used widely in
research on amino acid sequencing
in proteins, nucleotide sequencing in
RNA and DNA, ECG and EEG wave-
form classification, prediction of pa-
tients’ reactions to drug treatments,
prevention of anesthesia-related ac-
cidents, arrhythmia recognition for
implantable defibrillators, patient
mortality predictions, quantitative
cytology, detection of breast cancer
from mammograms, modeling schiz-
ophrenia, clinical diagnosis of lower-
back pain, enhancement and classifi-
cation of medical images, lung nod-
ule detection, diagnosis of hepatic
masses, prediction of pulmonary
embolism likelihood from ventila-
tion-perfusion lung scans, and the
study of interstitial lung disease.

Drug development. One particu-
larly promising area of medical re-
search involves the use of neural net-
works in predicting the medicinal
properties of substances without
expensive, time-consuming, and
often inhumane animal testing [29].
For cancer drug screening, this has
been accomplished by testing the ef-
fects that a group of 134 known
drugs have on the growth of cultures
of 60 types of human tumor cells.
These profiles were then applied to a
feedforward neural network simu-
lated using NeuralWare’s Profes-
sional II/PLUS software package and
trained by backpropagation to clas-
sify each drug by mechanism of ac-
tion. Cross-validation studies showed
this method to be surprisingly accu-
rate. The profiles of prospective
drugs with unstudied medicinal
properties could then be applied and
classified by the network. More ex-
tensive tests would be performed
only on the small proportion of pro-
spective drugs placed by the network

in classes thought to be useful or in-
teresting.

Control of copiers. The Ricoh
Corp. has successfully employed
neural learning techniques for con-
trol of several voltages in copiers in
order to preserve uniform copy qual-
ity despite changes in temperature,
humidity, time since last copy, time
since change in toner cartridge, and
other variables. These variables in-
fluence copy quality in highly nonlin-
ear ways, which were learned
through training of a backpropaga-
tion network. In order to improve
generalization and reduce the size of
the networks in copiers, Ricoh em-
ployed a sophisticated network-
pruning method, which they call
Optimal Brain Surgeon, which in-
deed led to smaller and more accu-
rate networks.

More Detailed Descriptions of
Selected Applications

The following subsections describe in
greater depth a group of applications
selected from the preceding sum-
mary. They all use some form of the
delta rule or the backpropagation
algorithm for adaptation and learn-
ing. The fields of application are
highly diverse, but the learning pro-
cesses are remarkably similar.

The telecommunications indus-
try. Many neural network applica-
tions are under development in the
telecommunications industry for
solving problems ranging from con-
trol of a nationwide switching net-
work to management of an entire
telephone company. Other applica-
tions at the telephone circuit level
turn out to be the most significant
commercial applications of neural
networks in the world today. Mo-
dems, commonly used for computer-
to-computer communications and in
every fax machine, have adaptive cir-
cuits for telephone line equalization
and for echo cancellation. Adaptivity
is needed because each telephone
line has its own individual character-

istics, and these characteristics
change over time.

Echo on telephone lines, which
would normally be tolerated with
speech, is devastating to high-speed
data transmission. Echo cancelling
solves the problem by detecting the
echo and adding an equal and oppo-
site signal to the return path. The
cancelling signal is generated by an
adaptive transversal filter whose co-
efficients (weights) are automatically
adjusted by the LMS algorithm of
Widrow and Hoff [32], also known as
the delta rule in the field of neural
networks. The adaptive filter makes
use of what amounts to a single neu-
ron. The first echo cancellers were
developed at AT&T Bell Labs in the
1960s by M. M. Sondhi and his col-
leagues. Today they are everywhere.

The first application of adaptive
techniques in telecommunications
was telephone line equalization by
Robert W. Lucky at AT&T Bell Labs.
Telephone channels, radio channels,
and even fiber-optic channels can
have nonflat frequency responses
and nonlinear phase responses in the
signal passband. Sending digital data
at high speed through these channels
often results in a phenomenon called
“intersymbol interference,” caused
by signal pulse smearing in the dis-
persive medium. Equalization in data
modems combats this phenomenon
by filtering incoming signals. A mo-
dem’s adaptive filter, by adapting it-
self to become a channel inverse, can
compensate for the irregularities in
channel magnitude and phase re-
sponse.

The adaptive equalizer in Figure 1
consists of a tapped delay line (a
transversal filter) with a single adap-
tive neuron connected to the taps.
Deconvolved signal pulses appear at
the weighted sum, which is quantized
to provide a binary output corre-
sponding to the original binary data
transmitted through the channel.
The LMS algorithm is used to adapt
the weights.
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Figure 2a shows the analog re-
sponse of a telephone channel carry-
ing high-speed binary pulse data.
Figure 2b shows an “eye” pattern,
which is the same signal after going
through a converged adaptive equal-
izer. Equalization opens the eye and
allows clear separation of +1 and —1
binary data pulses.

Active control of sound and vi-
bration. A new area of application
for adaptive and learning systems to
active control of noise and vibration,
has been developing during the last 5
or 10 years. Passive control of noise
would make use of thick walls and
sound-absorbing materials and coat-
ings, while passive control of vibra-
tion would make use of shock ab-
sorbers, damping materials and
structures, and other methods of iso-
lating and snubbing vibration. Active
sound control uses adaptive tech-
niques to generate antisound (equal
and opposite) to cancel noise in a
space or volume. Active vibration
control uses adaptive techniques to

Figure 1. Adaptive channel
equalizer with decision-directed
learning

generate vibration to cancel existing
vibration.

Active vibration control in a car is
seen in the following example: En-
gine vibration coupling into the chas-
sis through the four supporting en-
gine mounts is cancelled by
transducers shunting the engine
mounts, which are driven so that
equal and opposite forces are applied
to the chassis. The transducer signals
come from a set of adaptive filters,
each utilizing a single neuron
adapted by means of the “filtered-X”
LLMS algorithm [32].

Several companies have developed
“electronic mufflers” which can re-
place the conventional passive muf-
flers in automobiles [23]. This is an
example of active noise control. A
tachometer on the engine generates
pulses at the cylinder-firing rate. The
tachometer signal is adaptively fil-
tered, amplified, and fed to a small
loudspeaker in the exhaust system.
The loudspeaker generates anti-
sound. The adaptive filter utilizes a
single neuron that learns with the fil-
tered-X LMS algorithm. The result is
an engine that is at least as quiet as
one with a conventional muffler.
Additionally, the engine “breathes”
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more easily, resulting in more horse-
power and better fuel efficiency. As
described by Randy Barrett in the
August 12, 1993, issue of Washington
Technology, Noise Cancellation Tech-
nologies (NCT) in a joint venture
with  Walker Manufacturing cur-
rently has electronic mufflers under
test in New York City and Montreal
bus fleets, where they have already
demonstrated a 2.5% improvement
in fuel economy. According to the
October 28, 1992, issue of the Elec-
tronic Engineering Times, the first pro-
duction vehicles with the NCT-
Walker mutffler should be available
in 1996. A number of other automo-
tive applications of the filtered-X
LMS algorithm can be found in the
proceedings of a conference on ac-
tive control of sound and vibration
held at Virginia Tech in April of
1991.

Active noise cancellation is also
being developed to reduce noise
problems caused by heating and air-
equipment, vacuum
cleaners, emergency vehicle sirens,
aircraft, lawn mowers, and industrial
equipment. NCT now markets a $99
noise-cancelling headphone called
NoiseBuster.

Beam control at the Stanford Lin-
ear Accelerator Center. The Stan-
ford Linear Accelerator Center
(SLAC) is a complex of particle accel-
erators operated by Stanford Uni-
versity for the U.S. Department of
Energy. Physicists from all over the
world design and perform experi-
ments there, 24 hours a day, 7 days a
week. A 3-kilometer-long linear ac-
celerator fires both positrons and
electrons into the circular arcs of a
collider. A major challenge involves
controlling the positions of the elec-
tron and positron beams in the col-
lider to within 2 microns in spite of
unpredictable disturbances that take
place in the accelerator (due to
changes in temperature, barometric
pressure, vibration, sensor noise and
so forth). Collisions must occur in
order for the physicists to do their
work, and the probability of colli-
sions depends on the accuracy of
positioning the opposing positron
and electron beams.

The linear accelerator is divided
into 20 sections. Each section has
beam position sensors and control

conditioning
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magnets to detlect the beam. Con-
ventional feedback systems are used
with each section for beam control,
and they greatly reduce the varia-
tions in the beam position. Nonethe-
less, the system could not achieve the
required accuracy without adaptive
noise cancelling. Each section was
equipped with a multi-input mulu-
output (MIMO) adaptive canceller,
eight inputs, and eight outputs. This
is equivalent to a neural network
without nonlinearity. Adaptation was
done by a MIMO form of the LMS
algorithm. Prior to the installation of
the new system, operators at the ac-
celerator would frequently make
frantic late-night phone calls for help
in recovering from a problem. The
system has been so robust and stable
in the six months since the adaptive
solution was implemented that the
late-night phone calls have ceased,
and no significant problems have
occurred. (This work was performed
by Thomas M. Himel of SLAC.)

The truck backer-upper. Vehicu-
lar control by artificial neural net-
works is a topic that has generated
widespread interest. At Purdue Uni-
versity, tests have been performed
using neural networks to control a
model helicopter [16]. In a much
larger project, a full-sized self-driv-
ing van named ALVINN (Autono-
mous Land Vehicle In a Neural Net-
work) complete with video camera
“eyes” and an onboard “brain” made
from four workstations has been
developed and built at Carnegie-
Mellon University [18]. ALVINN
learned to drive by watching humans
drive and can drive long distances at
normal highway speeds, negotiating
through traffic without human inter-
vention. The system is not yet per-
fect, of course, so when ALVINN
drives, a human is always present to
take over the controls if something
goes wrong.

We now consider a system less
complicated and more easily de-
scribed than ALVINN—that of a
neural network which has learned to
steer a computer-simulated truck
and trailer while backing to a loading
platform. A solution to this highly
nonlinear control problem was ob-
tained by self-learning. The inputs to
the two-layer network are “state”
variables: the angle and position of
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the rear of the trailer and the angle
of the cab (see Figure 3). The output

of the neural network is the angle of

the steering wheel. The work was
done by Nguyen and Widrow [15].
The learning algorithm they used,
which is based on the famous back-
propagation algorithm [21, 30, 317, is
called backpropagation-through-
time.

The truck was only allowed to back
up. Backing was done as a sequence
of small steps. On the scale of a real
“18-wheeler,” each step would be a
distance of approximately one meter.
The truck backs from its initial posi-

Figure 2. Eye patterns produced
by overlaying cycles of the re-
ceived waveform: a. before adap-
tive equalization; b. after adap-
tive equalization.

tion until it hits something and stops.
The desired final state of the system
involves having the rear of the trailer
parallel to the loading platform and
positioned at its center. The actual
final state is compared with the de-
sired final state, and the difference is
a state error vector. After each
backing-up sequence is completed,
the final error vector is used to mod-
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Figure 3. Truck, trailer, and load-
ing dock

Figure 4. Plantand controller

Figure 5. Training the neural net
plant emulator

ify the controller weights, so that if
the truck is placed in the same initial
position and allowed to retry the
backup sequence, the new final-state
error will have a smaller magnitude
than before.

Figure 4 is a diagram of the neural

net controller steering the truck—a
controller governing a “plant” repre-
sented by the truck kinematics. To
train the controller, an emulator of
the truck kinematics is needed. This
is a two-layer neural network trained
by backpropagation as shown in
Figure 5 to produce the same output
states as the plant when both the
emulator and plant have the same
driving function.

The controller is a two-layer neu-
ral network trained as shown in
Figure 6. The inital position or state
of the truck, zg, is applied to the con-
troller, which generates a single out-
put, the steering wheel angle. Using
this steering signal, the truck backs
up a step. The process of using the
controller to set the steering angle,
and then backing a step is repeated
until either the truck hits something
or the number of time steps exceeds
a predetermined constant.

Backing from state to state is rep-
resented by signals going through
the layers of a neural net. The con-
troller and emulator are each com-
posed of two layers of adaptive neu-
rons. Every backing step corresponds
to signals going through four layers.
By “unrolling” the control system’s
teedback loop, the whole backup se-
quence can thus be represented as
the forward propagation through a
giant feedforward neural network
containing a number of layers equal
to four times the number of time
steps. In a process called backpropa-
gation-through-time, the final-error
vector is backpropagated through all
the layers of this composite network.

After each backup sequence, the
backpropagation-through-time algo-
rithm finds a gradient of the squared
positional error of the truck’s final
state with respect to the weights of
the controller. This gradient is used
to update the controller’s weights by
stochastic gradient descent.

Once learning is complete, the
truck is able to back up satisfactorily
from almost any initial position, even
“jackknifed,” and even from inital
positions that were not previously
encountered during training. The
controller’s ability to react and re-
spond reasonably to new positions is
an example of generalization. An il-
lustration of the functioning of an
already-trained system is shown in

100 March 1994/Vol.37, No.3 COMMUNICATIONS OF THE ACM



Figure 7. This is a laboratory exercise
that could, in the future, have impli-
cations for vehicle control. Large
American trucking companies are
seriously exploring this technology.
At the present time, the truck backer
serves as a visual demonstration of
the capabilities of nonlinear net-
works. This demonstration helped
motivate development of the Intelli-
gent Arc Furnace controller de-
scribed next.

Steel making. An electric arc fur-
nace is used to melt and process
scrap steel. The heat energy comes
from a three-phase power line of
rather massive capacity (often 30
megawatts or more—enough electri-
cal power for a city of 30,000 peo-
ple). The three-phase line connects
to a bank of step-down transformers
to supply current for three elec-
trodes that stick down into the fur-
nace. The electrodes are made of
graphite, are about one foot in diam-
eter, and are about 20 feet long.
Three independent servos control
the depth of the electrodes into the
furnace.

When starting a new “heat,” scrap
steel 1s loaded into the furnace, and
the servos are activated to drive the
electrodes down toward the scrap
pile. When an arc is first struck,
sparks fly, and the noise is deafening.
One’s first impression of this is that it
is like Dante’s inferno.

Because the cost of installing and
operating a large arc furnace is so
great, even small changes in effi-
ciency have a tremendous impact on
economics. The motivation for the
development of “intelligent control”
is clear. In this section we describe
the Intelligent Arc Furnace control-
ler, invented by Bill Staib of Neural
Applications Corp. [28]. The figures
in this section were supplied by the
inventor.

Figure 8 shows an arc furnace, its
three-phase power system, and in-
strumentation that provides signals
usetul for the control of the elec-
trode servos. Currents and voltages
in the system are sensed, digitized,
and fed to a 486 PC that implements
the neural control system. Numerical
processing is performed by an 80-
MFLOP Intel i860 microprocessor. A
microphone placed near the furnace
provides the computer with the

Zn

Error back-propagation

Time-lapse picture
of truck backing
up to loading dock

End

/
1

)
[

sounds of “Dante’s inferno.” From all
the sensed variables, a state vector is
obtained.

Figure 9a shows the training of a
neural network emulator of the fur-
nace. The idea is similar to that of
Figure 5 for the truck backer. The
emulator is used in the training of
the controller or regulator, another
neural network. Figure 9b shows the
training of the regulator. The learn-
ing algorithm is a variant of the back-
propagation algorithm. It works in a
similar way to the training process
for a single stage of Figure 6 of the
truck backer.

The results with neural control
thus far have been excellent com-
pared with the control systems that
commonly exist for arc furnaces.
Consumption of electric power is

Figure 6. Training the controller
with backpropagation (C =
controller; E = emulator).

Figure 7. Example of a truck
backup sequence

reduced by 5% to 8%; wear and tear
on the furnace and the electrodes is
reduced by about 20%; the power
factor on the input power lines is
brought closer to 1; and the daily
throughput of steel is increased by
10%. The neural controllers are
being installed by Neural Applica-
tions Corp. just as quickly as they can
be produced. These improvements
are reportedly worth millions of dol-
lars per year per furnace.

The Chemical Process Industry
Pavilion Technologies, Inc. of Aus-

COMMUNICATIONS OF THE A€M March 1994/Vol.37, No.3 101




FOEIET

Primary Primary Secondary Secondary
potential current current potential
transformers transformers transformers transformers
- A N A ™ s A N A N
f¥o3 T
CT CT
5% BEY
CT CT
o0 (Y
CcT CcT

Analog input subsystem

Data bus

Existing regulator J

9b

Furnace/regulator

Figure 9. Block diagrams of a. fur-
nace emulator; b. furnace/regu-
lsattqg. Source: Courtesy of Bill

ai

4MB 80486 1860 8MB P
memory CPU CPU memory OJO; Outputs
Off-line
On-line disk tape
storage CRT keyboard storage
Figure 8. Arc furnace data acqui-
sition system. Source: Courtesy
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1 furnace
Reg and state
values for time bt .

N, N—1 tin, Tex., has embedded neural net-
works and fuzzy logic into their Pro-
cess Insights package for chemical

Eeg - / manufacturing and control applica-
+ _ [Neurai net §(N+!) tions [e.l]. Ip this package, the user
*1 furnace takes historical process data and uses
Reg (N) — Regulator outputs ( Error it to build a predictive model of plant
for time N. behavior. The model is then used to
S (M) — Furnace state conditions change the control setpoints in the
for time N. plant to optimize behavior. Pavilion
Furna lat Technologies is a spin-off of MCC,
9a ce emulator where the original work was done in
1989 to 1990 by John Havener of
Texas Eastman and Jim Keeler of
/4 MCC/Pavilion Technologies. In the
Desired original application conducted at the
Reg and state Neural Reg (N+1) furnace Texas Eastman Facility, Longview,
values for time =] network state Tex., neural networks in the Process
N, N1 Regulator Insights package produced setpoint
/ changes that reduced by one-third
the requirement of an expensive
~ chemical additive needed to remove
»| Neural net | S5 (N+1 byproduct impurities during pro-
1 furnace . -
E duction. The facility produces plas-
Reg (N) - fRo?g;t:;Laéo,Loutputs rror tics and chemical intermediates such
SN —F t . diti as aldehydes and olefins. Since that
- fol;r;ar::;; ate condifions work was completed, the technology

and Pavilion’s Process Insights soft-
ware has been used in nearly 200
real-world applications, including
modeling and optimization of distil-
lation columns, modeling and con-
trol of plastics production, modeling
and control of impurity levels in boil-
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ers. These applications have gener-
ated tremendous paybacks, with sav-
ings of some applications totalling
millions of dollars per year in single-
unit production facilities. Texas East-
man, a division of Eastman Kodak,
has been so satisfied with the results
achieved by neural networks in the
Process Insights package that they
are currently encouraging the use of
neural networks throughout their
Longview plant. The success of the
program is described in the April 29,
1993 issues of the company newslet-
ter Texas Eastman Neuws.

In making these applications, the
first step is plant modeling or plant
emulation. Typically, the plant has
many inputs (such as pressures, tem-
peratures, flow rates, and feed-stock
characteristics) and one or more out-
put parameters (such as yield, impu-
rity levels, variance). In Figure 10 an

adaptive neural network is used to
model an unknown plant (ie., to
learn the plant’s dynamics from his-
torical data).

Once the plant emulator con-
verges, it can be used to train the
neural net controller. Figure 11
shows how this is done. The error
vector is the difference between the
plant output vector and the desired-
state vector. This error is backpropa-
gated through the neural plant
model to provide error signals for
the adaptation of the weights of the
controller. The controller weights
are adapted by the backpropagation
algorithm to minimize the sum of
squares of the components of the
error vector. Pavilion uses fuzzy logic
in its Process Insights package to es-
tablish constraints on some of the
controlled variables.

In most practical cases, it is not

possible to use a controller as simple
as that shown in Figure 11. This is
because almost all physical plants
have internal dynamics. The plant’s
response to a control signal depends
on both the current input to the
plant and the current state of the
plant. Any actions by the controller
must therefore consider the state of
the plant as well as its current input.
A common solution involves incor-
porating tapped delay lines at the
emulator and controller inputs to
allow both networks to form internal
representations of the present state.
With tapped delay lines incorpo-
rated, Figure Il then describes an
increasingly popular form of open-
loop control called nonlinear adap-
tive inverse control. Another ap-
proach is to incorporate one or more
feedback loops in the system to cre-
ate a dynamic system like the truck

Inputs Outputs
A % AA_JM/\A
x2(n \
| Plant
//
/ Yk ()
Xn (¢t
n( / Model
- S
Figure 10. Adaptive plant emula-
tion. Source: Courtesy of Jim
R Keeler
1 ] - Figure 11. Using the plant model
_ > Plant or emulator for backpropagation
- of error for training the neural
o controller. Source: Courtesy of
Controller Plant model Jim keeler
\\ %
\‘\ --4 Desired
S ---{ state
N — j Error
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backer. The controller can then
be trained by backpropagation-
through-time. Rather than simply
using backpropagation to train the
emulator as done with the truck
backer, some closed-loop systems use
backpropagation-through-time for
this purpose as well [30].

In Process Insights, the relation-
ship between the control history and
the plant’s state variables is deter-
mined by using measured states to
train a dynamic state estimator [13].
The state estimator is then added to
Figure 11 between the controller and
the memoryless emulator. Memory is
also added to the controller, which is
trained by backpropagating error
signals through the emulator and
state estimator.

It is interesting to compare Fig-
ures 6, 9, and 11. Very similar things
are going on in the vehicle control
system (the truck backer), in the arc
furnace control system, and in the
chemical process control system. An
emulator is made of the process to be
controlled, and the controller is
adapted by backpropagating the sys-
tem error through the emulator.
This is a very powerful idea, and it
leads to useful applications. The
reader should be aware however that
this is not the only means of neural
control. Other approaches include
radial basis functions, reinforcement
learning, and CMAC for problems
such as process control, robotic actu-
ator control, and vehicular control
[34].

Conclusion

Neural network architectures will
probably never be able to compete
with conventional techniques at per-
forming precise and well-defined
numerical operations such as matrix
inversions or Fourier transforms.
However, there are large classes of
problems that appear to be more
amenable to solution by neural net-
works than by other available tech-
niques. These tasks often involve
ambiguity, such as that inherent in
handwritten character recognition.
Problems of this sort are difficult to
tackle with conventional methods
such as matched filtering or nearest-
neighbor classification, in part be-
cause the metrics used by the brain to
compare patterns may not be very

closely related to those chosen by an
engineer designing a recognition sys-
tem. Likewise, because reliable rules
for recognizing a pattern are usually
not at hand, fuzzy logic and expert
system (ES) designers also face the
difficult and sometimes impossible
task of finding acceptable descrip-
tions of the complex relations gov-
erning class inclusion. In trainable
neural network systems, these rela-
tions are abstracted directly from
training data. Moreover, because
neural networks can be constructed
with numbers of inputs and outputs
ranging into the thousands, they can
be used to attack problems that re-
quire consideration of more input
variables than could be feasibly uti-
lized by most other approaches. It
should be noted, however, that neu-
ral networks will not work well at
solving problems for which suffi-
ciently large and general sets of
training data are not obtainable.

Other tasks, such as those per-
formed by VeriFone’s Onyx Check
Reader and by event detectors in
particle colliders, can be solved suc-
cessfully using more conventional
approaches, but neural networks
help provide solutions which result
in less hardware. Faster response
times, lower costs, and quicker de-
sign cycles. Several applications are
now taking advantage of the high
speeds and low costs of various neu-
ral network chips.

Perhaps the most important ad-
vantage of neural networks is their
adaptivity. Neural networks can au-
tomatically adjust their parameters
(weights) to optimize their behavior
as pattern recognizers, decision mak-
ers, system controllers, predictors,
and so forth. Self-optimization allows
the neural network to “design” itself.
The system designer first defines the
neural network architecture, deter-
mines how the network connects to
other parts of the system, and
chooses a training methodology for
the network. The neural network
then adapts to the application. Adap-
tivity allows the neural network to
perform well even when the environ-
ment or the system being controlled
varies over time. There are many
control problems that can benefit
from continual nonlinear modeling
and adaptation. Neural networks,

such as those used by Pavilion in
chemical process control, and by
Neural Applications Corp. in arc fur-
nace control, are ideally suited to
track problem solutions in changing
environments. Additionally, with
some “‘programmability,” such as the
choices regarding the number of
neurons per layer and number of
layers, a practitioner can use the
same neural network in a wide vari-
ety of applications. Engineering time
is thus saved.

Another example of the advan-
tages of self-optimization is in the
field of ES. In some cases, instead of
obtaining a set of rules through in-
teraction between an experienced
expert and a knowledge engineer, a
neural system can be trained with
examples of expert behavior. The
neural net becomes, in a sense, a
trainable ES. Although it would im-
plement rules, the actual rules imple-
mented would not be apparent. The
system designer would not be dealing
with rules explicitly. On the other
hand, it precise and complete rules
are available or obtainable, then one
would do best to use a classical ES.

This article has described only a
small fraction of the commercial,
industrial, and scientific applications
of neural networks that exist today.
The list is long and impressive and
growing rapidly. There is no way to
predict how widespread use of the
technology will eventually become.
However, based on the current ex-
tent of the field, and the rapidity of
its growth, it seems reasonable to
expect that before the turn of the
century, neural networks will be a
household word and a part of every-
day life. @
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