Adaptive Neural Networks and
their Applications

Bernard Widrow and Michael A. Lehr »
Information Systems Laboratory, Department of Electrical Engineering,
Stanford University, Stanford, California 94305-4055

Fundamental developments in feedforward artificial neural networks from the past 30
years are reviewed. The central theme of this article is a description of the history,
origination, operating characteristics, and basic theory of several supervised neural
network training algorithms including the Perceptron rule, the LMS algorithm, three
Madaline rules, and the backpropagation technique. These methods were developed
independently, but with the perspective of history they can all be related to each other.
The concept which underlies these algorithms is the ‘‘minimal disturbance principle,’
which suggests that during training it is advisable to inject new information into a
network in a manner which disturbs stored information to the smallest extent possible.

be known for the application of interest. Sometimes there are no rules, however. The
rules are either not explicit or they simply do not exist. For such applications, trainable
expert systems might be usable. Rather than working with decision rules, an adaptive
expert system might observe the decisions made by a human expert. Looking over the
expert’s shoulders, an adaptive system can learn to make similar decisions to those of
the human. Trainable expert systems have been used in the laboratory for real-time
control of a ‘‘broom-balancing system.”” © 1993 John Wiley & Sons, Inc.

I. INTRODUCTION

More than 30 years have passed since the development of two of the
earliest and most important rules for training adaptive elements. The Percep-
tron rule and the LMS algorithm were both first published in 1960. In the years
following these discoveries, many new techniques have been developed in the
field of neural networks, and the discipline has grown rapidly. One early devel-
opment was Steinbuch’s Learning Matrix,! a pattern recognition machine
based on linear discriminant functions. In the same time frame, Widrow and his
students devised Madaline Rule I (MRI), the earliest popular learning rule for
neural networks with multiple adaptive elements.? Other early work included
the “mode-seeking’’ technique of Stark, Okajima, and Whipple.® This was
probably the first example of competitive learning in the literature, though it
could be argued that earlier work by Rosenblatt on ‘‘spontaneous learning’’43

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 8, 453-507 (1993)
© 1993 John Wiley & Sons, Inc. CCC 0884-8173/93/040453-55

454 WIDROW AND LEHR

deserves this distinction. Further pioneering work on competitive learning and
self-organization was performed in the 1970s by von der Malsburgs and Gross-
berg.” Fukushima explored related ideas with his biologically inspired Cogni-
tron and Neocognitron models.3?

In the mid-1960s, Widrow devised a reinforcement learning algorithm
called ‘‘punish/reward’’ or ‘‘bootstrapping.’’!%!! This can be used to solve
problems when uncertainty about the error signal causes supervised training
methods to be impractical. A related reinforcement learning approach was later
explored in a classic paper by Barto, Sutton, and Anderson on the ‘‘credit
assignment’’ problem.!? Barto et al.’s technique is also somewhat reminiscent
of Albus’s adaptive CMAC, a distributed table-lookup system based on models
of human memory."*! Yet another approach related to bootstrapping is the
associative reward—penalty algorithm of Barto and Anandan.!S This method
solves associative reinforcement learning tasks, providing a link between pat-
tern classification and stochastic learning automata.

In the 1970s Grossberg developed his Adaptive Resonance Theory (ART),
a number of novel hypotheses about underlying principles which govern biolog-
ical neural systems.!® These ideas served as the basis for later work by Carpen-
ter and Grossberg involving three classes of ART architectures: ART 1,7 ART
2,'8 and ART 3." These are self-organizing neural implementations of pattern
clustering algorithms. Another important theory on self-organizing systems
was pioneered by Kohonen with his work on feature maps.202!

In the early 1980s, Hopfield and others introduced outer product rules as
well as equivalent approaches based on the early work of Hebb? for training a
class of recurrent (signal feedback) networks now called Hopfield models.22
More recently, Kosko extended some of the ideas of Hopfield and Grossberg to
develop his adaptive Bidirectional Associative Memory (BAM), a network
model employing differential as well as Hebbian and competitive learning laws.
Another model utilizing a differential learning mechanism is Harry Klopf’s
Drive Reinforcement Theory,” an extension of Hebbian learning which ex-
plains Pavlovian classical conditioning. Other significant models from the past
decade include probabilistic ones such as Hinton, Sejnowski, and Ackley’s
Boltzmann Machine,?”? which to oversimplify, is a Hopfield model that settles
into solutions by a simulated annealing process governed by Boltzmann statis-
tics. The Boltzmann Machine is trained by a clever two-phase Hebbian-based
technique.

While these developments were taking place, adaptive systems research at
Stanford traveled an independent path. After devising their Madaline 1 rule,
Widrow and his students developed uses for the Adaline and Madaline. Early
applications included, among others, speech and pattern recognition,” weather
forecasting, and adaptive controls.> Work then switched to adaptive filtering
and adaptive signal processing® after attempts to develop learning rules for
networks with multiple adaptive layers were unsuccessful. Adaptive signal
processing proved to be a fruitful avenue for research with applications involv-
ing adaptive antennas,® adaptive inverse controls,* adaptive noise cancel-
ling,* and seismic signal processing.3? Outstanding work by R. W. Lucky and

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 455

others at Bell Laboratories led to major commercial applications of adaptive

filters and the LMS algorithm to adaptive equalization in high speed mo-

dems3*?” and to adaptive echo cancellers for long distance telephone and satel-
lite circuits.’8 After 20 years of research in adaptive signal processing, the work
in Widrow’s laboratory has once again returned to neural networks.

The first major extension of the feedforward neural network beyond Mada-
line 1 took place in 1971 when Werbos developed a backpropagation training
algorithm which, in 1974, he first published in his doctoral dissertation.>*
Unfortunately, Werbos’s work remained almost unknown in the scientific com-
munity. In 1982, Parker rediscovered the technique*! and in 1985, published a
report on it at MIT.# Not long after Parker published his findings, Rumelhart,
Hinton, and Williams*** also rediscovered the technique and, largely as a
result of the clear framework within which they presented their ideas, they
finally succeeded in making it widely known.

The elements used by Rumelhart et al. in the backpropagation network

7

differ from those used in the earlier Madaline architectures. The adaptive ele-

ments in the original Madaline structure used hard-limiting quantizers
(signums), while the elements in the backpropagation network use only differ-
entiable nonlinearities, Or “sigmoid’’ functions.” In digital implementations,
the hard-limiting quantizer is more easily computed than any of the differentia-
ble nonlinearities used in backpropagation networks. In 1987, Widrow and
Winter looked back at the original Madaline I algorithm with the goal of devel-
oping a new technique that could adapt multiple layers of adaptive elements

which use the simpler hard-limiting quantizers. The result was Madaline Rule
L%

David Andes of U.S. Naval Weapons Center of Ching Lake; CA, modified
Madaline II in 1988 by replacing the hard-limiting quantizers in the Adaline
with sigmoid functions, thereby inventing Madaline Rule III (MRIID). Widrow

and his students were first to recognize that this rule is mathematically equiva-
lent to backpropagation.

The outline above gives only a partial view of the discipline, and many
landmark discoveries have not been mentioned. Needless to say, the field of
neural networks is quickly becoming a vast one, and in one short survey we
could not hope to cover the entire subject in any detail. Consequently, many
significant developments, including some of those mentioned above, will not be
discussed in this article. The algorithms described will be limited primarily t0

*We should note, however, that in the field of variational calculus the idea of error
backpropagation through nonlinear systems existed centuries before Werbos first
thought to apply this concept to neural networks. In the past 25 years, these methods
have been used widely in the field of optimal control. as discussed by Le Cun.*
+The term sigmoid is usually used in reference to monotonically increasing
«S.shaped”’ functions, such as the hyperbolic tangent. In this article, however, we
generally use the term to denote any smooth nonlinear functions at the output of a
linear adaptive element. In other articles, these nonlinearities go by 2 variety of names,
such as ‘‘squashing functions,”’ “activation functions,”’ “transfer characteristics,”” or

““threshold functions.”

456 WIDROW AND LEHR

those developed in our laboratory at Stanford, and to related techniques devel-
oped elsewhere, the most important of which is the backpropagation algorithm.
The section headings indicate the range and coverage of the article:

I. Introduction

II. Fundamental Concepts

IIL. Error Correction Rules—Single Threshold Element
IV. Error Correction Rules—Multi-Element Networks
V. Steepest-Descent Rules—Single Threshold Element
VI. Steepest-Descent Rules—Multi-Element Networks
VII. A Network Topology for Pattern Recognition
VIII. The Trainable. Expert System

IX. Summary

Information about the neural network paradigms not discussed in this
article can be obtained from a number of other sources, such as the concise
survey by Richard Lippmann,* and the collection of classics by Anderson and
Rosenfeld.4” Much of the early work in the field from the 1960s is carefully
reviewed in Nilsson’s monograph.® A good view of some of the more recent
results is presented in Rumelhart and McClelland’s popular two-volume set.*
An article by Moore™ presents a clear discussion about ART 1 and some of
Grossberg’s terminology. Another resource is the DARPA Study report’!
which gives a very comprehensive and readable ‘‘snapshot” of the field in
1088~ N

II. FUNDAMENTAL CONCEPTS

Today we can build computers and other machines which perform a vari-
ety of well-defined tasks with celerity and reliability unmatched by humans. No
human can invert matrices or solve systems of differential equations at speeds
which rival modern workstations. Nonetheless, there are still many problems
which have yet to be solved to our satisfaction by any man-made machine, but
are easily disentangled by the perceptual or cognitive powers of humans, and
often lower mammals, or even fish and insects. No computer vision system can
rival the human ability to recognize visual images formed by objects of all
shapes and orientations under a wide range of conditions. Humans effortlessly
recognize objects in diverse environments and lighting conditions, even when
obscured by dirt, or occluded by other objects. Likewise, the performance of
current speech recognition technology pales when compared to the perfor-
mance of the human adult who easily recognizes words spoken by different
people, at different rates, pitches, and volumes, even in the presence of distor-
tion or background noise.

The problems solved more effectively by the brain than by the digital
computer typically have two characteristics: they are generally ill-defined, and
they usually require an enormous amount of processing. Recognizing the char-
acter of an object from its image on television, for instance, involves resolving
ambiguities associated with distortion and lighting. It also involves filling in

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 457

information about a three-dimensional scene which is missing from the two-
dimensional image on the screen. There are an infinite number of three-dimen-
sional scenes which can be projected into a two-dimensional image. Nonethe-
less, the brain deals well with this ambiguity, and using learned cues usually has
little difficulty correctly determining the role played by the missing dimension.

As anyone who has performed even simple filtering operations on images
is aware, processing high resolution images requires a great deal of computa-
tion. Our brains accomplish this by utilizing massive parallelism, with millions
and even billions of neurons in parts of the brain working together to solve
complicated problems. Because solid state operational amplifiers and logic
gates can compute many orders of magnitude faster than current estimates of
the computational speed of neurons in the brain, we may soon be able to build
relatively inexpensive machines with the ability to process as much information
as the human brain. This enormous processing power will do little to help us
solve problems, however, unless we can utilize it effectively. For instance,
coordinating many thousands of processors which must efficiently cooperate to
solve a problem is not a simple task. If each processor must be programmed
separately, and if all contingencies associated with various ambiguities must be
designed into the software, even a relatively simple problem can quickly be-
come unmanageable. The slow progress over the past 25 years or so in machine
vision and other areas of artificial intelligence is testament to the difficulties
associated with solving ambiguous and computationally intensive problems on
von Neumann computers and related architectures.

Thus, there is some reason to consider attacking certain problems by de-
signing naturally-parallel computers which process information and learn by
principles borrowed from the nervous systems of biological creatures. This
does not necessarily mean we should attempt to copy the brain part for part.
Although the bird served to inspire development of the airplane, birds do not
have propellers, and airplanes do not operate by flapping feathered wings. The
primary parallel between biological nervous systems and artificial neural net-
works is that each typically consists of a large number of simple elements that
learn and are able to collectively solve complicated and ambiguous problems.

Today, most artificial neural network research and application is accom-
plished by simulating networks on serial computers. Speed limitations keep
such networks relatively small, but even with small networks some surprisingly
difficult problems have been tackled. Networks with fewer than 150 neural
elements have been used successfully in vehicular control simulations,’? speech
generation,”%, and undersea mine detection.’! Small networks have also been
used successfully in airport explosive detection, expert systems,*’ and
scores of other applications. Furthermore, efforts to develop parallel neural
network hardware are being met with some success, and such hardware should
be available in the future for attacking more difficult problems like speech
recognition.’%%

458 WIDROW AND LEHR

Whether implemented in parallel hardware or simulated on a computer, all
neural networks consist of a collection of simple elements that work together to
solve problems. A basic building block of nearly all artificial neural networks,
and most other adaptive systems, is the adaptive linear combiner.

A. The Adaptive Linear Combiner

The adaptive linear combiner is diagrammed in Figure 1. Its output is a
linear combination of its inputs. In a digital implementation, this element re-
ceives at time k an input signal vector or input pattern vector X; = [x0, X1,5
X+ + - x,]7, and a desired response di, & special input used to effect learning.
The components of the input vector are weighted by a set of coefficients, the
weight vector Wy = [Wop Wi Wao =+ - wp,JT. The sum of the weighted inputs is
then computed, producing a linear output, the inner product s, = X7w,. The
components of X may be cither continuous analog values or binary values. The
weights are essentially continuously variable, and can take on negative as well
as positive values.

During the training process, input patterns and corresponding desired re-
sponses are presented to the linear combiner. An adaptation algorithm auto-
matically adjusts the weights so that the output responses to the input patterns
will be as close as possible to their respective desired responses. In signal
‘processing applications, the most popular method for adapting the weights is
the simple LMS (least mean square) algorithm,%6! often called the Widrow—
Hoff Delta Rule.* This algorithm minimizes the sum of squares of the linear
errors over the training set. The linear error & is defined to be the difference
between the desired response d and the linear output s, during presentation k.
Having this error signal is necessary for adapting the weights. When the adap-
tive linear combiner is embedded in a multi-element neural network, however,
an error signal is often not directly available for each individual linear combiner
and more complicated procedures must be devised for adapting the weight
vectors. These procedures are the main focus of this article.

Input
Pattern
Vector

Weight Vector Desired Response

Figure 1. Adaptive linear combiner.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 459

Input e e
Pattern Xoxk=+1 BiasInput
Vector
Weights
X k

X

|

[

Wo Threshold |

n |

/@“ﬁk " e
s
.———J—k> i
W Linear

| Output

+1 '— |
Wi Z > yk. Binary
__l 1 Output

{+1,-1}
Threshold
Device

XZk-

X e
3k

xnk‘

Desired Response Input
(training signal)

Figure 2. An adaptive linear element (Adaline).

B. A Linear Classifier—The Single Threshold Element

The basic building block used in many neural networks is the ‘‘adaptive
linear element,”’ or Adaline®* shown in Figure 2. e

This is an adaptive threshold logic element. It consists of an adaptive linear
combiner cascaded with a hard-limiting quantizer which is used to produce a
binary =1 output, yx = sgn(sy). The bias weight wq, which is connected to a
constant input, xo = +1, effectively controls the threshold level of the quan-
tizer.

In single-element neural networks, an adaptive algorithm (such as the
LMS algorithm, or the Perceptron rule) is often used to adjust the weights of
the Adaline so that it responds correctly to as many patterns as possible in a
training set which has binary desired responses. Once the weights are adjusted,
the responses of the trained element can be tested by applying various input
patterns. If the Adaline responds correctly with high probability to input pat-
terns that were not included in the training set, it is said that generalization has
taken place. Learning and generalization are among the most useful attributes
of Adalines and neural networks.

*In the neural network literature, such elements are often referred to as ‘‘adaptive
neurons.”” However, in a conversation between David Hubel of Harvard Medical
School and Bernard Widrow, Dr. Hubel pointed out that the Adaline differs from the
biological neuron since it contains not only the neural cell body, but also the input
synapses and a mechanism for training them.

460 WIDROW AND LEHR

1. Linear Separability

With » binary inputs and one binary output, a single Adaline of the type
shown in Fig. 2 is capable of implementing certain logic functions. There are 2"
possible input patterns. A general logic implementation would be capable of
classifying each pattern as either +1 or —1, in accord with the desired re-
sponse. Thus, there are 22 possible logic functions connecting n inputs to a
single binary output. A single Adaline is capable of realizing only a small subset
of these functions, known as the linearly separable logic functions or threshold
logic functions.®? These are the set of logic functions that can be obtained with
all possible weight variations.

The linear classifier is limited in the number of distinct patterns it can learn
correctly. The Adaline’s pattern capacity is limited roughly to twice the num-
ber of adaptive weights in the classifier.®*%%. To achieve higher pattern capaci-
ties, or to solve problems which are not linearly separable, nonlinear classifiers
must be used.

C. Nonlinear Classifiers

Many nonlinear classifiers are simple extensions of the Adaline. Two of
the most common are described here. The first is a fixed preprocessing network
connected to a single adaptive element, and the other is the multi-element
feedforward neural network. The pattern capacities of -both-structures can be
approximated by the number of weights in the classifier divided by the number
of output nodes.

1. Polynomial Discriminant Functions

Nonlinear functions of the inputs applied to the single Adaline can yield
nonlinear decision boundaries. Useful nonlinearities include the polynomial
functions. Consider the system illustrated in Figure 3 which contains only

Input
Pattern
Vector
Binary
X, Output
{+1,-1}
X, signum
Polynomial Linear Error d {+1,1)
Y
Preprocessor Desired Response

Figure 3. An Adaline with inputs mapped through nonlinearities.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 461

linear and quadratic input functions. The critical thresholding condition for this
system is

S = Uy + XiWh + x%wll + X1X2W12 + x%wzz + Xowyp = 0 (1)

With ‘proper choice of the weights, the separating boundary in pattern
space can be established as shown, for example, in Figure 4. This represents a
solution for the Exclusive NOR, a function which is not linearly separable. Of
course, all of the linearly separable functions are also realizable. The use of
such nonlinearities can be generalized for more inputs than two and for higher
degree polynomial functions of the inputs. Some of the first work in this area
was done by D. F. Specht®-" at Stanford in the 1960s when he successfully
applied polynomial discriminants to the classification and analysis of electro-
cardiographic signals. Work on this topic has also been done by Barron%-"° and
by A. G. Ivankhnenko! in the Soviet Union.

The polynomial approach offers great simplicity and beauty. Through it
one can realize a wide variety of adaptive nonlinear discriminant functions by
adapting only a single Adaline element. Several methods have been developed
for training the polynomial discriminant function. Specht developed a very
efficient noniterative (i.e., single pass through the training set) training proce-
dure, the Polynomial Discriminant Method (PDM), which allows the polyno-
mial discriminant function to implement a nonparametric classifier based on the
Bayes decision rule. Other methods for training the system include iterative
error correction rules such as the Perceptron and a-LMS rules, and iterative
gradient descent procedures such as the u-LMS and SER (also called RLS)
‘algorithms.?? Gradient descent with a single adaptive element is typically much
faster than with a layered neural network. Furthermore, as we shall see, when
the single Adaline is trained by a gradient descent procedure, it will converge to
a unique global solution.

After the polynomial discriminant function has been trained by a gradient
descent procedure, the weights of the Adaline will represent an approximation
to the coefficients in a multi-dimensional Taylor series expansion of the desired

Separating
{ Boundary
X2

[] +1,+1) @

X1
Adaline
° Output = +1
Adaline ¢+1,-1
Output = -1

Figure 4. An elliptical separating boundary for realizing a function which is not lin-
early separable.

462 WIDROW AND LEHR

response function. Likewise, if appropriate trigonometric terms are used in
place of the polynomial preprocessor, the Adaline’s weight solution will ap-
proximate the terms in the (truncated) multi-dimensional Fourier series decom-
position of a periodic version of the desired response function. The choice of
preprocessing functions determines how well a network will generalize for
patterns outside the training set. Determining ‘‘good’’ functions remains a
focus of current research.’’ Experience seems to indicate that unless the
nonlinearities are chosen with care to suit the problem at hand, often better
generalization can be obtained from networks with more than one adaptive
layer. In fact, one can view multi-layer networks as single-layer networks with
trainable preprocessors which are essentially self-optimizing.

2. Madaline I

One of the earliest trainable layered neural networks with multiple adap-
tive elements was the Madaline I structure of Widrow and Hoff.%* Mathemati-
cal analyses of Madaline I were developed in the Ph.D. theses of Ridgway,”
Hoff,’* and Glanz.” In the early 1960s, a 1000-weight Madaline I was built out
of hardware” and used in pattern recognition research. The weights in this
machine were memistors, electrically variable resistors developed by Widrow
and Hoff which are adjusted by electroplating a resistive link.”

Madaline I.was configured in the following way. Retinal inputs were con-
nected to a layer of adaptive Adaline elements, the outputs of which were
connected to a fixed logic device that generated the system output. Methods for
adapting such systems were developed at that time. An example of this kind of
network is shown in Figure 5. Two Adalines are connected to an AND logic
device to provide an output.

With weights suitably chosen, the separating boundary in pattern space for
the system of Fig. 5 would be as shown in Figure 6. This separating boundary
also implements the Exclusive NOR function.

Xo=+1

Input
Pattern
Vector

X +1 F
-1
xp= +1 Output
o) 7
+
-1

Figure 5. A two-Adaline form of Madaline.

Xy

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 463

Separating
Lines \\\
X2

(-1, +1) (+1, +1)

©)4e)

Madaline

o | e Output=+1

Madaline -1,-D / (+1,-1)
- Output = -1

Figure 6. Separating lines for Madaline of Figure 5.

Madalines were constructed with many more inputs, with many more
Adaline elements in the first layer, and with various fixed logic devices such as
AND, OR, and Majority vote-taker elements in the second layer. Those three
functions, illustrated in Figure 7, are all threshold logic functions. The given
weight values will implement these three functions, but the weight choices are
not unique. ‘

3. Feedforward Networks

The Madalines of the 1960s had adaptive first layers and fixed threshold
functions in the second (output) layers.*”> The feedforward neural networks of
today often have many layers, and usually all layers are adaptive. The
backpropagation networks of Rumelhart et al.* are perhaps the best-known
examples of multi-layer networks. A fully connected three-layer* feedforward
adaptive network is illustrated in Figure 8. In a fully connected layered net-
work, each Adaline receives inputs from every output in the preceding layer.

During training, the response of each output element in the network is
compared with a corresponding desired response. Error signals associated with
the output elements are readily computed, so adaptation of the output layer is
straightforward. The fundamental difficulty associated with adapting a layered
network lies in obtaining ‘‘error signals’’ for hidden layer Adalines, that is, for
Adalines in layers other than the output layer. The backpropagation and Mada-
line III algorithms contain methods for establishing these error signals.

A network’s capacity is of little utility unless it is accompanied by useful
generalizations to patterns not presented during training. In fact, if generaliza-
tion is not needed, we can simply store the associations in a look-up table, and

*In Rumelhart et al.’s terminology, this would be called a 4-layer network, follow-
ing Rosenblatt’s convention of counting layers of signals, including the input layer. For
our purposes, we find it more useful to count only layers of computing elements. We do
not count as a layer the set of input terminal points.

464 WIDROW AND LEHR

Xz +1

— AND

Figure 7. Fixed-weight Adaline implementations of AND, OR, and MAJ logic functions.

will have little need for a neural network. The relationship between generaliza-
tion and pattern capacity represents a fundamental tradeoff in neural network
applications: reduced capacity translates to improved generalization. The fact
that the Adaline is unable to realize all functions is in a sense a strength rather
than the fatal flaw envisioned by some critics of neural networks” because it
helps limit the capacity of the device and thereby improves its ability to gener-
alize.

For good generalization, the training set should contain a number of pat-
terns at least several times larger than the network’s capacity. This can be

Output
Input
Pattern x"‘ \\ @ \ Vector
Vector P\ / 4
X x2k Yk
k
e Y1k
x4k Y 2k
X
5k
output-layer
Xex @ Adalines
first-layer second-layer
Adalines Adalines

Figure 8. A three-layer adaptive neural network.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 465

understood intuitively by noting that if the number of degrees of freedom in a
network (i.e., the number of weights) is larger than the number of constraints
associated with the desired response function (i.e., the product of the number
of patterns and the number of outputs), the training procedure will be unable to
completely constrain the weights in the network. A detailed analysis of general-
ization performance of signum networks as a function of training set size is
described in Ref. 80.

There is no reason why a feedforward network must have the layered
structure of Figure 8. In Werbos’s development of the backpropagation algo-
rithm,® in fact, the Adalines are ordered and each receives signals directly
from each input component and from the output of each preceding Adaline.
Many other variations of the feedforward network are possible. An interesting
area of current research involves a generalized backpropagation method which
can be used to train ‘‘high order’” or “‘signal-pi’” networks that incorporate a
polynomial preprocessor for each Adaline.*3!

4. A Nonlinear Classifier Application

Neural networks have been used successfully in a wide range of applica-
tions. To gain some insight about how neural networks are trained and what
they can be used to compute, it is instructive to consider Sejnowski and Rosen-
berg’s 1986 NETtalk demonstration.’>* With the exception of work on the
traveling salesman problem with Hopfield networks,82 this was the first neural
network application since the 1960s to draw widespread attention. NETtalk is a
two-layer feedforward sigmoid network with 80 Adalines in the first layer and

26 Adalines in the second layer. The network is trained to convert text into

phonetically correct speech, a task well suited to neural implementation. The
pronunciation of most words follows general rules based upon spelling and
word context, but there are many exceptions and special cases. Rather than
programming a system to respond properly to each case, the network can learn
the general rules and special cases by example.

One of the most remarkable characteristics of NETtalk is that it learns to
pronounce words in stages suggestive of the learning process in children. When
the output of NETtalk is connected to a voice synthesizer, the system makes
babbling noises during the early stages of the training process. As the network
learns, it next conquers the general rules, and like a child, tends to make a lot of
errors by using these rules even when not appropriate. As the training con-
tinues, however, the network eventually abstracts the exceptions and special
cases and is able to produce intelligible speech with few errors.

The operation of NETtalk is surprisingly simple. Its input is a vector of
seven characters (including spaces) from a transcript of text, and its output is
phonetic information corresponding to the pronunciation of the center (fourth)
character in the seven-character input field. The other six characters provide
context which helps determine the desired phoneme. To read text, the seven-
character window is scanned across a document in computer memory and the
network generates a sequence of phonetic symbols which can be used to con-

466 WIDROW AND LEHR

trol a speech synthesizer. Each of the seven characters at the network’s input is
a 29-component binary vector, with each component representing a different
alphabetic character or punctuation mark. A *‘one’” is placed in the component
associated with the represented character while all other components are set to
Zero.

The system’s 26 outputs correspond to 23 articulatory features and 3 addi-
tional features which encode stress and syllable boundaries. When training the
network, the desired response vector has zeros in all components except those
which correspond to the phonetic features associated with the center character
in the input field. In one experiment, Sejnowski and Rosenberg had the system
scan a 1024-word transcript of phonetically transcribed continuous speech.
With the presentation of each seven-character window, the system’s weights
were trained by the backpropagation algorithm in response to the network’s
output error. After roughly 50 presentations of the entire training set, the
network was able to produce accurate speech from data the network had not
been exposed to during training. ‘

Backpropagation is not the only technique that might be used to train
NETtalk. In other experiments, the slower Boltzmann learning method was
used, and, in fact, Madaline Rule III could be used as well. Likewise, if the
sigmoid network was replaced by a similar signum network, Madaline Rule II
would also work, although more first-layer Adalines would likely be needed for
comparable performance. o

The remainder of this article develops and compares various adaptive
algorithms for training Adalines and artificial neural networks to solve classifi-
cation problems such as NETtalk. These same algorithms can be used to train
networks for other problems such as those involving nonlinear control,*? sys-
tem identification,’% signal processing,’? or decision making.%’

D. Adaptation—The Minimal Disturbance Principle

The iterative algorithms described in this article are all designed in accord
with a single underlying principle. These techniques—the two LMS algo-
rithms, Mays’s rules, and the Perceptron procedure for training a single Ada-
line, the MRI rule for training the simple Madaline, as well as MRII, MRIII,
and backpropagation techniques for training multi-layer Madalines—all rely
upon the principle of minimal disturbance: Adapt to reduce the output error for
the current training pattern, with minimal disturbance to responses already
learned. Unless this principle is practiced, it is difficult to simultaneously store
the required pattern responses. The minimal disturbance principle is intuitive.
It was the motivating idea that led to the discovery of the LMS algorithm and
the Madaline rules. In fact, the LMS algorithm had existed for several months
as an error reduction rule before it was discovered that the algorithm uses an
instantaneous gradient to follow the path of steepest descent and minimize the
mean-square-error of the training set. It was then given the name “LMS”
(Least Mean Square) algorithm.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 467

III. ERROR CORRECTION RULES—SINGLE
THRESHOLD ELEMENT

As adaptive algorithms evolved, principally two kinds of on-line rules have
come to exist. One kind, error correction rules, alter the weights of a network
to correct a certain proportion of the error in the output response to the present
input pattern. The other kind, gradient rules, alter the weights of a network
during each pattern presentation by gradient descent with the objective of
reducing mean-square-error, averaged over all training patterns. Both types of
rules invoke similar training procedures. Because they are based upon different
objectives, however, they can have significantly different learning characteris-
tics.

Error correction rules, of necessity, often tend to be ad hoc. They are most
often used when training objectives are not easily quantified, or when a prob-
lem does not lend itself to tractable analysis. A common application, for in-
stance, concerns training neural networks that contain discontinuous func-
tions. An exception is the a-LMS algorithm, an error correction rule which has
proven to be an extremely useful technique for finding solutions to well-defined
and tractable linear problems.

We begin with error correction rules applied initially to single Adaline
elements, and then to networks of Adalines.

A. Linear Rules

Linear error correction rules alter the weights of the adaptive threshold
element with each pattern presentation to make an error correction which is
proportional to the error itself. The one linear rule, a-LMS, is described next,

1. The a-LMS Algorithm

The a-LMS algorithm or Widrow—Hoff delta rule applied to the adaptation
of a single Adaline (Fig. 2) embodies the minimal disturbance principle. The
weight update equation for the original form of the algorithm can be written as

Wi = Wi+ a5 2
The time index or adaptation cycle number is k. W, is the next value of the
weight vector, W, is the present value of the weight vector, and X is the
present input pattern vector. The present linear error g is defined to be the

difference between the desired response d; and the linear output s, = W/X;
before adaptation:

& = dp — WIX,.)]
Changing the weights yields a corresponding change in the error:
Agy = Aldy — WX = —X]AW,. C))

468 WIDROW AND LEHR

In accordance with the a-LMS rule of Eq. (2), the weight change is as follows:

_ _ — stk
AWk Wk+1 Wk o —l inz . (5)
Combining Egs. (4) and (5), we obtain
e X7X;
Ag, = —a X, = —qgy. 6)

Therefore, the error is reduced by a factor of « as the weights are changed
while holding the input pattern fixed. Presenting a new input pattern starts the
next adaptation cycle. The next error is then reduced by a factor of «, and the
process continues. The initial weight vector is usually chosen to be zero and is
adapted until convergence. In nonstationary environments, the weights are
generally adapted continually.

The choice of « controls stability and speed of convergence.3? For input
pattern vectors independent over time, stability is ensured for most practical
purposes if

0<a<?. @

Making a greater than 1 generally does not make sense, since the error would
be over corrected. Total error correction comes with a = 1. A practical range
for a is

- 0l<a<1.0. ®)

This algorithm is self-normalizing in the sense that the choice of a does not
depend on the magnitude of the input signals. The weight update is collinear
with the input pattern and of a magnitude inversely proportional to |X;[2. With
binary *1 inputs, |Xy|? is equal to the number of weights and does not vary from
pattern to pattern. If the binary inputs are the usual 1 and 0, no adaptation
occurs for weights with 0 inputs, while with +1 inputs, all weights are adapted
each cycle and convergence tends to be faster. For this reason, the symmetric
inputs +1 and —1 are generally preferred.

The o-LMS algorithm corrects error and if all input pattern vectors are of
equal length, it minimizes mean-square-error.3? The algorithm is best known for
this property.

B. Nonlinear Rules

The o-LMS algorithm is a linear rule which makes error corrections that
are proportional to the error. It is known?* that in some cases this linear rule
may fail to separate training patterns that are linearly separable. Where this
creates difficulties, nonlinear rules may be used. In the following paragraphs,
we describe early nonlinear rules which were devised by Rosenblatt>35 and
Mays.? These nonlinear rules also make weight vector changes collinear with
the input pattern vector (the direction which causes minimal disturbance),
changes which are based on the linear error but are not directly proportional
to it.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 469

Fixed Random
Inputs to

Weights .
Adaptive
\ X Element
o1 /

Analog-
Valued
Retina Output
Input Decision
Patterns > >y
{+1,-1}
Adaptive
d Threshold
Desired Response Element
{+1,-1}
Sparse Random Fixed Threshold
Connections Elements

Figure 9. Rosenblatt’s a-Perceptron.

1. The Perceptron Learning Rule

The Rosenblatt a-Perceptron,’#5 diagrammed in Figure 9, processed input
patterns with a first layer of sparse, randomly connected, fixed-logic devices.
The outputs of the fixed first layer fed a second layer which consisted of a single
adaptive linear threshold element. Other than the convention that its input
signals were {1,0} binary; and that no bias weight was included, this element is
equivalent to the Adaline element. The learning rule for the a-Perceptron is
very similar to LMS, but its behavior is in fact quite different.

It is interesting to note that Rosenblatt’s Perceptron learning rule was first
presented in 1960,% and Widrow and Hoff’s LMS rule was first presented the
same year, a few months later.5! These rules were developed independently in
1959.

The adaptive threshold element of the a-Perceptron is shown in Figure 10.
Adapting with the Perceptron rule makes use of the ‘‘quantizer error” T
defined to be the difference between the desired response and the output of the
quantizer

T2 di — Vi)]

The Perceptron rule, sometimes called the Perceptron Convergence Proce-
dure, does not adapt the weights if the output decision yy is correct, i.e., if =
0. If the output decision disagrees with the binary desired response di, how-
ever, adaptation is effected by adding the input vector to the weight vector
when the error & is positive, or subtracting the input vector from the weight
vector when the error £ is negative. Note that the quantizer error T ris always
equal to either +2, —2, or 0. Thus, half the product of the input vector and the
quantizer error 2 is added to the weight vector. The Perceptron rule is identi-
cal to the a-LMS algorithm, except that with the Perceptron rule, half of the

470 WIDROW AND LEHR

Input
Pattern
Vector | ittt |

{1,0}

i
+1 | Vi Binary
1 T Output

Threshold
Device

LLLL Quantizer
AW, Rosenblatt Error

-
—> X, Perceptron ——
- Rule =

d, +1-1
Desired Response Input
(training signal)

Figure 10. The adaptive threshold element of the Perceptron.

quantizer error, /2, is used in place of the normalized linear error &/|Xy[? of

~the a-LMS rule- The Perceptron rule is nonlinear-in-contrast to the LMS rule

which is linear (compare Figs. 2 and 10). Nonetheless, the Perceptron rule can
be written in a form which is very similar to the a-LMS rule of Eq. (2):

~

Wit =W + a 87" X;. (10)

Rosenblatt normally set « to one. In contrast to a-LMS, the choice of a
does not affect the stability of the Perceptron algorithm, and it affects conver-
gence time only if the initial weight vector is nonzero. Also, while a-LMS can
be used with either analog or binary desired responses, Rosenblatt’s rule can be
used only with binary desired responses.

The Perceptron rule stops adapting when the training patterns are cor-
rectly separated. There is no restraining force controlling the magnitude of the
weights, however. The direction of the weight vector, not its magnitude, deter-
mines the decision function. The Perceptron rule has been proven to be capable
of separating any linearly separable set of training patterns.>#848 If the train-
ing patterns are not linearly separable, the Perceptron algorithm goes on for-
ever, and often does not yield a low-error solution, even if one exists. In most
cases, if the training set is not separable, the weight vector tends to gravitate
toward zero* so that even if « is very small, each adaptation can dramatically
affect the switching function implemented by the Perceptron.

*This results because the length of the weight vector decreases with each adapta-
tion that does not cause the linear output s; to change sign and assume a magnitude
greater than that before adaptation. Although there are exceptions, for most problems

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 471

This behavior is very different from that of the a-LMS algorithm. Contin-
ued use of a-LMS does not lead to an unreasonable weight solution if the
pattern set is not linearly separable. Nor, however, is this algorithm guaranteed
to separate any linearly separable pattern set. a-LMS typically comes close to
achieving such separation, but its objective is different, i.e., error reduction at
the linear output of the adaptive element.

Rosenblatt also introduced variants of the fixed-increment rule that we
have discussed thus far. A popular one was the absolute-correction version of
the Perceptron rule.t This rule is identical to that stated in Eq. (10) except that
increment size « is chosen with each presentation to be the smallest integer
which corrects the output error in one presentation. If the training set is separa-
ble, this variant has all the characteristics of the fixed-increment version with «
set to 1, except that it usually reaches a solution in fewer presentations.

2. Mays’s Algorithms

In his Ph.D. thesis,3 C. H. Mays described an ‘‘increment adaptation™
rulet and a ‘‘modified relaxation adaptation’’ rule. The fixed-increment version
of the Perceptron rule is a special case of the increment adaptation rule.

Increment adaptation, in its general form, involves the use of a “‘dead
zone”’ for the linear output s equal to =7y about zero. All desired responses are
+1 (refer to Fig. 10). If the linear output s; falls outside the dead zone (|s¢| =),
adaptation follows a normalized variant of the fixed-increment Perceptron rule
(with a/|Xy? used in place of @). If the linear output falls within the dead zone,
whether or not the-output response y; is correct, the weights are adapted by the
normalized variant of the Perceptron rule as though the output response y, had
been incorrect. The weight update rule for Mays’s increment adaptation algo-
rithm can be written mathematically as

~ Xk .
Wk+a8k2_|X_kF if [se] =y
© Wit =) (11)
X .
W, + ad, ——|ka|2 if !sk| <vy

where 7 is the quantizer error of Eq. (9).

With the dead zone y = 0, Mays’s increment adaptation reduces to a
normalized version of the Perceptron rule (10). Mays proved that if the training
patterns are linearly separable, increment adaptation will always converge and
separate the patterns in a finite number of steps. He also showed that use of the

this situation occurs only rarely if the weight vector is much longer than the weight
increment vector.

tThe terms fixed-increment and absolute correction are due to Nilsson.*® Ro-
senblatt referred to methods of these types, respectively, as quantized and nonquan-
tized learning rules.

£The increment adaptation rule was proposed by others before Mays, though from
a different perspective.®

472 WIDROW AND LEHR

dead zone reduces sensitivity to weight errors. If the training set is not linearly
separable, Mays’s increment adaptation rule typically performs much better
than the Perceptron rule because a sufficiently large dead zone tends to cause
the weight vector to adapt away from zero when any reasonably good solution
exists. In such cases, the weight vector may sometimes appear to meander
rather aimlessly, but it will typically remain in a region associated with rela-
tively low average error.

The increment adaptation rule changes the weights with increments that
generally are not proportional to the linear error, &. The other Mays rule,
modified relaxation, is closer to a-LMS in its use of the linear error & (refer to
Fig. 2). The desired response and the quantizer output levels are binary 1. If
the quantizer output y; is wrong or if the linear output s, falls within the dead
zone *vy, adaptation follows a-LMS to reduce the linear error. If the quantizer

‘output y; is correct and the linear output s falls outside the dead zone, the

weights are not adapted. The weight update rule for this algorithm can be
written as

Wi if 7, =0and |s;] =y
Wi = ’ (12

X .
W, + as]—X—kkl—2 otherwise

where, & is the quantizer error of Eq. (9).

" If the dead zone 7y is set to o, this algorithm reduces to the a-LMS
algorithm (2). Mays showed that, for dead zone 0 <y < 1, and learning rate
0 < a < 2, this algorithm will converge and separate any linearly separable
input set in a finite number of steps. If the training set is not linearly separable,
this algorithm performs much like Mays’s increment adaptation rule.

Mays’s two algorithms achieve similar pattern separation results. The
choice of a does not affect stability, although it does affect convergence time.
The two rules differ in their convergence properties but there is no consensus
on which is the better algorithm. Algorithms like these can be quite useful, and
we feel that there are many more to be invented and analyzed.

The o-LLMS algorithm, the Perceptron procedure, and Mays’s algorithms
can all be used for adapting the single Adaline element or they can be incorpo-
rated into procedures for adapting networks of such elements. Multi-layer net-
work adaption procedures which use some of these algorithms will be dis-
cussed below.

IV. ERROR CORRECTION RULES—MULTI-ELEMENT NETWORKS

The algorithms discussed next are the Widrow—Hoff Madaline rule from
the early 1960s, now called Madaline Rule I (MRI), and Madaline Rule II,
(MRII) developed by Widrow and Winter in 1987.

A. Madaline Rule I

The MRI rule allows the adaptation of a first layer of hard-limited (signum)
Adaline elements whose outputs provide inputs to a second layer, consisting of

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 473

Adalines
Input 4/{'1)1}
Pattern N
Vector W
=
X ; L1y Output
2 Decision
7 (AD) ’
Linear
Outputs
<~ ofthe
| Adalines
Training Job
Command N
Signals Assigner
Desired
Response
da {11

Figure 11. A five-Adaline example of the Madaline I architecture.

a single fixed threshold logic element which may be, for example, the OR gate,
AND gate, or Majority Vote Taker discussed previously. The weights of the
Adalines are initially set to small random values.

Figure 11 shows a Madaline I architecture with five fully connected first-
layer Adalines. The second layer is a Majority element (MAJ). Because the
second-layer logic element is fixed and known, it is possible to determine which
first-layer Adalines can be adapted to correct an output error. The Adalines in
the first layer assist each other in solving problemsb_yiiutomiti'c' load-sharing.

One procedure for training the network in Fig. 11 follows. A pattern is
presented, and if the output response of the Majority element matches the
desired response, no adaptation takes place. However, if, for instance, the
desired response is +1 and three of the five Adalines read —1 for a given input
pattern, one of the latter three must be adapted to the +1 state. The element
that is adapted by MRI is the one whose linear output sy is closest to zero—i.e.,
the one whose analog response is closest to the desired response. If more of the
Adalines were originally in the —1 state, enough of them are adapted to the +1
state to make the majority decision equal +1. The elements adapted are those
whose linear outputs are closest to zero. A similar procedure is followed when
the desired response is —1. When adapting a given element, the weight vector
can be moved in the LMS direction far enough to reverse the Adaline’s output
(absolute correction or “‘fast’’ learning), or it can be adapted by the small
increment determined by the «-LMS algorithm (statistical or “slow’’ learning).
The one desired response, di, is used for all Adalines that are adapted. The
procedure can also be modified to allow one of Mays’s rules to be used. In that
event, for the case we have considered (Majority output element), adaptations
take place if at least half of the Adalines either have outputs which differ from
the desired response or have analog outputs which are in the dead zone. By
setting the dead zone of Mays’s increment adaptation rule to zero, the weights
can also be adapted by Rosenblatt’s Perceptron rule.

474 WIDROW AND LEHR

Differences in initial conditions and the results of subsequent adaptation
cause the various elements to take ‘‘responsibility’’ for certain parts of the
training problem. The basic principle of load sharing is summarized thus: As-
sign responsibility to the Adaline or Adalines that can most easily assume it.

In Figure 11, the ‘‘job assigner,”” a purely mechanized process, assigns
responsibility during training by transferring the appropriate adapt commands
and desired response signals to the selected Adalines. The job assigner utilizes
linear-output information. Load sharing is important, since it results in the
various adaptive elements developing individual weight vectors. If all the
weight vectors were the same, there would be no point in having more than one
element in the first layer.

When training the Madaline, the pattern presentation sequence should be
random. Experimenting with this, Ridgway” found that cyclic presentation of
the patterns could lead to cycles of adaptation. These cycles would cause the
weights of the entire Madaline to cycle, preventing convergence.

The MRI rule obeys the ‘‘minimal disturbance principle’’ in the following
sense. No more Adaline elements are adapted than necessary to correct the
output decision and any dead-zone constraint. The elements whose linear out-
puts are nearest to zero are adapted because they require the smallest weight
changes to reverse their output responses. Furthermore, whenever an Adaline
is adapted, the weights are changed in the direction of its input vector, provid-
ing the requisite error correction with minimal weight change.

B. Madaline Rule 1II

The MRI rule was recently extended to allow the adaptation of multi-layer
binary networks by Winter and Widrow with the introduction of Madaline Rule
II (MRII).*#7:8 A typical two-layer MRII network is shown in Figure 12. The
weights in both layers are adaptive.

Input
Pattern Perturbation
As

V)e(ctor) Output

Desired Responses
{+1,-1}

Figure 12. Typical two-layer Madaline II architecture.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 475

Training with the MRII rule is similar to training with the MRI algorithm.
The weights are initially set to small random values. Training patterns are
presented in a random sequence. If the network produces an error during a
training presentation, we begin by adapting first-layer Adalines. By the “‘mini-
mal disturbance principle,”” we select the first-layer Adaline with the smallest
linear output magnitude and perform a ‘trial adaptation’’ by inverting its binary
output. This can be done without adaptation by adding a perturbation As of
suitable amplitude and polarity to the Adaline’s sum (refer to Fig. 12). If the
output Hamming error is reduced by this bit inversion, i.e., if the number of
output errors is reduced, the perturbation As is removed and the weights of the
selected Adaline element are changed by o-LMS in a direction collinear with
the corresponding input vector—the direction which reinforces the bit reversal
with minimal disturbance to the weights. Conversely, if the trial adaptation
does not improve the network response, no weight adaptation is performed.

After finishing with the first element, we perturb and update other Adalines
in the first layer which have ‘‘sufficiently small’’ linear-output magnitudes.
Further error reductions can be achieved, if desired, by reversing pairs, triples,
etc., up to some predetermined limit. After exhausting possibilities with the
first layer, we move on to the next layer and proceed in a like manner. When
the final layer is reached, each of the output elements is adapted by a-LMS. At
this point, a new training pattern is selected at random and the procedure is
repeated. The goal is to reduce Hamming error with each presentation, thereby
hopefully minimizing the average Hamming error over the training set. Like
MRI, the procedure can be modified so that adaptations follow an absolute
correction rule or-one of Mays’s rules rather than a-I.MS. Like MRI, MRII can
“‘hang-up’’ on local optima.

V. STEEPEST-DESCENT RULES—SINGLE THRESHOLD ELEMENT

Thus far, we have described a variety of adaptation rules that act to reduce
a given proportion of the error with the presentation of each training pattern.
Often, the objective of adaptation is to reduce error averaged in some way over
the training set. The most common error function is mean-square-error (MSE),
although in some situations other error criteria may be more appropriate.3-!
The most popular approaches to mean-square-error reduction in both single-
element and multi-element networks are based upon the method of steepest
descent. More sophisticated gradient approaches such as quasi-Newton3292-%4
and conjugate gradient®*® techniques often have better convergence proper-
ties, but the conditions under which the additional complexity is warranted are
not generally known. The discussion that follows is restricted to minimization
of MSE by the method of steepest descent.”?” More sophisticated learning
procedures usually require many of the same computations used in the basic
steepest-descent procedure.

Adaptation of a network by steepest-descent starts with an arbitrary initial
value W, for the system’s weight vector. The gradient of the mean-square-error
function is measured and the weight vector is altered in the direction corre-

476 WIDROW AND LEHR

sponding to the negative of the measured gradient. This procedure is repeated,
causing the MSE to be successively reduced on average and causing the weight
vector to approach a locally optimal value.

The method of steepest descent can be described by the relation

Wiir = Wi + w(=V)), (13)

where u is a parameter that controls stability and rate of convergence, and V, is
the value of the gradient at a point on the MSE surface corresponding to W =
W,

To begin, we derive rules for steepest-descent minimization of the MSE
associated with a single Adaline element. These rules are then generalized to
apply to full-blown neural networks. Like error correction rules, the most
practical and efficient steepest-descent rules typically work with one pattern at
a time. They minimize mean-square-error, approximately, averaged over the
entire set of training patterns.

A. Linear Rules

Steepest-descent rules for the single threshold element are said to be linear
if weight changes are proportional to the linear error, the difference between
the desired response d; and the linear output of the element, s;.

1. Mean-Square-Error Surface of the Linear Combiner

In this section we demonstrate that the MSE surface of the linear combiner
of Figure 1 is a quadratic function of the weights, and is thus easily traversed by
gradient descent.

Let the input pattern X, and the associated desired response d be drawn
from a statistically stationary population. During adaptation, the weight vector
varies so that even with stationary inputs, the output s; and error g; will gener-
ally be nonstationary. Care must be taken in defining the mean-square-error
since it is time-varying. The only possibility is an ensemble average, defined
below.

At the kth iteration, let the weight vector be W,. Squaring and expanding
Eq. (3) yields

g7 = (dy — XTW,)? (14)
= d} — 2d, XiW, + WIX, X]W,. 15)

Now assume an ensemble of identical adaptive linear combiners, each having
the same weight vector W, at the kth iteration. Let each combiner have individ-
ual inputs X, and d, derived from stationary ergodic ensembles. Each combiner
will produce an individual error ¢, represented by Eq. (15). Averaging Eq. (15)
over the ensemble yields

Eleflw-w, = E[di] — 2E[dX]] W, + WIE[X;X]]W,. (16)

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 471

(L
l,'l[
0
i
ooyl
i
A i
gttt
(/!

Figure 13. Typical mean-square-error surface of a linear combiner.

Defining the vector P as the cross correlation between the desired response (a
scalar) and the X-vector* then yields

PT £ E[dX]] = Eldi, dixu, - - - dexue]”- (17
The input correlation matrix R is defined in terms of the ensemble average

,,A__R‘é E[kal{] S

1 X1k - - - Xnk
X XX - - - XkXnk

=E| (18)
Xuk XnkXtk - -« XnkXnk

This matrix is real, symmetric, and positive definite, or in rare cases, positive
semi-definite. The mean-square-error &, can thus be expressed as

gk 4 E[S%]W=Wk
= E[d}] — 2PTW, + W{RW,. (19)

Note that the mean-square-error is a quadratic function of the weights. It is a
convex hyperparaboloidal surface, a function that never goes negative. Figure
13 shows a typical mean-square-error surface for a linear combiner with two
weights. The position of a point on the grid in this figure represents the value of
the Adaline’s two weights. The height of the surface at each point represents
the mean-square-error over the training set when the Adaline’s weights are

*We assume here that X includes a bias component xo¢ = +1.

478 WIDROW AND LEHR

fixed at the values associated with the grid point. Adjusting the weights in-
volves descending along this surface toward the unique minimum point (‘‘the
bottom of the bowl’’) by the method of steepest descent.

The gradient V, of the mean-square-error function with W = W, is obtained
by differentiating Eq. (19):
(0E[=}])
aw0k

v,2< D) = —2P + 2RW,. (20)

oE[e?] |
\ W) w=w,

This is a linear function of the weights. The optimal weight vector W*, gener-
ally called the Wiener weight vector, is obtained from Eq. (20) by setting the
gradient to zero:

W#* = R7'P. 21

This is a matrix form of the Wiener—Hopf equation.®®'% In the next section we
examine u-LMS, an algorithm which enables us to obtain an accurate estimate
of W* without first computing R™! and P.

= 2. The u-LMS Algorithm —

The w-LMS algorithm works by performing approximate steepest descent
on the mean-square-error surface in weight space. Because it is a quadratic
function of the weights, this surface is convex and has a unique (global) mini-
mum.* An instantaneous gradient based upon the square of the instantaneous
linear error is

(88%)
IWoy
68% .
==k 0Ty
Y= 5w : 22)
&t
\ Bw,,k)

LMS works by using this crude gradient estimate in place of the true gradient
Vi of Eq. (20). Making this replacement into Eq. (13) yields

68%

Wisi = Wi + u(=V) = W, — u W, (23)
The instantaneous gradient is used because it is readily available from a single

data sample. The true gradient is generally difficult to obtain. Computing it

*Unless the autocorrelation matrix of the pattern vector set has m zero eigen-
values, in which case the minimum MSE solution will be an m dimensional subspace in
weight space.3?

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 479

would involve averaging the instantancous gradients associated with all pat-
terns in the training set. This is usually impractical and almost always ineffi-
cient.

Performing the differentiation in Eq. (23) and replacing the linear error by
definition (3) gives

de
Wi = Wi — 2ue; 5—“’,;
(24)
W — 20, 2 = WX
k MEK W, .
Noting that di and X are independent of Wy, yields
Wit = Wi + 2ueX. (25)

This is the u-LMS algorithm. The learning constant p determines stability and
convergence rate. For input patterns independent over time, convergence of
the mean and variance of the weight vector is ensured,3 for most practical
purposes if

0<pu< (26)

1
trace[R]’
where trace[R] = 2(diagonal element of R) is the average signal power of the
X-vectors, i.e., E(XTX). With u set within this range,* the u-LMS algorithm

converges in the mean to W*, the optimal Wiener solution discussed above. A
proof of this can-be found in Ref. 32. _

In the u-LMS algorithm, use of the instantaneous gradients is perfectly
justified if the step size is small. For small ., W will remain essentially constant
over a relatively small number of training presentations, K. The total weight
change during this period will be proportional to

) 1 K-1
- - 507 2) @n
g%
= ~Kw

where ¢ denotes the mean-square-error function. Thus, on average the weights
follow the true gradient. It is shown in Ref. 32 that the instantaneous gradient is
an unbiased estimate of the true gradient.

*Horowitz and Senne!®! have proven that Equation (26) is not sufficient in general
to ensure convergence of the weight vector’s variance. For input patterns generated by
a zero-mean Gaussian process independent over time, instability can occur in the worst
case if w is greater than 1/@3 trace [R]).

480 WIDROW AND LEHR

3. Comparison of u-LMS and a-LMS

We have now presented two forms of the LMS algorithm, u-LMS (25)
above, and a-LMS (2) in Section III-A. They are very similar algorithms, both
using the LMS instantaneous gradient. a-LMS is self-normalizing, with the
parameter « determining the fraction of the instantaneous error to be corrected
with each adaptation. u-LMS is a constant-coefficient linear algorithm which is
considerably easier to analyze than a-LMS. Comparing the two, the a-LMS
algorithm is like the u-LMS algorithm with a continually variable learning
constant. Although a-LMS is somewhat more difficult to implement and ana-
lyze, it has been demonstrated experimentally to be a better algorithm than u-
LMS when the eigenvalues of the input autocorrelation matrix, R, are highly
disparate, giving faster convergence for a given level of gradient noise* propa-
gated into the weights. It will be shown next that u-LMS has the advantage that
it will always converge in the mean to the minimum mean-square-error solu-
tion, while o-LMS may converge to a somewhat biased solution.

We began with a-LMS of Eq. (2):

£, Xk

Wi = Wi + a X (28)
Replacing the error with its definition (3) and rearranging terms yields
d, — WIXpX
W= Wit a (di |X Tz, X 29)
K
=Wk+a<i— I{&)& (30)
X IXl/ Xl

We define a new training set of pattern vectors and desired responses, {Xy, di},
by normalizing elements of the original training set as follows,t

- 4 X
X"él—ﬁfl @31
5 4
X

Eq. (30) then becomes
Wi = Wi + a(d — WE XpX.. (32)

This is the u-LMS rule of Eq. (25) with 2u replaced by «a. The weight
adaptations chosen by the a-LMS rule are equivalent to those of the u-LMS
algorithm presented with a different training set—the normalized training set
defined by (31). The solution that will be reached by the u-LMS algorithm is the
Wiener solution of this training set,

*Gradient noise is the difference between the gradient estimate and the true gradi-
ent.
tThe idea of a normalized training set was suggested by Derrick Nguyen.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 481

W* = (R)"! P, (33)
where

R = E[X,X]] (34
is the input correlation matrix of the normalized training set and the vector

P = E[d,X)] 35

is the cross correlation between the normalized input and the normalized de-
sired response. Therefore a-LMS converges in the mean to the Wiener solution
of the normalized training set. When the input vectors are binary with *+1
components, all input vectors have the same magnitude and the two algorithms
are equivalent. For nonbinary training patterns, however, the Wiener solution
of the normalized training set generally is no longer equal to that of the original
problem, so a-LMS converges in the mean to-a somewhat biased version of the
optimal least squares solution.

The idea of a normalized training set can also be used to relate the stable
ranges for the learning constants « and w in the two algorithms. The stable
range for « in the a-LMS algorithm given in Eq. (7) can be computed from the
corresponding range for u given in Eq. (26) by replacing R and w in Eq. (26) by
R and a/2, respectively, and then noting that trace[R] is equal to one:

2
I<a<————, or
trace[R] (36)

_0<a<2.

B. Nonlinear Rules

The Adaline elements considered thus far use at their outputs either hard-
limiting quantizers (signums), or no nonlinearity at all. The input—output map-
ping of the hard-limiting quantizer is y; = sgn(s,). Other forms of nonlinearity
have come into use in the past two decades, primarily of the sigmoid type.
These nonlinearities provide saturation for decision making, yet they have
differentiable input—output characteristics that facilitate adaptivity. We gener-
alize the definition of the Adaline element to include the possible use of a
sigmoid in place of the signum, and then determine suitable adaptation algo-
rithms. .

Figure 14 shows a ‘‘Sigmoid Adaline”” element which incorporates a sig-
moidal nonlinearity. The input—output relation of the sigmoid can be denoted
by yx = sgm(s;). A typical sigmoid function is the hyperbolic tangent:

— 28
yr = tanh(sy) = (1 ¢ >

1T e @7

We shall adapt this Adaline with the objective of minimizing the mean
square of the sigmoid error &, defined as

& = dy — yi = dy — sgm(sy). (38)

482 WIDROW AND LEHR

Input Pattern
Vector Weight Vector

X, W

X 1 Output
> . .
x v >
% — Sigmoid
sigmoid | Qutput

&
Linear
Error

Desired Response

Figure 14. Adaline with sigmoidal nonlinearity.

1. Backpropagation for the Sigmoid Adaline

Our objective is to minimize E[(§)*], averaged over the set of training
patterns, by praper choice of the weight vector. To accomplish this, we shall
derive a backpropagation algorithm for the Sigmoid Adaline element. An in-
stantaneous gradient is obtained with each input vector presentation, and the
method of steepest descent is used to minimize error as was done with the u-
LMS algorithm of Eq. (25).

Referring to Figure 14, the instantaneous gradient estimate obtained during
presentation of the kth input vector X is given by

o _ &) _ . 0&
Vk = awk = 28k awk. (39)
Differentiating Eq. (38) yields
08, _ osgm(sy) _ ., OSk
W, T T oW, S Gy, (“40)
We may note that
Sk = ngk. (41)
Therefore,
o5 _
W, X;. 42)
Substituting into Eq. (40) gives
95
S = —sem' (50X 43)

W,

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 483

Inserting this into Eq. (39) yields

Vi = —2&sgm’ (50X (44)

Using this gradient estimate with the method of steepest descent provides

a means for minimizing the mean-square-error even after the summed signal s,
goes through the nonlinear sigmoid. The algorithm is

Wi = Wi + u(=Vy) 43)
= W, + 2uéisgm’ (50X 46)

Algorithm (46) is the backpropagation algorithm for the Sigmoid Adaline
element. The backpropagation name makes more sense when the algorithm is
utilized in a layered network, which will be studied below. Implementation of
algorithm (46) is illustrated in Figure 15.

If the sigmoid is chosen to be the hyperbolic tangent function (37), then the
derivative sgm’(sy) is given by

sgm’(sp) = 9—(9%;—1&@ =1 — (tanh(sp)* = 1 — yi. 47)
k
Accordingly Eq. (46) becomes
Weer = Wi + 2uéi(l = yDXu. (48)

2. Madaline Rule III for the Sigmoid Adaline

The implementation-of algorithm (46), illustrated in Figure-15, requires -

accurate realization of the sigmoid function and its derivative function. These
functions may not be realized accurately when implemented with analog hard-
ware. Indeed, in an analog network, each Adaline will have its own individual

Input Pattern Weight Vector

Vector W
k
X,
+] &=
X1k s
k > f yk
X ok i Sigmoid
sgm Output
A'\ sgm'
Xk sgm'(s,)
AW,
] * Lms
-1 %k Algorithm

Desired
k Response

2ué, sgm'(s,) d

Figure 15. Implementation of backpropagation for the Sigmoid Adaline element.

484 WIDROW AND LEHR

Input Pattern Weight Vector
Vector

X W,
k Wox Perturbation
+1® 8s
X1k
% Yk
x,® Sigmoi
igmoid
sgm Output
X nk
o AGY
> Awk As Memory,
L] LMS 4-(.)4— i i
X 1 Differencing
— k Algorithm and Scaling’

Desired
d, Response

Figure 16. Implementation of the MRIII algorithm for the sigmoid Adaline element.

nonlinearities. Difficulties in adaptation have been encountered in practice with
the backpropagation algorithm because of imperfections in the nonlinear func-
tions.

To circumvent these problems, a new algorithm has been devised by David
Andes for adapting networks of Sigmoid Adalines. This is the Madaline Rule III
(MRIII) algorithm.

The idea of MRIII for a Sigmoid Adaline is illustrated in Figure 16. The
derivative of the sigmoid function is not used here. Instead, a small perturba-
tion signal As is added to the sum s;, and the effect of this perturbation upon
output y; and error & is noted.

An instantaneous estimated gradient can be obtained as follows:

_0(8? _ 9(EW)? dsk (&)
vk_ oW, B asy oWy - aSy X (49)
Since As is small,
3 ALY
vk-(f;‘)) Xy. (50)

Another way to obtain an approximate instantaneous gradient by measur-
ing the effects of the perturbation As can be obtained from Eq. (49).
_UES e o kg (ﬂ)
Vi = o, Xk = 2650 Xe =28 (57) X (51)
Accordingly, there are two forms of the MRIII algorithm for the Sigmoid Ada-
line. They are based on the method of steepest descent, using the estimated
instantaneous gradients:

=)2
Weer = W, — u (28) x, (52

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 485

or,

5,)2
Wer = W, - 2us, (280) x,. (53)

For small perturbations, these two forms are essentially identical. Neither
one requires a priori knowledge of the sigmoid’s derivative, and both are robust
with respect to natural variations, biases, and drift in the analog hardware.
Which form to use is a matter of implementational convenience. The algorithm
of Eq. (52) is illustrated in Figure 16.

Regarding algorithm (53), some changes can be made to establish a point of
interest. Note that, in accord with Eq. (38),

& = dy — Wi (54)
Adding the perturbation As causes a change in g; equal to
A&, = —Ay;. (55)
Now, Eq. (53) may be rewritten as
. (A
Wier = Wi + 2ué (Xysf) X;. (56)

Since As is small, the ratio of increments may be replaced by a ratio of differen-
tials finally giving

0
Wiet = Wy + 2ué, ;.,—ys—: X, (57)

= W, + 2uésgm’(sp)X;. (58)

This is identical to the backpropagation algorithm (46) for the Sigmoid
Adaline. Thus, backpropagation and MRIII are mathematically equivalent if
the perturbation As is small, but MRIII is robust, even with analog implementa-
tions.

VI. STEEPEST-DESCENT RULES—MULTI-ELEMENT NETWORKS

We now study rules for steepest-descent minimization of the MSE associ-
ated with entire networks of Sigmoid Adaline elements. Like their single-
element counterparts, the most practical and efficient steepest-descent rules for
multi-element networks typically work with one pattern presentation at a time.
We will describe two steepest-descent rules for multi-element sigmoid net-
works: backpropagation and Madaline Rule III.

A. Backpropagation for Networks

The publication of the backpropagation technique by Rumelhart et al.* has
unquestionably been the most influential development in the field of neural
networks during the past decade. In retrospect, the technique seems simple.
Nonetheless, largely because early neural network research dealt almost exclu-

486 WIDROW AND LEHR

sively with hard-limiting nonlinearities, the idea never occurred to neural net-
work researchers throughout the 1960s.

The basic concepts of backpropagation are easily grasped. Unfortunately,
these simple ideas are often obscured by relatively intricate notation, so formal
derivations of the backpropagation rule are often tedious. We instead present a
brief outline of the algorithm and illustrate how it works for the simple network
shown in Figure 17.

The backpropagation technique is a nontrivial generalization of the single
Sigmoid Adaline case of Section V-B. When applied to multi-element net-
works, the backpropagation technique adjusts the weights in the direction op-
posite the instantaneous error gradient:

(ae%)
Wik
2 aai .
Vk——awk—4 : . (59)
68%
\ Wi)

Now, however, W, is a long n-component vector of all weights in the entire
network. The instantaneous sum squared error &} is the sum of the squares of
the errors at each of the network’s outputs. Thus for a network with an N-
component-eutput vector, e e S

m
N
I
M=

k. (60)

i=1
In the network example shown in Figure 17, the sum square error is given by
g2 = (dy — y)* + (& —)%, (61)

where we now suppress the time index k for convenience.

In its simplest form, backpropagation training begins by presenting an
input pattern vector X to the network, sweeping forward through the system to
generate an output response vector Y, and computing the errors at each output.
The next step involves sweeping the effects of the errors backward through the
network to associate a ‘‘square error derivative’’ 8 with each Adaline, comput-
ing a gradient from each §, and finally updating the weights of each Adaline
based upon the corresponding gradient. A new pattern is then presented and
the process is repeated. The initial weight values are normally set to small
random numbers. The algorithm will not work properly with multilayer net-
works if the initial weights are either zero or poorly chosen nonzero values.*

*Recently, Nguyen has discovered that a more sophisticated choice of initial
weight values in hidden layers can lead to reduced problems with local optima and
dramatic increases in network training speed.!? Experimental evidence suggests that it
is advisable to choose the initial weights of each hidden layer in a quasi-random manner
which ensures that at each position in a layer’s input space the outputs of all but a few of
its Adalines will be saturated, while ensuring that each Adaline in the layer is unsatu-
rated in some region of its input space. When this method is used, the weights in the
output layer are set to small random values.

“21M99)1YdIe YIomidu uoneSedordyorq Joke[-om) Jo ojdwexy LY amSiy

487

I
sasuodsay
palisaq

o-.......-.-..-aN

ssssssussnanssssessnane @T

veeeesesscsssssesscennacsacenn
~
L
€a
”
))
(2l
B

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS

| @€z v _ J.wxlx
£
¢ \ Ty =t
©
+
: X
o L 101297
@ wnNed
ndu
) X jnauy
” ; 10303
, asuodsay

mdinQ

488 : WIDROW AND LEHR

Xy Algorithm| ™™

Figure 18. Detail of linear combiner and associated circuitry in backpropagation net-
work.

Furthermore, the order in which training patterns are presented can affect
stability of the algorithm. It’s usually safest to present patterns in random
order, if possible.
_ _We can get some idea about what is involved in the calculations associated
with the backpropagation algorithm by examining the network of Figure 17.
Each of the five large circles represents a linear combiner, as well as some
associated signal paths for error backpropagation, and the corresponding adap-
tive machinery for updating the weights. This detail is shown in Figure 18. The
solid lines in these diagrams represent forward signal paths through the net-
work, and the dotted lines represent the separate backward paths that are used
in association with calculations of the square error derivatives 8. From Figure
17, we see that the calculations associated with the backward sweep are of a
complexity which is roughly equal to that represented by the forward pass
through the network. The backward sweep requires the same number of func-
tion calculations as the forward sweep, but fewer weight multiplications.

As stated above, after a pattern has been presented to the network, and the
response error of each output has been calculated, the next step of the
backpropagation algorithm involves finding the instantaneous square error de-
rivative & associated with each summing junction in the network. The square
error derivative associated with the jth Adaline in layer [is defined as*

wa _ 108
8¢ 2 350 (62)

*In Figure 17, all notation follows the convention that superscripts within parenthe-
ses indicate the layer number of the associated Adaline or input node, while subscripts
identify the associated Adaline(s) within a layer.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 489

Each of these derivatives in essence tells us how sensitive the sum square
output error of the network is to changes in the linear output of the associated
Adaline element.

The derivation of & for hidden layer elements is not difficult and can be
found in many publications.*-1% For our purposes, however, the easiest way to
find values of & for these units is to follow the schematic diagram of Figure 17.
For instance, we find from this picture that 6?), the value 8 corresponding to the
first Adaline in the second layer is given simply by

8% = (di — sgm(s{)sgm’(s?). (63)

Likewise, the procedure for finding 8@, the square error derivative associ-
ated with a given Adaline in hidden layer /, involves respectively multiplying
each derivative 8§D associated with each element in the layer immediately
downstream from a given Adaline by the weight which connects it to the given
Adaline. These weighted square error derivatives are then added together,
producing an error term &®, which, in turn, is multiplied by sgm'(s®), the
derivative of the given Adaline’s sigmoid function at its current operating point.
If a network has more than two layers, this process of backpropagating the
instantaneous square error derivatives from one layer to the immediately pre-
ceding layer is successively repeated until a square error derivative § is com-
puted for each Adaline in the network.

We now have a general method for finding a derivative & for each Adaline
element in the network. The next step is to use these 8’s to obtain the corre-
sponding gradients. Consider an Adaline somewhere in the network which,
during presentation k, has a weight vector Wy, an input vector X;, and a linear

output s, = W/{Xk.
The instantaneous gradient for this Adaline element is

68/2(

Vi = W, (64)
This can be written as
o _ 08} _ dci 95y
k= aWk - ask aWk' (65)
Note that W, and X are independent so
ask _ aW]{Xk _
aWk - aWk B Xk' (66)
Therefore,
Vi = 35 Xy. 67)
For this element,
_ 1oe;
& = 2 95, (68)

490 WIDROW AND LEHR

Accordingly,

Vi = —28:X,. (69)
Updating the weights of the Adaline element using the method of steepest
descent with the instantaneous gradient is a process represented by

Wirr = Wi + w(=V) = W, + 2u8.X,. (70)

Thus, after backpropagating all square error derivatives, we complete a back-
propagation iteration by adding to each weight vector the corresponding input
vector scaled by the associated square error derivative. Equation (70) and the
means for finding 8, comprise the general weight update rule of the backpropa-
gation algorithm.

There is a great similarity between Eq. (70) and the u-LMS algorithm (25),
but one should view this similarity with caution. The quantity §,, defined as a
squared error derivative, might appear to play the same role in backpropaga-
tion as that played by the error in the u-LMS algorithm. However, §; is not an
error. Adaptation of the given Adaline is effected to reduce the squared output
error &2, not ; of the given Adaline or of any other Adaline in the network. The
objective is not to reduce the §,’s of the network, but to reduce &} at the
network output.

It is interesting to examine the weight updates that backpropagation im-
poses on the Adaline elements in the output layer. Substituting Eq. (63) into
" Eq.~(70) reveals that the Adaline which provides output y; in Figure 17 is
updated by the rule

Wiir = Wi + 2uePsgm’ (s9)X,. (71)

This rule turns out to be identical to the single Adaline version (46) of the
backpropagation rule. This is not surprising since the output Adaline is pro-
vided with both input signals and desired responses, so its training circum-
stance is the same as that experienced by an Adaline trained in isolation.

There are many variants of the backpropagation algorithm. Sometimes,
the size of u is reduced during training to diminish the effects of gradient noise
in the weights. Another extension is the momentum technique® which involves
including in the weight change vector AW, of each Adaline a term proportional
to the corresponding weight change from the previous iteration. That is, Eq.
(70) is replaced by a pair of equations:

AW, = 2u(l — m)8; Xy + nAW,_, (72)
Wi = Wi + AW, (73)

where the momentum constant 0 < 7 < 1 s in practice usually set to something
around 0.8 or 0.9.

The momentum technique low-pass filters the weight updates and thereby
tends to resist erratic weight changes due either to gradient noise or to high
spatial frequencies in the mean-square-error surface. The factor (1 — m)in Eq.
(72) is included to give the filter a DC gain of unity so that the learning rate u

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 491

does not need to be stepped down as the momentum constant 7 is increased. A
momentum term can also be added to the update equations of other algorithms
discussed in this article. A detailed analysis of stability issues associated with
momentum updating for the u-LMS algorithm, for instance, has been described
by Shynk and Roy.!%

In our experience, the momentum technique used alone is usually of little
value. We have found, however, that is is often useful to apply the technique in
situations that require relatively ‘‘clean’* gradient estimates. One case is a
normalized weight update equation which makes the network’s weight vector
move the same Euclidean distance with each iteration. This can be accom-
plished by replacing Egs. (72) and (73) with

Ar = 8 Xy + nAi-y (74)
A
Wi = Wy + ——E— (75)
Vo2 AP
all Adalines

where again 0 < n < 1. The weight updates determined by Egs. (74) and (75)
can help a network find a solution when a relatively flat local region in the
mean-square-error surface is encountered. The weights move by the same
amount whether the surface is flat or inclined. It is reminiscent of a-LMS
because the gradient term in the weight update equation is normalized by a
time-varying factor. The weight update rule could be further modified by in-
cluding terms from both techniques associated with Egs. (72) through (75).
Other methods for speeding up backpropagation training include Fahlman’s
popular quickprop method,!® as well as the delta-bar-delta approach reported
in an excellent article by Jacobs.1%:t

One of the most promising new areas of neural network research involves
backpropagation variants for training various recurrent (signal feedback) net-
works. Recently, backpropagation rules have been devised for training recur-
rent networks to learn static associations.!9”-1% More interesting is the on-line
technique of Williams and Zipser'® which allows a wide class of recurrent
networks to learn dynamic associations and trajectories. A more general and
computationally viable variant of this technique has been advanced by Naren-
dra and Parthasarathy.®® These on-line methods are generalizations of a well-
known steepest-descent algorithm for training linear IIR filters.*>110

*Clean’’ gradient estimates are those with little gradient noise.

tJacobs’s article, like many other articles in the literature, assumes for analysis
that the true gradients rather than instantaneous gradients are used to update the
weights, i.e., that weights are changed periodically, only after all training patterns are
presented. This eliminates gradient noise but can slow down training enormously if the
training set is large. The delta-bar-delta procedure in Jacobs’s article involves monitor-
ing changes of the true gradients in response to weight changes. It should be possible to
avoid the expense of computing the true gradients explicitly in this case by instead
monitoring changes in the outputs of, say, two momentum filters with different time
constants.

492 WIDROW AND LEHR

initial state

final state

Figure 19. Example truck backup sequence.

An equivalent technique which is usually far less computationally inten-
sive, but best suited for off-line computation also exists.3%#111 This approach,
called ‘‘backpropagation through time,”” has been used by Nguyen and Wi-
drow™? to enable a neural network to learn without a teacher how to back up a
computer-simulated trailer truck to a loading dock (Fig. 19). This is a highly
nonlinear steering task and it is not yet known how to design a controller to
perform it. Nevertheless, with just 6 inputs providing information about the
current position of the truck, a two-layer neural network with only 26 Adalines
was able to learn of its own accord to solve this problem. Once trained, the
network could successfully back up the truck from any initial position and
orientation in front of the loading dock.

" B. Madaline Rule III for Networks

It is difficult to build neural networks with analog hardware which can be
trained effectively by the popular backpropagation technique. Attempts to
overcome this difficulty have led to the development of the MRIII algorithm. A
commercial analog neurocomputing chip based primarily on this algorithm has

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 493

already been devised.!”? The method described in this section is a generaliza-
tion of the single Adaline MRIII technique (52). The multi-element generali-
zation of the other single element MRIII rule (53) is described in Ref. 113.

The MRIII algorithm can be readily described by referring to Figure 20.
Although this figure shows a simple two-layer feedforward architecture, the
procedure to be developed will work for neural networks with any number of
Adaline elements in any feedforward structure. In Ref. 113, we discuss variants
of the basic MRIII approach that allow steepest-descent training to be applied
to more general network topologies, even those with signal feedback.

Assume that an input pattern X and its associated desired output responses
d, and d, are presented to the network of Figure 20. At this point, we measure
the sum squared output response error &2 = (d; — y1)? + (d2 — y2)* = et + &3,
We than add a small quantity As to a selected Adaline in the network, providing
a perturbation to the element’s linear sum. This perturbation propagates
through the network, and causes a change in the sum of the squares of the
errors, A(e?) = A(e? + £3). An easily measured ratio is

AE»D A+) ad
As As ds (76)

Below we use this to obtain the instantaneous gradient of ¢ with respect to the
weight vector of the selected Adaline. For the kth presentation, the instantane-
ous gradient is

g _ e _ oD o5 _ 3(eD)
T OOWL osi OWi Ok

X 77

Replacing the derivative with a ratio of differences yields

2
Vk = AX';k) Xk. (78)

Input
Pattern Perturbation
Vector Output
X Vector
X Y,
s’

Sum Squared
Error

X V (Squared

Euclidean Error)

2%
Desired Responses

- Figure 20. Example two-layer Madaline III architecture.

~_associated unperturbed error.

494 WIDROW AND LEHR

The idea of obtaining a derivative by perturbing the linear output of the
selected Adaline element is the same as that expressed for the single element in
Section V-B, except that here the error is obtained from the output of a multi-
element network rather than from the output of a single element.

The gradient (78) can be used to optimize the weight vector in accord with
the method of steepest descent:

Aed)
As

Wi =W — X;. 79

Maintaining the same input pattern, one could either perturb all the ele-
ments in the network in sequence, adapting after each gradient calculation, or
else the derivatives could be computed and stored to allow all Adalines to be
adapted at once. These two MRIII approaches both involve the same weight
update Eq. (79), and if is small, both lead to equivalent solutions. With large
u, experience indicates that adapting one element at a time results in conver-
gence after fewer iterations, especially in large networks. Storing the gradients,
however, has the advantage that after the initial unperturbed error is measured
during a given training presentation, each gradient estimate requires only the
perturbed error measurement. If adaptations take place after each error mea-
surement, however, both perturbed and unperturbed errors must be measured
for each gradient calculation. This is because each weight update changes the

C. Comparison of MRIII and MRII

MRIII was derived from MRII replacing the signum nonlinearities with
sigmoids. The similarity of these algorithms becomes evident when comparing
Figure 20, representing MRIII, with Figure 12, representing MRII.

The MRII network is highly discontinuous and nonlinear. Using an instan-
taneous gradient to adjust the weights is not possible. The idea of adding a
perturbation to the linear sum of a selected Adaline element is workable, how-
ever. If the Hamming error has been reduced by the perturbation, the Adaline
is adapted to reverse its output decision. This weight change is in the LMS
direction, along its X-vector. If adapting the Adaline would not reduce network
output error, it is not adapted. This is in accord with the minimal disturbance
principle. The Adalines selected for possible adaptation are those whose analog
sums are closest to zero, i.e., the Adalines which can be adapted to give
opposite responses with the smallest weight changes. It is useful to note that
with binary *1 desired responses, the Hamming error is equal to one quarter
the sum square error. Minimizing the output Hamming error is therefore equiv-
alent to minimizing the output sum square error.

The MRIII algorithm works in a similar manner. All the Adalines in the
MRIII network are adapted, but those whose analog sums are closest to zero
will usually be adapted most strongly, because the sigmoid has its maximum
slope at zero, contributing to high gradient values. As with MRII, the objective
is to change the weights for the given input presentation to reduce the sum

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 495

square error at the network output. In accord with the minimal disturbance
principle, the weight vectors of the Adaline elements are adapted in the LMS
direction, along their X-vectors, and are adapted in proportion to their capabili-
ties for reducing the sum square error (the square of the Euclidean error) at the
output.

D. Comparison of MRIII with Backpropagation

In Section V-B, we argued that, for the Sigmoid Adaline element, the
MRIII algorithm (53) is essentially equivalent to the backpropagation algorithm
(46). The same argument can be extended to the network of Adaline elements,
demonstrating that if As is small and adaptation is applied to all elements in the
network at once, the MRIII is essentially equivalent to backpropagation. That
is, to the extent that the sample derivative Ae}/As from Eq. (79) is equal to the
analytical derivative de2/asy from Eq. (67), the two rules follow identical instan-
taneous gradients, and thus perform identical weight updates.

The backpropagation algorithm requires fewer operations than MRIII to
calculate gradients, since it is able to take advantage of a priori knowledge of
the sigmoid nonlinearities and their derivative functions. Conversely, the
MRIII algorithm uses no prior knowledge about the characteristics of the sig-
moid functions. Rather, it acquires instantaneous gradients from perturbation
measurements. Using MRIII, tolerances on the sigmoid implementations can:
be greatly relaxed compared to acceptable tolerances for successful backpropa-
gation.

Steepest-descent training of multi-layer networks implemented by com-
puter simulation or by precise parallel digital hardware is usually best carried
out by backpropagation. During each training presentation, the backpropaga-
tion method requires only one forward computation through the network fol-
lowed by one backward computation in order to adapt all the weights of an
entire network. To accomplish the same effect with the form of MRIII that
updates all weights at once, one measures the unperturbed error followed by a
number of perturbed error measurements equal to the number of elements in
the network. This process can represent a significant amount of computation.

If a network is to be implemented in analog hardware, however, experi-
ence has shown that MRIII offers strong advantages over backpropagation.
Comparison of Figure 17 with Figure 20 demonstrates the relative simplicity of
MRIII: All the apparatus for backward propagation of error-related signals is
eliminated, and the weights do not need to carry signals in both directions (see
Fig. 18). MRIII is a much simpler algorithm to build and to understand, and in
principle it produces the same instantaneous gradient as the backpropagation
algorithm. The momentum technique and most other common variants of the
backpropagation algorithm can be applied to MRIII training.

VII. A NETWORK TOPOLOGY FOR PATTERN RECOGNITION

It would be useful to devise a neural network configuration that could be
trained to classify an important set of training patterns as required, but have

496

Figure 21. One slab of a left-right, up—down translation invariant network.

these network responses be invariant to translation, rotation, and scale change
of the input pattern within the field of view. It should not be necessary to train
the system with the specific training patterns of interest in all combinations of

WIDROW AND LEHR

—_—
[]
[)
[]
—_—

Retina

All retinal
signals
go to all
ADALINES

translation, rotation, and scale.

The first step is to show that a neural network having these properties
exists. (The invariance methods that follow are extensions-of results reported
earlier by Widrow?.) The next step is to obtain training algorithms to achieve

the desired objectives.

A.

Figure 21 shows a planar network configuration (a ‘‘slab’’ of neurons) that
could be used to map a retinal image* into a single-bit output so that, with
proper weights in the network’s neurons, the response will be insensitive to
left—right and/or up—down translation. The same slab structure can be repli-
cated, with different weights, to allow the retinal pattern to be independently
mapped into additional single-bit outputs, all insensitive to left-right, up—down

translation.

Figure 22 illustrates the general idea. A retinal image having a given num-
ber of pixels can be mapped through an array of slabs into a different image
having the same, more, or fewer pixels, depending on the number of slabs used.
In any event, the mapped image is insensitive to up—down, left-right transla-
tion of the original image. The mapped image in Figure 22 is fed to a set of
Adaline neurons that can be easily trained to provide output responses to the
original image as required. This amounts to a ‘‘descrambling’’ of the preproces-
sor’s outputs. The descrambler’s output responses classify the original input

*We should note that properties of the defined artificial retinal and neural systems

have no biological significance.

OJOJOIO.
6699

OO,
N |®
ONIO,
=) |||

4
Slab output

Invariance to Up—Down, Left—Right Pattern Translation

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 497

Box of Slabs

Fixed, translation-invariant preprocessor network

Retina

First adaptive —>6
layer
Adaptive

Descrambler

Second adaptive — (A
layer

Outputs

Figure 22. A translation-invariant preprocessor network and an adaptive two-layer
descrambler network. . [

images and, at the same time, are insensitive to their left-right, up—down
translations. .

In the systems of Figure 21 and 22, the elements labeled ‘““AD’’ are Ada-
lines. Those labeled ‘““MAJ’’ are majority vote-takers. (If the number of input
lines to MAJ is even and there is a tie vote, these elements are biased to give a
positive response.) The AD elements are adaptive neurons and the MAJ ele-
ments are fixed neurons, as in Figure 7.

In the system shown in Figure 21, the structuring of the weights so that the
output is insensitive to left—right and up—down translation needs further expla-
nation. Let the weights of each Adaline be arranged in a square array and the
corresponding retinal pixels arrayed in a square pattern. Let the square matrix
(W,) designate the array of weights of the upper-left Adaline, and let Tp,(W;) be
the array of weights of the next lower Adaline. The operator Tp, represents
“translate down one,’’ so the second set of weights is the same as the topmost
set, but translated down en masse by one pixel. The bottom row wraps around
to comprise the top row. The patterns on the retina itself wrap around on a
cylinder when they undergo translation. The weights of the next lower Adaline
are Tpy(Wy), and those of the next lower Adaline are Tp3(W;). Returning to the
upper-left Adaline, let its neighbor to the right be designated by Tr(W1) with

498 - WIDROW AND LEHR

Tr: being a “‘translate right one’’ operator. The pattern of weights for the entire
array of Adalines in Figure 21 is

(W) Tri(Wy) Tro(Wh) Trs(W1)
Ips(W) TriTpi(W1) TroTp(W1) TrsTpy(Wy)
Tpx(W1) TriTpo(W1) TraTpa(W1) TrsTpa(Wy)
Tps(W1) TriTps(W1) TraTp3s(W1) TrsTps(Wy)

As the input pattern moves up, down, left, or right on the retina, the roles
of the various Adalines interchange. Since all Adaline outputs are equally
weighted by the MAJ element, translating the input pattern up—down and/or
left-right on the retina has no effect on the MAJ element output.

The set of “‘key’” weights (W)) can be randomly chosen. Once chosen,
they can be translated according to Equation (80) to fill out the array of weights
for the system of Figure 21. This array of weights can be incorporated as the
weights for the first slab of Adalines shown in Figure 22. The weights for the
second slab would require the same translational symmetries, but be based on a
different randomly chosen set of key weights W,. The mapping function of the
second slab would therefore be distinct from that of the first slab.

The translational symmetries in the weights called for in Figure 21 could be
fixed and manufactured in, or they could be arrived at through training. If,

(80)

——when designing an application-specific pattern recognition-system, one knew

that translational invariance would be required, it would make sense to manu-
facture the appropriate symmetry into a fixed weight system, leaving only the
final-output Adaline layers plastic and trainable (see Fig. 22). Such a preproces-
sor would definitely work, would provide very high speed response without
scanning and searching for pattern location and alignment, and would be an
excellent application of neural networks.

B. Invariance to Rotation

Figure 22 represents a system for preprocessing retinal patterns with a
translation-invariant fixed neural network followed by a two-layer adaptive
descrambler network. The system can be expanded to incorporate rotational
invariance. Suppose that all input patterns can be presented in ‘‘normal’’ verti-
cal orientation, approximately centered within the field of view of the retina.
Suppose further that all input patterns can be presented when rotated from
normal by 90, 180, and 270°. Thus, each pattern can be presented in all four
rotations and in all possible left-right, up—down translations. The number of
combinations would be large. The problem is to design a neural network pre-
processor that is invariant to translation and to rotation by 90°.

Begin with a single slab of Adaline elements, as shown in Figure 21,
producing a majority output that is insensitive to translation of the input pattern
on the retina. Next, replicate this slab fourfold, and let the majority outputs
feed into a single majority output element. In the first slab, (W;) designates the
upper-left Adaline’s matrix of weights. [See Eq. (80) for the weight matrices of

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 499

all first-slab Adalines.] In the second slab, the upper-left Adaline’s weight
matrix corresponds to the first-slab weight matrix rotated 90° clockwise. This
can be designated by Rci(W)), and the corresponding third- and fourth-slab
weight matrices can be designated by Rcx(W)) and Rc3(W)). Thus, the weight
matrices of the upper-left Adalines begin with (Wy) in the first slab, and are
rotated clockwise by 90° in the second slab, by 180° in the third slab, and by
270° in the fourth slab. The weight matrices of all slabs are translated right and
down, in the fashion of Equation (80), starting with the Adalines in the upper
left-hand corner. For example, the array of weight matrices for the second slab
is

Rei(Wh) TriRci(Wh) TraRci(Wh) TrsRci(Wh)
TpiRci(W1) TriTpiRei(W1) TraIpiRei(Wh) TrsIpiRel(Wh)
Tp:Roi(W) TriT;Rci(Wy) TroIpaRei(Wh) TrsTpaRei(Wh)
TpsRei(Wy) TriTpsRei(Wy) TroTpsRe(Wh) - TrsTpsRe(Wh)

Clearly, translating the pattern on the retina does not change the majority
output response. Rotating the pattern 90° causes an interchange of the roles of
the slabs in making their responses, but, since the output majority element
weights them equally, the output response is unchanged. Insensitivity to 45°
rotation can be accomplished by using more slabs; thus, a complete neural
network providing invariance to rotation and translation could be constructed.
Each translation-invariant slab of Figure 22 would need to be replaced by the
rotation-invariant multiple slab and majority-element system described above.

@81

C. Invariance to Scale

The same principles can be used to design invariance networks that are
insensitive to scale or pattern size. By establishing a *‘point of expansion’’ on
the retina so that input patterns can be expanded or contracted with respect to
this point, two Adalines can be trained to give similar responses to patterns of
two different sizes if the weight matrix of one expands (or contracts) about the
point of expansion like the patterns themselves. The amplitude of the weights
must be scaled in inverse proportion to the square of the linear dimension of the
retinal pattern. By adding many more slabs, the invariance network can be built
around this idea to be insensitive to pattern size as well as to translation and
rotation. (Implementation would, of course, require the abundance and low
cost of VLSI electronics.)

The general pattern-recognition concept we’ve described involves use of
an invariance net followed by a trainable classifier. Figure 23 illustrates the key
ideas. The invariance net can be trained or designed to produce a set of outputs
that are insensitive to translation, rotation, scale change, etc., of the retinal
pattern. These outputs are scrambled, but the adaptive layers can be trained to
descramble them and reproduce the original patterns in “‘standard’’ position,
orientation, and scale.

500 WIDROW AND LEHR

—_— . Invariance
Network

Retina

o To
(3]
° 0
\ [
Scrambled
Pattern
Adaptive
Descrambler
]
— 000
- :--
|
[--Descrambled
o Outputs Pattern

Figure 23. A neural network system for pattern recognition.

VIII. THE TRAINABLE EXPERT SYSTEM

In the utilization of present-day rule-based expert systems, decision rules
must always be known for the application of interest. Sometimes, however,
determining these rules may present difficulties. The rules may not be explicit
or they may not exist. For such applications, trainable expert systems might be
usable. Rather than working with decision rules, an adaptive expert system
might observe the decisions made by a human expert. Looking over the ex-
pert’s shoulders, an adaptive system can learn to make similar decisions to
those of the human teacher when facing given sets of input circumstances.

A sample application for a trainable expert system is the following: Driving
a car down a narrow congested street is done every day by experienced human
drivers. Imagine an adaptive pattern recognition system equipped with a visual
input (a retina of photo receptors or a TV camera) looking through the wind-
shield of the car seeing the dynamic scene confronting the driver and at the
same time observing the driver’s responses via the steering wheel, brake pedal,
and accelerator pedal. With an adequate training sample, the adaptive system
should be able to make decisions very much like those of the teacher, an expert
human driver.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 501

Unstable
pendulum

Damping \\ Flexible power
& pivot.

~ cable
Truck, W\N\/\M

X ~ NG Controlled
\ ~. Power
2 \° Supply

7
Reversible \
electric motor \ ~

\\Modoline manua

control

Photocell ﬁ teaching.
, array v 1 [S
q:::zlrl \$ou1put

SEQUENTIAL
MADALINE|

“Desired output”
(actuated during
troininal

Figure 24. A trainable expert system designed to balance a broom.

Instead of developing at this time a system to learn to drive an automobile
in traffic, a simpler and more quantifiable problem to begin with is the broom
balancing problem. Referring to Figure 24, a trainable controller consisting of
an Adaline network learns to respond like the teacher by observing the teach-
er’s control decisions. However, the teacher has the proper state variables as

its set of inputs. The Adaline net has an “‘eyeball”” input—a photocell retina or
a TV camera—with which to observe the positions and motions of the car and
the pendulum. Acting on its own, the Adaline will need to obtain the equivalent
state-variable information from visual observations of the scene and its time
rate of change, the scene being the picture of the cart and pendulum. With an
adequate training sample, the Adaline net will be able to take over the control
function from the teacher and thus become a trained expert. A trainable expert
system of this nature has already been simulated on a computer with good
results.!™ Doing the research to develop an adaptive controller such as that
used with the broom balancer, enables us to progress toward the goal of being
able to design trainable expert systems for much more general control applica-
tions.

IX. SUMMARY

We have discussed and compared the LMS algorithm, the Perceptron rule,
the backpropagation algorithm, and several other learning rules. Although they
differ significantly from each other, they all belong to the same ‘‘family.”

A distinction was drawn between error correction rules and steepest de-
scent rules. The former includes the Perceptron rule, Mays’s rules, the a-LMS
algorithm, the original Madaline I rule of 1962, and the Madaline II rule. The
latter includes the u-LMS algorithm, the Madaline I1I rule, and the backpropa-

502 WIDROW AND LEHR

Steepest Error
Descent Correction
Rules Rules
Layered Single Layered Single
Network Element Network Element
h Nonli . Nonlinear Nonlinear .
(Sigmoid) (Sigmoid) Linear (Si;num) (Signum) LAnear
MRIIL MRII u-LMS MRI Perceptron a-LMS
Backprop Backprop MRII Mays

Figure 25. Learning rules.

gation algorithm. The chart in Figure 25 categorizes the learning rules that have
been studied.

Although these algorithms have been presented as established learning
rules, one should not gain the impression that they are perfect and frozen for all
time. Variations are possible for every one of them. They should be regarded as
substrates upon which to build new and better rules. There is a tremendous
amount of invention waiting ‘‘in the wings.”” We look forward-to the next 30
years of development of adaptive and learning algorithms and their applications
to pattern recognition, control systems, and expert systems.

This work was sponsored by SDIO Innovative Science and Technology Office and
managed by ONR under contract No. N00014-86-K-0718, by the Department of the
Army Belvoir R D & E Center under contracts No. DAAK70-87-P-3134 and No.
DAAK?70-89-K-0001, by a grant from the Lockheed Missiles and Space Company, by
NASA under contract No. NCA2-389, and by Rome Air Development Center under
contract No. F30602-88-D-0025, subcontract E-21-T22-S1.

References

1. K. Steinbuch and V.A.W. Piske, ‘‘Learning matrices and their applications,”’
IEEE Trans. Elect. Computers EC-12(5), 846-862 (1963).

2. B. Widrow, ‘‘Generalization and information storage in networks of adaline ‘neu-
rons’,” In Self-Organizing Systems 1962, M. Yovitz, G. Jacobi, and G. Goldstein,
(Eds.), Spartan Books, Washington, DC, 1962, pp. 435-461.

3. L. Stark, M. Okajima, and G.H. Whipple, ‘‘Computer pattern recognition tech-
niques: Electrocardiographic diagnosis,”” Commun. ACM, 5, 527-532 (1962).

4. F. Rosenblatt, ‘““Two theorems of statistical separability in the perceptron,” In
Mechanization of Thought Processes: Proceedings of a Symposium held at the
National Physical Laboratory, November 1958, Vol. 1, (HM Stationery Office,
London, 1959), pp. 421-456.

5. F.Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms, Spartan Books, Washington, DC, 1962.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 503

6. C. von der Malsburg, “‘Self-organizing of orientation sensitive cells in the striate
cortex,”’ Kybernetik, 14, 85-100 (1973).

7. S. Grossberg, ‘‘Adaptive pattern classification and universal recoding, I: Parallel
development and coding of neural feature detectors,” Biol. Cybern., 23, 121-134
(1976).

8. K. Fukushima, ““Cognitron: A self-organizing multilayered neural network,’’ Biol.
Cybern., 20, 121-136 (1975).

9. K. Fukushima, ‘‘Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,”” Biol. Cybern.,
36(4) 193-202 (1980).

10. B. Widrow, ““Bootstrap learning in threshold logic systems,” Presented at the
American Automatic Control Council (Theory Committee), IFAC Meeting, Lon-
don, England, June 1966.

11. B. Widrow, N.K. Gupta, and S. Maitra, ‘‘Punish/reward: Learning with a critic in
adaptive threshold systems,”” IEEE Trans. Syst. Man Cybern., SMC-3(5) 455465
(1973).

12. A.G. Barto, R.S. Sutton, and C.W. Anderson, ‘‘Neuronlike adaptive elements
that can solve difficult learning control problems,’” IEEE Trans. Syst. Man Cy-
bern., SMC-13, 834-846 (1983).

13. 1.S. Albus, ““A new approach to manipulator control: The cerebellar model articu-
lation controller (cmac),”’ J. Dyn. Sys. Meas. Contr., 97, 220-227 (1975).

14. W.T. Miller, III, “Sensor-based control of robotic manipulators using a general
learning algorithm,”’ IEEE J. Robotics Automa., RA-3(2), 157-165 (April 1987).

15. A. Barto and P. Anandan, ‘‘Pattern recognizing stochastic learning automata,”
IEEE Trans. Syst. Man Cybern., 15, 360-375 (1985).

16. S. Grossberg, ‘‘Adaptive pattern classification and universal recoding, II: Feed-
back, expectation, olfaction, and illusions,”” Biol. Cybern., 23, 187-202 (1976).

17. G.A. Carpenter and S. Grossberg, ‘‘A massively parallel architecture for a self-
organizing neural pattern recognition machine,”” Comp. Vision, Graphics, and
Image Processing, 37;54=115 (1983). e i —

18. G.A. Carpenter and S. Grossberg, ‘‘Art 2: Self-organization of stable category
recognition codes for analog output patterns,”” Appl. Optics, 26(23), 4919-4930
(1987).

19. G.A. Carpenter and S. Grossberg, *‘Art 3 hierarchical search: Chemical transmit-
ters in self-organizing pattern recognition architectures,” In Proceedings of the
International Joint Conference on Neural Networks Lawrence Erlbaum, Washing-
ton, DC, January 1990, Vol. II, pp. 30-33.

20. T. Kohonen, ‘‘Self-organized formation of topologically correct feature maps,”
Biol. Cybern., 43, 59-69 (1982).

21. T. Kohonen, Self-Organization and Associative Memory 2nd ed., Springer-
Verlag, New York, 1988.

22. D.O. Hebb, The Organization of Behavior, Wiley, New York, 1949.

23. J.J. Hopfield, ‘‘Neural networks and physical systems with emergent collective
computational abilities,”” Proc. Natl. Acad. Sci., 79, 2554-2558 (1982).

24. 1.J. Hopfield, ‘‘Neurons with graded response have collective computational prop-
erties like those of two-state neurons,”’ Proc. Natl. Acad. Sci., 81, 3088-3092
(1984).

25. B. Kosko, ‘‘Adaptive bidirectional associative memories,” Appl. Optics, 26(23),
4947-4960 (1987).

26. H.A. Klopf, ‘“Drive-reinforcement learning: A real-time learning mechanism for
unsupervised learning,” In Proceedings of the IEEE First International Confer-
ence on Neural Networks, San Diego, CA, June 21-24, 1987, Vol. II, pp. 441-445.

27. G.E. Hinton, T.J. Sejnowski, and D.H. Ackley, Boltzmann Machines: Constraint
Satisfaction Networks that Learn, Technical Report CMU-CS-84-119, Carnegie-
Mellon University, Department of Computer Science, 1984.

504 ' WIDROW AND LEHR

28. G.E. Hinton and T.J. Sejnowski, ‘‘Learning and relearning in Boltzmann ma-
chines,’’ In Parallel Distributed Processing, D.E. Rumelhart and J.L. McClelland,
(Eds.), The MIT Press, Cambridge, MA, 1986, Vol. 1, Chap. 7.

29. L.R. Talbert, G.F. Groner, J.S. Koford, R.J. Brown, P.R. Low, and C.H. Mays,
A Real-Time Adaptive Speech-Recognition System, Technical Report, Stanford
University, 1963.

30. M.J.C. Hu, Application of the Adaline System to Weather Forecasting, E.E.
Degree Thesis, Technical Report 6775-1, Stanford Electron. Labs., Stanford, CA,
June 1964.

31. B. Widrow, **The original adaptive neural net broom-balancer,” In Proceedings of
the IEEE International Symposium on Circuits and Systems, Philadelphia, PA,
May 4-7, 1987, pp. 351-357.

32. B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice-Hall, Engle-
wood Cliffs, NJ, 1985.

33. B. Windrow, P. Mantey, L. Griffiths, and B. Goode, ‘‘Adaptive antenna sys-
tems,”’ Proc. IEEE 55, 2143-2159 (1967).

34. B. Widrow, ‘‘Adaptive inverse control,” In Proceedings of the 2nd International
Federation of Automatic Control Workshop, Lund, Sweden, July 1-3, 1986, pp.
1-5.

35. B. Widrow et al., ‘“Adaptive noise cancelling: Principles and applications,” Proc.
IEEE, 63, 16921716 (1975).

36. R.W. Lucky, ‘‘Automatic equalization for digital communication,”’ Bell Syst.
Tech. J., 44, 547-588 (1965).

37. R.W. Lucky et al., Principles of Data Communication, McGraw-Hill, New York,
1968.

'38. M.M. Sondhi, ““An adaptive echo canceller,” Bell Syst. Tech. J., 46, 497-511
(1967). T

39, P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, Ph.D. Thesis, Harvard University, Cambridge, MA, August
1974,

40. Y. le Cun, “‘A theoretical framework for back-propagation,” In Proceedings of the
1988 Connectionist Models Summer School, D. Touretzky, G. Hinton, and T.
Sejnowski (Eds.), Morgan Kaufmann, San Mateo, CA, June 17-26, 1988, pp. 21-
28.

41. D. Parker, Learning-logic, Invention Report S81-64, File 1, Office of Technology
Licensing, Stanford University, Stanford, CA, October 1982.

42. D. Parker, Learning-logic, Technical Report TR-47, Center for Computational
Research in Economics and Management Science, MIT, April 1985.

43. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning Internal Representa-
tions by Error Propagation, ICS Report 8506, Institute for Cognitive Science,
University of California at San Diego, La Jolla, CA, September 1985.

44, D.E. Rumelhart, G.E. Hinton, and R.J. Williams, ‘‘Learning internal representa-
tions by error propagation,” In Parallel Distributed Processing, D.E. Rumelhart
and J.L. McClelland (Eds.), The MIT Press, Cambridge, MA, 1986, Vol. 1,
Chap. 8.

45. B. Widrow, R.G. Winter, and R. Baxter, ‘‘Learning phenomena in layered neural
networks,”” In Proceedings of the IEEE First International Conference on Neural
Networks, San Diego, CA, June 1987, Vol. II, pp. 411-429.

46. R.P. Lippmann, ‘“An introduction to computing with neural nets,”” IEEE ASSP
Mag. April 1987.

47. J.A. Anderson and E. Rosenfeld (Eds.), Neurocomputing: Foundations of Re-
search, The MIT Press, Cambridge, MA, 1988.

48. N. Nilsson, Learning Machines, McGraw-Hill, New York, 1965.

49. D.E. Rumelhart and J.L. McClelland (Eds.), Parallel Distributed Processing, Vol.
1 and 2, The MIT Press, Cambridge, MA, 1986.

50. B. Moore, ‘‘Art 1 and pattern clustering,”” In Proceedings of the 1988 Connec-

51.
52.

53.

54.
55.

56.

57.

58.
59.

61.

62.
. T.M. Cover, Geometrical and Statistical Properties of Linear Threshold Devices,

65.

66.

67.
68.

69.

70.

71.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 505

tionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski,
(Eds.), Morgan Kaufmann, San Mateo, CA, June 17-26 1988. pp. 174-185.
DARPA Neural Network Study, AFCEA International Press, Fairfax, VA, 1988.
D. Nguyen and B. Widrow, ‘“The truck backer-upper: An example of self-learning
in neural networks,”” In Proceedings of the International Joint Conference on
Neural Networks, Washington, DC, June 1989, Vol. II, pp. 357-363.

T.J. Sejnowski and C.R. Rosenberg, Nettalk: A Parallel Network that Learns to
Read Aloud, Technical Report THU/EECS-86/01, Johns Hopkins University,
1986.

T.J. Sejnowski and C.R. Rosenbersg, “Parallel networks that learn to pronounce
English text,”” Complex Syst., 1, 145-168 (1987).

P.M. Shea and V. Lin, “‘Detection of explosives in checked airline baggage using
an artificial neural system,”’ In Proceedings of the International Joint Conference
on Neural Networks, Washington, DC, June 1989, Vol. II, pp. 31-34.

D.G. Bounds, P.J. Lloyd, B. Mathew, and G. Waddell, ‘A multilayer perceptron
network for the diagnosis of low back pain,”” In Proceedings of the IEEE Second
International Conference on Neural Networks, San Diego, CA, July 1988, Vol. II,
pp. 481-489.

G. Bradshaw, R. Fozzard, and L. Ceci, “A connectionist expert system that
actually works,”” In Advances in Neural Information Processing Systems 1, D.S.
Touretzky (Ed.) (Morgan Kaufmann, San Mateo, CA, 1989), pp. 248-255.

N. Mokhoff, ““Neural nets making the leap out of lab,” Electronic Engineering
Times, January 22, 1990, p. 1.

C.A. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA,
1989).

. B. Widrow and M.E. Hoff, Jr., “Adaf)tive switching circuits,” in 1960 IRE

Western Electric Show and Convention Record, Part 4, August 23, 1960, pp.
96-104.

B. Widrow and M.E. Hoff, Jr., Adaptive Switching Circuits, Technical Report
1553-1, Stanford-Electron. Labs., Stanford, CA, June 30, 1960.

P.M. Lewis II and C. Coates, Threshold Logic, Wiley, New York, 1967.

Ph.D. Thesis, Technical Report 6107-1, Stanford Electron. Labs., Stanford, CA,
May 1964.

. R.J. Brown, Adaptive Multiple-Output Threshold Systems and Their Storage Ca-

pacities, Ph.D. Thesis, Technical Report 6771-1, Stanford Electron. Labs., Stan-
ford, CA, June 1964.

D.F. Specht, Generation of Polynomial Discriminant Functions for Pattern Rec-
ognition, Ph.D. Thesis, Technical Report 6764-5, Stanford Electron. Labs., Stan-
ford, CA, May 1966.

D.F. Specht, ‘‘Vectorcardiographic diagnosis using the polynomial discriminant
method of pattern recognition,” IEEE Trans. Biomed. Eng. BME-14, 90-95
(1967).

D.F. Specht, “‘Generation of polynomial discriminant functions for pattern recog-
nition,”’ IEEE Trans. Electron. Comput. EC-16, 308-319 (1967).

A.R. Barron, ““Adaptive learning networks: Development and application in the
united states of algorithms related to gmdh,” In Self-Organizing Methods in Mod-
eling, S.J. Farlow (Ed.), Marcel Dekker Inc., New York, 1984, pp. 25-65.

A.R. Barron, ‘‘Predicted squared error: A criterion for automatic model selec-
tion,”” In Self-Organizing Methods in Modeling, S.J. Farlow (Ed.), Marcel Dekker
Inc., New York, 1984, pp. 87-103.

A.R. Barron and R.L. Barron, ‘‘Statistical learning networks: A unifying view,”’
In 1988 Symposium on the Interface: Statistics and Computing Science, Reston,
VA, April 21-23, 1988, pp. 192-203.

A.G. Ivakhnenko, ‘‘Polynomial theory of complex systems,” IEEE Trans. Syst.
Man Cybern., SMC-1, 364-378 (1971).

506

72.
73.
74.

75.

76.

77.

78.
79.
80.
81.

82.

83.
84.
85.
86.
87.
88.

89.
90.

91.
92.

93.

WIDROW AND LEHR

Y.-H. Pao, “Functional link nets: Removing hidden layers,”” AI Expert 60-68
(1989).

C.L. Giles and T. Maxwell, ‘‘Learning, invariance, and generalization in high-
order neural networks,”” Appl. Optics 26(23), 4972-4978 (1987).

M.E. Hoff, Ir, Learning Phenomena in Networks of Adaptive Switching Circuits,
Ph.D. Thesis, Technical Report 1554-1, Stanford Electron. Labs., Stanford, CA,
July 1962.

W.C. Ridgway III, An Adaptive Logic System with Generalizing Properties, Ph.D.
Thesis, Technical Report 1556-1, Stanford Electron. Labs., Stanford, CA, April
1962.

F.H. Glanz, Statistical Extrapolation in Certain Adaptive Pattern-Recognition
Systems, Ph.D. Thesis, Technical Report 6767-1, Stanford Electron. Labs., Stan-
ford, CA, May 1965.

B. Widrow, ‘‘Adaline and madaline—1963, plenary speech,”’ In Proceedings of
the IEEE First International Conference on Neural Networks, San Diego, CA,
June 23, 1987. Vol. I, pp. 145-158.

B. Widrow, An Adaptive ‘“‘Adaline’’ Neuron Using Chemical ‘‘Memistors’’, Tech-
nical Report 1553-2, Stanford Electron. Labs., Stanford, CA, October 17, 1960.
M.L. Minsky and S.A. Papert, Perceptrons: An Introduction to Computational
Geometry expanded ed., The MIT Press, Cambridge, MA, 1988.

E.B. Baum and D. Haussler, ‘““What size net gives valid generalization?’’ Neural
Computation, 1(1), 151-160 (1989).

C.L. Giles, R.D. Griffin, and T. Maxwell, ‘‘Encoding geometric invariances in
higher order neural networks,’’ In Neural Information Processing Systems, D.Z.
Anderson (Ed.), American Institute of Physics, New York, 1988, pp. 301-309.
J.J. Hopfield and D.W. Tank, ‘‘Neural computations of decisions in optimization
problems,’’ Biolog. Cybernetics, 52, 141-152 (1985). ~ =~~~

K.S. Narendra and K. Parthasarathy, ‘‘Identification and control of dynamical
systems using neural networks,’’ IEEE Trans. Neural Networks, 1(1), 4-27 (1990).
C.H. Mays, Adaptive Threshold Logic, Ph.D. Thesis, Technical Report 1557-1,
Stanford Electron. Labs., Stanford, CA, April 1963.

F. Rosenblatt, ““‘On the convergence of reinforcement procedures in simple per-
ceptrons,’’ Cornell Aeronautical Laboratory Report VG-1196-G-4, Buffalo, New
York, February 1960.

H. Block, ‘“The perceptron: A model for brain functioning, 1.’ Reviews of Modern
Physics, 34, 123-135 (1962).

B. Widrow and R.G. Winter, ‘‘Neural nets for adaptive filtering and adaptive
pattern recognition,”” IEEE Computer, 25-39 (1988).

R.G. Winter, Madaline Rule II: A New Method for Training Networks of Ada-
lines, Ph.D. Thesis, Stanford University, Stanford, CA, January 1989.

E. Walach and B. Widrow, ‘‘The least mean fourth (Imf) adaptive algorithm and its
family,”’ IEEE Trans. on Information Theory IT-30(2), 275-283 (1984).

E.B. Baum and F. Wilczek, ‘‘Supervised learning of probability distributions by
neural networks,”” In Neural Information Processing Systems, D.Z. Anderson,
(Ed.), American Institute of Physics, New York, 1988, pp. 52-61.

S.A. Solla, E. Levin, and M. Fleisher, ‘‘Accelerated learning in layered neural
networks,”” Complex Syst. 2, 625-640 (1988).

D.B. Parker, ‘‘Optimal algorithms for adaptive neural networks: Second order
back propagation, second order direct propagation, and second order hebbian
learning,”’ In Proceedings of the IEEE First International Conference on Neural
Networks, San Diego, CA, June 1987, Vol. II, pp. 593-600.

A.J. Owens and D.L. Filkin, ‘‘Efficient training of the back propagation network
by solving a system of stiff ordinary differential equations,”’ In Proceedings of the
International Joint Conference on Neural Networks, Washington, DC, June 1989,
Vol. II, pp. 381-386.

95.

96.
97.
98.
99.
100.
101.

102.

103.
104.
105.

106.
107.
108.

109.
110.
11,
112.

113.

114.

APPLICATIONS OF ADAPTIVE NEURAL NETWORKS 507

. D.G. Leunberger, Linear and Nonlinear Programming 2nd ed., Addison-Wesley,

Reading, MA, 1984.

A. Kramer and A. Sangiovanni-Vincentelli, ‘Efficient parallel learning algorithms
for neural networks,”” In Advances in Neural Information Processing Systems I,
D.S. Touretzky (Ed.), Morgan Kaufmann, San Mateo, CA, 1989, pp. 40-48.
R.V. Southwell, Relaxation Methods in Engineering Science, Oxford, New York,
1940.

D.J. Wilde, Optimum Seeking Methods, Prentice-Hall, Englewood Cliffs, NJ,
1964.

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Se-
ries, with Engineering Applications, Wiley, New York, 1949.

T. Kailath, ““A view of three decades of linear filtering theory,”” IEEE Trans.
Inform. Theory IT-20, 145-181 (1974).

H. Bode and C. Shannon, ‘‘A simplified derivation of linear least squares smooth-
ing and prediction theory,” Proc. IRE 38, 417-425 (1950).

L.L. Horowitz and K.D. Senne, ‘Performance advantage of complex LMS for
controlling narrow-band adaptive arrays,”” IEEE Trans. Circuits, Systems, June
1981, Vol. CAS-28, pp. 562-576.

D. Nguyen and B. Widrow, ‘‘Improving the learning speed of 2-layer neural net-
works by choosing initial values of the adaptive weights,’” In Proceedings of the
International Joint Conference on Neural Networks, San Diego, CA, June 1990.
B. Widrow and M.A. Lehr, ‘30 years of adaptive neural networks: Perceptron,
madaline, and backpropagation,’” Proc. IEEE, September 1990, pp. 1415-1442.
J.J. Shynk and S. Roy, ‘“The Ims algorithm with momentum updating,” In ISCAS
88, Espoo, Finland, June 1988. -

S.E. Fahlman, ‘‘Faster learning variations on backpropagation: An empirical
study,”” In Proceedings of the 1988 Connectionist Models Summer School, D.
Touretzky, G. Hinton, and T. Sejnowski (Eds.), Morgan Kaufmann, San Mateo,
CA, June 17-26 1988 pp. 38-51.

R.A. Jacobs;“Increased rates of convergence through learning rate adaptation,*—

Neural Networks 1(4), 295-307 (1988).

F.J. Pineda, ‘‘Generalization of backpropagation to recurrent neural networks,”’
Phys. Rev. Lett. 18(59), 2229-2232 (1987).

L.B. Almeida, “‘A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment,”” In Proceedings of the IEEE First International Con-
ference on Neural Networks, San Diego, CA, June 1987, Vol. II, pp. 609-618.
R.J. Williams and D. Zipser, ‘‘A learning algorithm for continually running fully
recurrent neural networks,”” ICS Report 8805, Institute for Cognitive Science,
University of California at San Diego, La Jolla, CA 92093, October 1988.

S.A. White, ‘‘An adaptive recursive digital filter,”” In Proc. 9th Asilomar Conf.
Circuits Syst. Comput., November 1975, p. 21.

B. Pearlmutter, ‘‘Learning state space trajectories in recurrent neural networks,”’
In Proceedings of the 1988 Connectionist Models Summer School, D. Touretzky,
G. Hinton, and T. Sejnowski (Eds.), Morgan Kaufmann, San Mateo, CA, June 17—
26 1988, pp. 113-117.

M. Holler et al., ‘“An electrically trainable artificial neural network (etann) with
10240 “‘floating gate’’ synapses,’’ In Proceedings of the International Joint Con-
ference on Neural Networks, Washington, DC, June 1989, Vol. II, pp. 191-196.
D. Andes, B. Widrow, M. Lehr, and E. Wan, ‘“MRIII: A robust algorithm for
training analog neural networks,”’ In Proceedings of the International Joint Con-
ference on Neural Networks, Lawrence Erlbaum, Washington, DC, January 1990,
Vol. I, pp. 533-536.

V.V. Tolat and B. Widrow, ‘‘An adaptive broom balancer with visual inputs,”” In
Proceedings of the IEEE Second International Conference on Neural Networks,
San Diego, CA, July 1988, Vol. II, pp. 641-647.

International Journal of Intelligent Systems

Volume 8, Number 4, April 1993

Special Issue
ARTIFICIAL
NEURAL NETWORKS

451

453

509

527

539

569

Directions for Artificial Neural Networks: Introductory Remarks
Frank D. Anger

Adaptive Neural Networks and their Applications
Bernard Widrow and Michael A. Lehr

A Learning Algorithm for the Classification of Dynamic Events Using
a Neuron-Like Dynamic Tree
Richard R. Gawronski and Rita V. Rodriguez

Fuzzy Neural Network with Fuzzy Signals and Weights
Yoichi Hayashi, James J. Buckley, and Ernest Czogala

A Review of Evolutionary Artificial Neural Networks
Xin Yao

Neural Networks and Adaptive Expert Systems in the CSA Approach
Eugeniusz Eberbach

