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Abstract--This paper describes an apphcatton o f  layered neural networks to nonhnear power systems control. A 
single generator unit feeds a power hne to various users whose power demand can vary over trine. As a consequence 
o f  load variatwns, the frequency o f  the generator changes over ttme A feedforward neural network is trained to 
control the steam admtsston valve o f  the turbme that drtves the generator, thereby restoring the frequency to its 
nominal value. Frequency transients are minimized and zero steady-state error is obtained The same techmque is 
then applied to control a system composed o f  two single umts tted together through a power hne Electrw load 
variations can happen independently m both units. Both neural controllers are trained wtth the back propagatwn- 
through-time algorithm Use of  a neural network to model the dynamtc system ts avoided by introducing the Jacoblan 
matrices o f  the system in the back propagation chain used in controller training 
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1. INTRODUCTION 

Control and stability enhancement of synchronous 
generators is of major importance in power systems. 
Different types of controllers based on classical linear 
control theory have been developed in the past (Elgerd, 
1982; Anderson & Fouad, 1977, Debs, 1988; Wood & 
Wollenberg, 1984). Because of the inherent nonlinear- 
ity of synchronous machines, neural network tech- 
niques can be considered to build nonlinear controllers 
with improved performances. 

In this paper, we first consider a single, isolated, gen- 
erator unit connected to a power line or electric bus 
that serves different users. Variations in the power de- 
mand of  the users cause the electric load on the bus to 
change over time. As the load varies, the frequency of 
the generator unit varies. To bring the steady-state fre- 
quency back to its nominal value after a given load 
variation, a control system is designed that acts on the 
setting of the steam admission valve of the unit turbine. 
It is of  great importance to eliminate frequency tran- 
sients as rapidly as possible. Most load-frequency con- 
trol systems are primarily composed of an integral 
controller. The integrator gain is set to a level that com- 
promises between fast transient recovery and low over- 
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shoot in the dynamic response of the overall system 
(Elgerd, 1982). This type of controller is slow and does 
not allow the control designer to take into account pos- 
sible nonlinearities in the generator unit. 

We propose in this paper a neural network load- 
frequency controller. The neural network makes use of 
a piece of information that is not used in conventional 
controllers: an estimate of the electric load perturbation 
(i.e., an estimate of  the change in electric load when 
such a change occurs on the bus). This load pertur- 
bation estimate could be obtained either by a linear 
estimator or by a nonlinear neural network estimator. 
In certain situations, it could also be measured directly 
from the bus. We will show by simulation that when a 
load estimate is available, the neural network can 
achieve extremely good dynamic response. 

The same neural network technique is then extended 
to control a two-area system (i.e., two generator units 
linked together by a tie-line) where electric load per- 
turbations can happen independently in both areas. The 
two neural controllers are adapted using the back prop- 
agation-through-time algorithm (Nguyen & Widrow, 
1989, 1990; Werbos, 1990). The system to be con- 
trolled, the dynamic  plant, is represented by its state 
space equations. An error signal is defined at the output 
of the dynamic plant as the difference between the state 
vector of the plant and a desired state vector. Back 
propagation of  the error vector through the plant state 
space equations is effected by means of a multiplication 
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FIGURE 1. Conventional single-area system: simplified functional diagram. 

of the error vector w]th the Jacobian matrix of the plant 
(a matrix containing the derivatives of the elements of 
the state transition matrix with respect to the state 
variables of the plant) (Piche & Widrow, 1991 ). The 
resulting signal is then back propagated through the 
neural network controller, and the adaptwe weights of 
the controller are adjusted according to the back prop- 
agation algorithm. Introducing Jacobmn matrices in 
the back propagation chain can be done whenever the 
state space equations of the plant are known a priori, 
and this avoids the introduction and training of a neural 
network plant model. 

The next section of this paper describes the systems 
under study and shows how conventional integral con- 
trollers are used to control such plants. Following sec- 
tions describe the neural networks used to control the 
plants and present simulation results. Models, equa- 
tions, and orders of magnitude of parameters are m 
accord with examples in the classic book by O. Elgerd, 
Electrtc Energy Systems Theory (Elgerd, 1982, chap. 
9, sections 9.3 and 9.4). 

2. PLANT MODELS AND CONTROL BY 
CONVENTIONAL MEANS 

2.1. Automatic Load-Frequency Control in 
Single-Area Systems 

In a single-area system, ~ mechanical power is produced 
by a turbine and delivered to a synchronous generator 
serving different users. The frequency of the current 
and voltage waveforms at the output of the generator 

For sake of clarity, we restrict the concept of area to pertain to 
a system containing one single generator although, m practice, the 
word area generally refers to a system containing many parallel-work- 
mg generators ( Elgerd, 1982 ) 

is mainly determined by the turbine steam flow. It is 
also affected by changes in user power demands that 
appear, therefore, as electric perturbations. If, for ex- 
ample, the electric load on the bus suddenly increases, 
the generator shaft slows down, and the frequency of 
the generator decreases. The control system must im- 
mediately detect the load variation and command the 
steam admission valve to open more so that the turbine 
increases its mechanical power production, counteracts 
the load increase, and brings the shaft speed and hence 
the generator frequency back to its nominal value. 

A simplified functional diagram of a conventionally 
controlled power system is shown in Figure 1. A brief 
explanation of the diagram follows (a more detailed 
description can be found in Elgerd, 1982). 

Steam enters the turbine through a pipe that is par- 
tially obstructed by a steam admission valve. In steady- 
state, the opening of the valve is determined by the 
posiUon of a device called the speed changer (upper 
left corner in Figure 1 ). Its setting (points H or A in 
Figure 1 ) fixes the position of the steam valve through 
two rigid rods ABC and CDE. The reference value, or 
set-point, of the turbine power in steady-state is called 
the reference poner and is denoted by Pref. When the 
load on the bus suddenly changes, the shaft speed is 
modified, and a device called the speed regulator acts 
through the rigid rods to move the steam valve. Note 
that a similar effect could be producted by temporarily 
modifying the reference power (which justifies the name 
speed changer). In practice, both control schemes are 
used simultaneously. Amplifying stages (generally hy- 
draulic) are introduced to magnify the outputs of the 
controllers and produce the forces necessary to actually 
move the steam valve. 

The speed regulator is a proportional controller of 
gain 1/R (that is, the deflection in B, AXB, is propor- 
tional to 1/R times the frequency fluctuation A f ) .  In 
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conventional systems, an integral controller of gain/£i 
sums the frequency fluctuations A f  (point G ) and uses 
the result (point H) as a control signal to the speed 
changer to raise or lower the reference power. By com- 
bining these two control loops, we get a parallel PI 
(proportional-integral) controller capable of driving 
frequency fluctuations to zero whenever a step-load 
perturbation is applied to the system (Elgerd, 1982). 

Because most devices in power systems are extremely 
nonlinear, one usually likes to linearize the plant and 
to think of different variables in terms of their fluctu- 
ations about given operating points. Nonlinearities are 
then modeled by making the parameters of the linear- 
ized system functions of the operating point. The re- 
suiting small signal models consist of linear operators 
having variable parameters whose values depend upon 
the state of the system. The last step in modeling con- 
sists of replacing all small signals by their Laplace 
transform and to represent the linearized devices by 
transfer functions. 

Before going any further, let us define the notation. 
A of some variable represents the difference between 
the variable and its nominal value. Lowercases are used 
for time signals, and uppercases for their Laplace trans- 
forms. For example, A f ( t )  represents the generator 
frequency relative to its nominal value, that is, A f ( t )  
= f ( t )  - f n o m m a l  = f (  t ) - 60 Hz, and AF(s) represents 
the Laplace transform of Af( t ) .  

A Laplace domain small signal model of the single- 
area system is given in Figure 2. Points A, B, C, D, E, 
F and G of Figure 1 are also shown here to help relate 
the figures. Starting from point A in Figure 1, the fluc- 
tuation in reference power Ap~r (i.e., the output of the 
speed changer) is added to the output of the speed reg- 
ulator (point B) to produce a global control signal 
(point C), which is instantaneously transmitted to the 
input of the hydrauhc amplifier (point D). For sim- 
plicity, the hydraulic amplifier is modeled by a first- 
order transfer function whose output is the fluctuation 
in hydraulic amplifier power APtt (s ) .  The turbine is 
also modeled by a first-order transfer function. Its input 
is the hydraulic amplifier output APn(s), its output is 
the turbine mechanical power APT(s). The change in 
variable load (lower right corner in Figure 1 ) is sym- 
bolized by an electric perturbation, APe(s), and can 
be modeled as an input perturbation to the generator 

~ ~ bTrequency 

Regulator Fluctuate° I - Speed Electric Lo~d a ] 

FIGURE 2. Conventional single-area system: small-signal 
model, simplified block diagram. 

(Elgerd, 1982). The input to the generator model in 
Figure 2 is thus the sum of the turbine output power 
and the electric perturbation. The generator is modeled 
by a first-order transfer function. Its output, the fre- 
quency fluctuation AF(s) (point G),  is used to drive 
the speed regulator and the integral controller. 

To simulate the dynamic plant in a C-programming 
environment, we derive its discrete-time state space 
equations. Referring to Figure 2 and expressing the 
outputs of the generator, turbine, and amplifier as 
functions of their inputs, inverting the Laplace trans- 
forms, and discretizing the time functions, we obtain 
the following discrete-time state space equations: 

L 
Af(nTs + T~) = Af(nT~) + ~ [Ke Apr(nT~) 

-- ICe ApE(nT,) - Af(nT,)]  ( 1 ) 

APr(nTs + Ts) = APr(nT~) 

L 
+ ~,-r[KrApu(nT~) - Apr(nTs)] (2) 

Ts 
ApH(nT~ + T~) = Apu(nTs) + ~ [KH Apr~f(nT~) 

KH Af(nT~) -- Apn(nT~)] (3) 
R 

with 

Apref(nTs) = Ap~r(nTs - Ts) - Kt Af(nTs) .  (4) 

Ts is the sampling period and n is the discrete-time 
index. 

Typical orders of magnitude in large systems ( ~ 1000 
MW) are: for the gains of the turbine, hydraulic am- 
plifier, and generator, KH = Kv = 1.0, Kp = 120 Hz/  
pu MW 2; for the corresponding time constants, TH = 
80 ms, Tr  = 0.3 s, Te = 20 s; for the regulator gain, R 
= 2.4 Hz/pu  MW. 

For any nonnegative value of the integrator gain KI, 
and assuming that the perturbation APE(s)  is a step 
function of amplitude APE, the controlled plant is sta- 
ble; that is, its state vector x(nTs)  = [ A f ( n T s )  Apr(nTs)  
ApH( n T~) ] r converges to a finite steady-state value. It 
is easy to see from eqns ( 1 ) - (4)  that the steady-state 
frequency fluctuation A f ( n T s )  converges to zero. 
Therefore (cf. Figure 2), the output turbine power 
A p r ( n T O  converges towards APE, and the amplifier 
output power Api4(nTs) converges towards APE/Kr .  
The steady-state state vector is thus: 

[ T 
Xsteady.state = 0 APe Kr ] " (5) 

Figure 3 shows, for different values of the integrator 
gain KI, the dynamic responses of a single-area system 

2 In the per umt (pu) system, varxables are scaled by their nominal 
value and become thereby &menslonless 
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FIGURE 3. Dynamic responses of a conventional single-area 
system subject to a 10% step-load perturbation, for different 
values of the integrator gain. 

subject to a 10% step-load increase. With no integral 
control ( K / =  0), the frequency fluctuations A f (  n Ts) 
converge to some non-zero steady-state value. To 
achieve zero steady-state error, the integrator must have 
a strictly positive gain. The higher the gain, the faster 
the convergence will be, but high gains tend to produce 
ringing in the step response, and this should be avoided 
for stability reasons. In practice, K, will be chosen to 
be the crmcal gam, that is, the highest gain that yields 
no overshoot (KI = 0.2 in Figure 3). 

2.2. Automatic Load-Frequency Control in Two-Area 
Systems 

A two-area system consists of  two single-area systems 
connected through a power line called the tle-hne" each 
area feeds its user pool, and the tie-line allows electric 
power to flow between the areas. Because both areas 
are tied together, a load perturbation in one area affects 
the output frequencies of both areas as well as the power 
flow on the tie-line. For the same reason, the control 
system of each area needs information about the tran- 
stunt situation in both areas to bring the local frequency 
back to its steady-state value. Information about the 
local area is found in the output frequency fluctuation 
of that area. Information about the other area is found 

E]ectnc Bus 1 

- -  -- T . . . . . . . . . . .  

TIe-LI ' ¢ [ [ .  Tie-Line 

i ~ "  t Electric Bus 2 Sensor 

FIGURE 4. ConvenUonal two-area system: basic block diagram. 

in the tie-hne power fluctuations. Therefore, the tie- 
line power xs sensed, and the resulting tie-line power 
signal is fed back into both areas. This basic scheme is 
illustrated in Figure 4. A more complete diagram is 
given in Figure 5. One recognizes the two single-area 
block diagrams (dashed boxes) and the tie-line. A few 
additional elements are introduced whose function is 
next described. 

In steady-state, each area outputs a frequency of 60 
Hz. A load perturbation occurring in either area affects 
the frequencies in both areas as well as the tie-line power 
flow. In fact, it can be shown (Elgerd, 1982) that, with 
small signal approximation, the fluctuation in power 
exchanged on the tin-line, Ap].2(t), is proportional to 
the d~fference between the instantaneous shaft angle 
variations in both areas, AO](t) and A02(t) (Elgerd, 
1982). These shaft angle variations are equal to 2re 
times the integral of the corresponding frequency vari- 
ations, Af] (t) and Af2(t). In the Laplace domain, 

API,2(a  ) = TO[ ',-X01 (s') - A 0 2 ( s ) ]  

27rT o 
- -  [~F,(s) - kF2(s)], (6) 

where T O is a constant called the tie-line synchronizing 
coefficient (typmally 0.0707 M W / r a d ) .  This operation 
is illustrated in Figure 5 (right-hand part of the tie- 
line). 

If, for example, the electric load increases m area 2 
(APE.2(s) > 0), the frequency in area 2 decreases 
(AFz(s)  < 0), and more power is transmitted from 
area 1 to area 2 [ API,2 > 0, which is in accord with 
eqn (6)] .  In area 1, this increase in tie-line power is 
perceived exactly the same way as an increase in power 
demand from the users of  area 1, that is, an increase 
of 6p in PI.2(s) or an increase of 6p in PE.I(s) has the 
same effect on the frequency FI (s).  Therefore, in our 
model, APL,2(S) should be added to the same node as 
APE.~, and with the same sign (which is a minus sign ). 
By symmetry, AP2,~ = - AP~,2, the power going from 
area 2 to area 1, is added to the same node as APE,> 
also with a minus sign. 

Let us now examine how two-area systems are con- 
trolled. In conventional systems, the turbine reference 
power of each area is set by an integral controller. Be- 
cause a perturbation in either area affects the frequency 
in both areas and a perturbation in one area is perceived 
by the other through a change in tie-hne power, the 
controller of each area should take as input not only 
the local frequency variations, but also the tie-line 
power variations. Because an integral controller has just 
one input, these two contributions (local frequency 
variation and tie-line power variation) must be com- 
bined into a single signal that can be inputted in the 
controller. The easiest way of doing this is to combine 
them linearly, that is, the input of the integrator in area 
1 is API,2 + B~ AFt, and the input of  the integrator in 
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FIGURE 5. Conventional two-area system: small signal model, simplified block diagram. 

area 2 is AP2,1 + B2z2kF2 (see Figure 5). The coefficients 
BI, B2 are usually set to 1/Ke + 1/R (see Elgerd, 1982, 
for more details). With the orders of magnitude pre- 
viously mentioned, B1 = B2 = 0.425 pu MW/Hz .  

Following the same procedure as in the one-area 
case, we derive the discrete-state space equations of a 
two-area system. Assume for sake of simplicity that the 
hydraulic amplifier and turbine time constants are 
negligible compared to the generator time constants. 
Choose as discrete state variables the frequency in area 
1, Af~(nTs), the frequency in area 2, Af2(nTs), and 
the tie-line power, Apl,2(nTs). The equations are: 

Af~(nT, + T,) = Af~(nTs) + ~ Ke.tAp~f.l(nTs) 

_ '(Ke:+IR, )Afl(nTs)- Ke, lAPE,l(nTs)] , (7) 

Af2(nTs + Ts) = Af2(nTs) + ~ Ke.2Ap,~f.2(nT,) 

-\(Ke'2+IR2 ) A f2(nTs)- Ke.2Ape.2(nTs)] , (8) 

Apl.2(nTs + Ts) = Apl.2(nTs) 
+ Ts[2¢T°(AA(nTs)- aA(nTs))]. (9) 

Once again, Ts is the sampling rate. For large systems 
( ~  1000 MW),  typical parameter values are: for the 
generator gains, Ke:  = Ke,2 = 120 H z / p u  MW; for the 
generator time constants, Te: = Te,2 = 20 s; for the 
regulation parameters, Rt = R2 = 2.4 H z / p u  MW. 

For any nonnegative integrator gains K1.1,/(1,2, when 
a step-load perturbation has occurred in area 1 and/  
or in area 2, and after transients have died out, the 
frequency variations in both areas converge to zero, 

and so does the tie-line power [see eqn (6)] .  The 
plant state vector x(nTs) = [Afl(nTs) Af2(nTs) 
Apl.E(nTs)] r converges thus to a steady-state value 
equal to: 

Xsteady.stat ¢ = [ 0 0 0 ] r .  ( 10 )  

Figure 6 shows the dynamic response of a conven- 
tional two-area system subject to a 10% step-load in- 
crease in area 2. Figure 6A shows the frequency tran- 
sients in both areas and Figure 6B shows the tie-line 
power transients. We may observe here that zero in- 
tegrator gains (dashed lines) yield non-zero steady-state 
errors, while positive integrator gains (plain lines) do 
achieve convergence of the state variables to zero. In 
this specific plot, the gains were chosen equal to the 
critical gains (KI,1 = KI,2 = Kcntlcal ~--- 0 . 0 5  ) ,  which en- 
sured the fastest transient recovery with no overshoot 
in the step response. 

Before leaving our discussion of conventional control 
systems and beginning a development of  neural con- 
trols, we make an important remark. As explained in 
Section 2.1, the plant models used so far were linearized 
models. We were assuming that the operating point of 
the plant did not change much when a step-load per- 
turbation occurred on the bus, and that, therefore, all 
the plant parameters could be kept constant. In practice 
though, the constant characterizing the speed regulator 
R depends in a highly nonlinear way upon the turbine 
power Pr, and this occurs as well in a single-area system 
as in each area of a two-area system (Cohn, 1986). 
The presence of this nonlinearity and the slowness of 
traditional integral controllers is what motivates our 
substituting a neural network controller for the inte- 
grator(s). To emphasize the difference in plant dy- 
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FIGURE 6. Dynamic response of a two-area system subject to 
a 10% step-lead increase in area 2. (A) Frequency transients 
in both areas. (B)Tie-line power transients. 

namms for various values of the regulation parameter 
R, we plotted in Figure 7 the step responses of an un- 
controlled two-area system (integrator gains equal to 
zero) for two different values of R (chosen within a 
reasonable physical range). Figure 7A shows the fre- 
quency transients in both areas when a 10% step per- 
turbation hits area 2 of a system having as regulation 
parameters R, = R2 = 2.4 Hz /pu  MW. Figure 7B shows 
the frequency transients for a system having R~ = R~ 
= 6.0 Hz /pu  MW. Apart from the fact that the steady- 
state frequencies are different for different values of R, 
we notice that a higher regulation parameter creates 
more ringing in the system: the fact that R is not a 
constant profoundly affects the dynamic response of 
both generators. 

3. NONLINEAR CONTROL BY MEANS OF 
NEURAL NETWORKS 

3.1. Neural  Network Control o f  a Single-Area 
Sys tem 

We have seen in the previous section that the slowness 
and lack of efficiency of conventional controllers in 

handling system nonlinearities suggested thmr substi- 
tution by nonlinear neural network controllers. A nat- 
ural cho;ce of neural network architecture for a dy- 
namic controller is the feedforward multilayer structure. 
Such an architecture can be adapted with the back 
propagation-through-time algorithm (Nguyen & Wid- 
row, 1989, 1990; Werbos, 1990), an extension of the 
well-known back propagation algorithm (Werbos, 
1974; Rumelhart & McClelland, 1986). 

Let us first briefly summarize the back propagation 
algorithm. 

3.1.1. Back Propagatzon Algorzthm A feedforward 
multilayer neural network is shown in Figure 8A. A 
single neuron extracted from the / th  layer of a L-layer 
neural network is represented in Figure 8B. The inputs 
_vl are multiplied by the adaptive weights w~j; the out- 
put xl +l is obtained by passing the sum of the weighted 
inputs through a sigmoidal function s~(. ) (i.e., hyper- 
bolic tangent) 
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FIGURE 7. Dynamic response of an uncontrolled two-area sys- 
tem subject to a 10% step-load increase in area 2, for different 
values of R. (A) R, = R2 = 2.4 Hz/pu MW. (B) R1 = R2 = 6.0 
Hz/pu MW. 
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FIGURE 8. Feedforward multilayer neural network. (A) L-layer neural network. (B)jth neuron extracted from the Ith layer. 

Initially set to small random values, the weights are 
adjusted after each presentation of a new input pattern. 
The adaptation rule is given by: 

d(ere) 
a w l  = - ~  dw~---7 (12) 

where w~.j is the weight connecting neuron z in layer l 
with neuron j in the next layer, # is the learning rate, 
e is the error vector, that is, the difference between the 
actual and desired outputs. It can easily be shown (see 
Rumelhart & McClelland, 1986; Widrow & Lehr, 1990, 
for a detailed derivation) that eqn (12) is equivalent 
tO: 

Aw~,j = - U6~ +'. x~ (13) 

where x~ is the output of neuron i in layer l. The error 
gradients ~j in a L-layer network are evaluated with the 
following recursive formula: 

{ - 2 e j . s j  L l = L 

6~ = s ' j ' ~  1 - < I - < L -  I ( 1 4 )  

Z ~ . w ° ~  l=O 
m 

where ej is the error at the output node j ,  and si t 
=- s'/(xJ) is the derivative of the sigmoid function 
sit( • ) for node j  in layer l. Equation (14) can be inter- 
preted as follows: the error gradient/~ associated with 
a given neuron is obtained by back propagating the b's 
of the next layer through connecting weights. This pro- 
cess is illustrated in Figure 9A and B. 

3.1.2. Adaptation of the Neural Network Controller. 
The feedforward neural network studied in the previous 
section was a static structure in the sense that no time 
dependency existed between inputs and desired outputs. 
The situation is different when the network to be 
adapted is embedded in a dynamic structure. In our 
application, for example, a neural network is used to 
control a dynamic plant. Initially in steady-state, the 
plant is suddenly hit by a step perturbation. Transients 
ensue. It has been shown above that the discrete state 
vector x(n)  = [Af (n)  Apt(n)  ApH(n)] r of a single- 

area system 3 controlled by an integral controller event- 
ually converged to a steady-state value equal to 
Xsteady.stat e ~ [0  z~ke E (APE/Kr)] r [eqn (5)] but that 
this convergence was slow (see Figure 6). The neural 
network controller that replaces the integral controller 
should make the plant converge to the same Xst~dy-st~te 
vector, while limiting the duration and magnitude of 
the transients. Such an operation cannot be performed 
instantaneously. In addition, the value of the desired 
control signal (i.e., the desired output of the neural 
network) is not known a priori; only the desired steady- 
state of the plant is known. The simple, static, back 
propagation algorithm is not directly applicable; it must 
be generalized to the present dynamic structure. The 
result of this generalization is referred to as the back 
propagation-through-time algorithm. 

The dynamic controller-plant structure is shown in 
Figure 10. The plant model (dashed box) is character- 
ized, at any instant of time, by its discrete state space 
vectorx(n) = [Af (n)  Apr(n ) ApH(n)] r. Theboxla-  
beled plant state equations contains the discrete state 
space equations previously derived to model the one- 
area system, eqns ( 1 )-  (3). The neural network con- 
troller replaces the integral controller used in conven- 
tional systems. Its output, the fluctuation in reference 
power, Apref (n), is used as a control signal to drive the 
plant model. For simplicity, it is referred to as u(n). 

To evaluate u(n) = Apref(n), the neural network 
controller makes use of a piece of information that is 
not used in conventional control: an estimate of the 
load perturbation, A PE (n). In general, the load per- 
turbation of a large system is not directly measurable. 
It must therefore be estimated by a linear estimator or 
by a nonlinear neural network estimator if the nonlin- 
earities m the system justify it. Such an estimator takes 
as inputs a series of K samples of the frequency fluc- 
tuation at the output of the generator [ Af (n )  Af(n  -- 
1 ) . . .  A f (n  -- K + 1 )] r, and estimates the instanta- 
neous value of the load perturbation ApE(n) based on 

this input vector. The estimate APE (n) is then used 
to drive the plant controller. The implementation of 
such an estimator is beyond the scope of this paper. 
Here, we assume that the load estimate APE (n) is 

3 To shorten the notaUon, we set the sampling period Ts to 1 so 
that x(nTs)  is replaced by x (n ) ,  Af(nTs) by Af(n) ,  etc. 
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FIGURE 9. Feedforward multilayer neural network. (A)  Back propagation through a L-layer neural network. (B) Back propagation 
through the jth neuron of the/th layer. 

available and that, for adap~tatmn purposes, this esti- 
mate is perfect, that is, ApE (n) --= APe(n). We also 
assume that the electric perturbation is a step function 
of amplitude APE: ApE(n) = APE" H(n)  where H(n)  
-- 1 forn  > 0 a n d 0  forn  < 0. 

The internal structure of the neural network con- 
troller is detailed in Figure 11. It contains two layers 
of neurons: a hidden layer and a single neuron output 
layer. No sigmoid is used at the output of the network. 
Bias terms (i.e., constant inputs equal to 1 ) are included 
in all the hidden units and in the output unit. 

Going back to Figure 10, we see that at each time 
step, a new state vector x (n  + 1 ) is evaluated, based 
on the magnitude of the step load perturbation APE, 
the control signal u(n) ,  and the current state vector 
x(n) .  This is better understood if we redraw Figure 10, 
unravelling it in time. The resulting block diagram is 
shown in Figure 12. For simplicity, the neural network 
controller is denoted by C, and the plant state equations 
are denoted by P. At time n = 0 (defined as the instant 
when the step-load perturbation hits the system), the 
state of the plant is x(0).  The neural network controller 
C takes as inputs the state vector x(0) and the amplitude 
of the step-perturbation APe, and quasi-instantaneously 
evaluates the control signal u(0) .  The plant equations 
P are then used to compute the next state vector x ( 1 ), 
which is used by the controller to evaluate the next 
control signal u( 1 ), etc. This way, the controller and 
plant model successively compute new control signals 
and new state vectors until some time N is reached. N 
is chosen large enough to allow plant transients to die 
out. At time N, the plant state vector x (N) should have 
converged to X=eady-su~te, which appears thus for the 
learning algorithm as the desired state vector, and is 

,',~8(-) = 

ap~(,) = Ap~ /~(,) 

~ x ( n +  1) 

Planar Model 
FIGURE 10. Neural network controller and plant model of a 
single-area system: block diagram. 

denoted by d(N).  The difference between the desired 
state vector d(N) and the final state vector x (N) ,  the 
error vector e(N), is used to adjust the adaptive weights 
of the controller according to the back propagation- 
through-time algorithm. Although we are controlling 
the plant continuously over time, the control law is 
derived as if the process were only ongoing over the last 
N time steps, with N large. The weights are adjusted to 
reduce the error at time N. 

3.1.3. Back Propagation-Through-Time Algorithm. 
Figure 12 is essentially composed of a layered arrange- 
ment of controller and plant equations blocks. The 
controller is a neural network. If the block containing 
the plant equations, P, were replaced by a neural net- 
work copy/5 o f P  4, the unravelled system of Figure 12 
would become a giant layered neural network with in- 
puts x(0)  and APE, output x (N) ,  and desired output 
d (N). The back propagation algorithm could then be 
applied to tram such a network. By doing so, the error 
gradient defined at the output of the network are back 
propagated through the /5  and C blocks, from x(N)  
back to x(0) ;  hence, the name back propagation- 
through-time. This approach was first introduced by 
Nguyen and Widrow (1989), and was successfully ap- 
plied to number of applications in the area of nonlinear 
neural control (see for example Nguyen & Widrow, 
1990; Wu, Hogg, & Irwin, 1992). 

In this paper, we adopt a slightly different approach 
by which we avoid the introduction and training of a 
neural network copy of the plant equations (Piche & 
Widrow, 1991 ). The basic idea is that instead of build- 
ing a neural network copy or emulator/5 of P to back 
propagate error gradients through it, it is possible to 
directly back propagate the error gradients through the 
plant equations P. 

Let us consider a two-layer neural network that em- 
ulates a set of continuous nonlinear functions P. The 
inputs to the neural network are denoted by x ° , and 
the outputs by x 2. Applying eqn ( 11 ) recursively for l 
= 0, 1, and 2, and for all i, k, we get: 

4 It can be shown that any continuous nonhnear funcUon can be 
approximated to an arbitrary degree of precision by a two-layer neural 
network (Cybenko, 1988; Hornik, Stinchcombe, & White, 1989; Irie 
& Mlyake, 1988) 
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[ Af(n) u(n) = 
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FIGURE 11. Neural network controller for a single-area system: 
internal stmctura. 

= . ( wo xo ) ] , 

Let us now evaluate the derivative of the kth output 
with respect to the ith input: 

dx~ 
W j ,  k " Sj  " t.J. ~%_6~0=s~2.~ l ,1 w o (16) 

J 

Let us also evaluate the error gradients according to 
eqn ( 14): 

6 2 = --2ek. S'k 2 (17) 

6) : s ' / .  Z 6~. w),~ (18) 
k 

60 = Z 6)'w°n (19) 
) 

Substituting eqn (17) in eqn (18) and eqn (18) in eqn 
(19),  and comparing with eqn (16),  we get: 

dx~ 
60 = -zek" d x )  (20) 

Equation (20) implies that the kth term of the error 
gradient vector 6 ° obtained by back propagating 62 
through the neural network is proportional to the de- 
rivative of the kth output of the network with respect 
to its ith input. The matrix containing the derivatives 
of the outputs of P with respect to its inputs is called 
the Jacobzan m a t r i x  

Building a neural network emulator of the plant and 
back propagating error gradients through it is nothing 
other than approximating the true Jacobian matrix of  
the plant using a neural network technique. Whenever 
the equations of the plant are known beforehand, they 
can be used to compute, analytically or numerically, 
the elements of the Jacobian matrix. The error gradient 
at the input of the plant is then obtained by multiplying 
the output error gradient by the Jacobian matrix. 

This approach avoids the introduction and training 
of a neural network emulator, which brings a substantial 
saving in development time. In addition, the true de- 
rivatives being more precise than the one obtained ap- 
proximately with a neural network emulator, the con- 
troller training is faster and more precise. One disad- 
vantage of this method, however, is that a neural 
network controller included in such a structure cannot 
track changes in the plant (such as parameter variations 
due to wearing of certain parts, etc.). If such consid- 
erations are an issue, the neural network emulator 
method is a better choice. Again, the Jacobian approach 
is only applicable if an analytical description of the 
plant is known beforehand. Otherwise, a plant neural 
network emulator can be used to identify the plant and 
to back propagate the error gradients. 

3.2. Neural Network Control of a Two-Area System 

The neural network control scheme for a two-area sys- 
tem is basically the same as for a one-area system. Re- 
ferring back to Section 2.2, the discrete state vector 
of the two-area system was chosen equal to x(n)  = 
[Al l (n)  AJ~(n) Ap],2(n)] r. After a step-load pertur- 
bation has occurred in one area (or simultaneously in 
both areas), and after transients have died out, the state 
of the plant controlled by a neural network is expected 
to converge to the same steady-state value as it did with 
a conventional controller. We have seen in Section 2.2 
that this steady-state vector was equal to Xst~ady-state = 
[ 0 0 0 ] r [ Eqn (10) ]. This will thus be the desired re- 
sponse for the two-area system, once unravelled in time. 
Generalizing upon the control process for the single- 
area system, the inputs of the two-area neural network 
controller are: the state vector x(n)  and the magnitude 
of the step-load perturbations, APe:  and APE,2. The 
outputs are the reference power in area 1, Apref, l (n) ,  
and the reference power in area 2, Apr~f,2(n). 

The two-area controller-plant structure is unravelled 
in time and trained the same way as the one-area sys- 
tem, using back propagation-through-time. 

4. S IMULATIONS 

Computer simulations have been conducted to illustrate 
the behavior of single-area and two-area systems subject 
to step load perturbations. Both neural networks have 
been adapted using back propagation-through-time. No 

°' I :  .... J 
FIGURE 12. Neural network controller and plant model of a single-area system: block diagram unfolded in time. 
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plant emulator was used; instead, the error gradients 
were directly back propagated through the plant equa- 
tions. 

As explained in Section 2, the regulation parameters 
R of single-area and two-area systems are nonlinear 
functions of  the power ApT produced in the areas 
(Cohn, 1986). The effect of this nonlinearity on the 
system is generally represented in the following way. In 
steady-state, a simple relationship can be written be- 
tween the frequency A f0 and the turbine output power 
Apr,o (see Figure 2): Apr.o = A p r e f ,  O - -  ( 1 / R )  Afo, or: 

AJo = R ( A P r e f ,  o - A P T , o ) .  (21) 

The subscript 0 denotes steady-state values. If R is a 
constant, Arc vs. ApT,o represents a family of straight 
lines with parameter Apref, o. If instead the regulation 
R is a function of the turbine power, eqn (21) represents 
a family of nonlinear curves. Nonlinearities encoun- 
tered in practical systems produce Afo(APr,o ) curves 
such as represented in Figure 13 (solid lines). For ref- 
erence, the corresponding curves for R = constant 
= 2.4 pu Hz /MW are also shown (dashed lines). 

4.1. Single-Area System Simulat ions 

Such a nonlinearity was introduced in the discrete plant 
equations [eqns ( 1 ) - ( 3 ) ]  of a single-area system. A 
feedforward neural network containing one hidden 
layer with 20 hidden units was adapted to control this 
nonlinear plant. The neural network was trained to 
compensate for any perturbation ranging from minus 
to plus 100%. 

Figure 14 shows the frequency fluctuations at the 
output of  the power unit when a 10% step-load increase 
occurs on the bus. Two control schemes are compared: 
(a) the plant is controlled by a conventional integral 
controller with critical gain, and (b) the plant is con- 
trolled by a neural network controller. The neural net- 
work clearly achieves faster transient recovery while 

UO 
- -  il = function dpower 
- -  R = coMtul = @JI4% m- 2.4 pu HxJMW 

i IN Aprej, = 100% 

i 104 " ' ' ' " " . .  "" -. 

-leo -5@ 0 ge I N  150 

percent of rated power 

FIGURE 13. Static froquency-power response (linear c u e :  R 
= 0.04% or 2.4 pu Hz/MW). 
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FIGURE 14. Step response of a single-area system subject to 
a 10% load increase. 

stdl limiting the overshoot. This result is not unex- 
pected. The neural network controller makes use of the 
estimate of the load-perturbation that is provided to it 
as an input signal to immediately counteract the effect 
of the perturbation hitting the system. The integral 
controller, on the other hand, proceeds by building up 
the frequency error and using it to drive the plant. 
Therefore, ~t has to wait until the error has built up 
before significantly effecting the system response. 

In a sense, the comparison between the neural net- 
work and the PI controller may seem unfair because 
the neural network is provided with a piece of infor- 
matron that is not available to the other controller. On 
the other hand, the PI controller is the most widely 
used in practice and therefore constitutes the standard 
comparison tool for new control methods. The point 
that the authors would like to illustrate is that a judi- 
cious use of some additional information can produce 
a tremendous improvement in the system dynamic be- 
havior. 

4.2. Two-Area System Simulat ions 

A one-hidden-layer neural network controller with 20 
hidden units was then trained to control a nonlinear 
two-area system. The same nonlinearity as in the single- 
area system was used for both areas of this system. 

Figure 15 compares the dynamic response of a two- 
area system subject to a 1% step-load increase when 
controlled (a) by a neural network (solid lines), or (b) 
by two conventional integral controllers with critical 
gains (dotted lines). Figure 15A shows the frequency 
variations in both areas; Figure 15B shows tie-line 
power variations. 

As explained previously, the neural network con- 
troller takes as inputs the estimates of the load-pertur- 
bations in both areas. These estimates are evaluated by 
a special device that needs a short, but non-zero, lapse 
of time to output accurate estimates of the perturba- 
tions. For this reason, a 500-ms delay was allowed before 
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the neural net started controlling the plant. During 
these first 500 ms, the control signals Ap~f,1 and APref,2 
were set to zero. This explains that the solid and dotted 
lines in Figure 15 exactly coincide for the first five it- 
erations (0.5 s) of the simulation. The use of a neural 
network controller has greatly reduced the frequency 
transient recovery period. The neural network achieves 
zero steady-state error and the uncontrolled system has 
a large steady-state error. 

Figure 16 shows the frequency recovery of a two- 
area system subject to a 1% step-load increase in area 
l and, at the same time, a 2% step-load decrease in 
area 2. Dynamic responses obtained with a neural net- 
work and with integral controllers are compared. 
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5. CONCLUSION 

Layered neural networks have been successfully applied 
to control the turbine reference power of a computer- 
simulated generator unit. The same principle has then 
been applied to a simulated two-area system. Both 
neural networks have been adapted using back prop- 
agation-through-time. In this paper, the frequency 
variations in both areas of the two-area system were 
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FIGURE 15. Dynamic response of a two-area system subject 
to a 1% step-load increase in area 2. (A) Frequency transients 
in both areas. (B) Tie-line power variations. 

[3 0.05 

0O4 

0.03 

0.02 

0.01 

| o 

~ -00l 

-0.02 

-0.03 

I !  - -  delayed neural  net control  

i i i | i | 
20 40 60 80 100 120 140 160 

t ime (10 iterations = I second) 

FIGURE 16. Dynamic response of a two-area system subject 
to a 1% step-load increase in area 1 and a 2% step-ioad de- 
crease in area 2. (A) Frequency variations in area 1. (B) Fre- 
quency variations in area 2. 

inputted into the neural network controller. The neural 
network thus implements a global control scheme. In 
the past, nonneural network local controllers have been 
developed (Aly & Abdel-Magid, 1981; Abdel-Magid 
et al., 1984). A subject of future research consists in 
building independent neural network controllers for the 
different areas of a multiarea system. Each neural net- 
work controller receives only local information about 
the system (frequency in that specific area and powers 
in the tie-lines connected to that area). Such an ar- 
chitecture decentralizes the control of the overall system 
and reduces the amount of information to be exchanged 
between different nodes of the power grid. Performance 
with local control only will be compared with that ob- 
tained with global control. 
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NOMENCLATURE 

1. Power Systems Quantities 

1.1. 
Af(t) 
AF(s) 
R 
1/R 
h5 
Pref 
mpref 

Smgle-Area System 
generator frequency variation 
Laplace transform of Af(t) 
regulation parameter 
speed regulator gain 
integral controller gain 
turbine reference power in steady-state 
variation in reference power 

aPr.f(S) 
Apn(t) 

AP.(s) 
Apt(t) 
APt(s) 
APE(t) 

aPE(s) 

ApE (t) 
Kn, Kr, Ke 

Tn, Tr, Te 

T, 

n 

x(nL)  

Laplace transform of Apref(/) 

fluctuation in hydraulic amplifier output 
power 
Laplace transform of Aprl(t) 
fluctuation in turbine output power 
Laplace transform of Apt(t) 
electrical perturbation (i.e., load varia- 
tion) 
Laplace transform of ApE(t) 
electrical perturbation estimate 

transfer function gains for the hydraulic 
amplifier, the turbine, and the generator 
transfer function time constants for the 
hydraulic amphfier, the turbine, and the 
generator 
sampling period in discretized dynamic 
equations 
discrete time index 
discrete state vector of the dynamic sys- 
tem 

1.2. Two-Area System (in addition to above symbols 
with additional underscore 1 or 2 to specify the area 
concerned) 

ApL2(/)  

API,2 (S) 

Ap2,1(I) 

Z~2,1 (S) 
A0t (t), AO2(t) 

AOt(s), AO2(s) 
T O 

Bl, B2 

fluctuation in tie-line power trans- 
mitted from area 1 to area 2 
Laplace transform of Ap~,2(t) 
fluctuation in tie-line power trans- 
mitted from area 2 to area 1 
Laplace transform of Ap2,1 (t) 
fluctuation in shaft angle in area 1 
or  2 

Laplace transform of A0~ (t), A02 (t) 
tie-line synchronizing coefficient 
proportionality coefficients 

2. Neural Networks and Back Propagation 
Quantities 

w~,t 

xl 
) 

s t( • ) 

H(n) 
u(n) 
e 

d 

weight connecting neuron l in layer l with neu- 
ron j in next layer 
tth input to neuron in layer l 
sigmoid function in neuron j of layer ! 
derivative of s~(. ) with respect to its argument 
error gradient produced in neuron j of layer l 
discrete step function of amplitude 1.0 
neural controller output 
neural network error vector 
desired output vector 


