10

Feedforward Networks

Bernard Widrow Michael A. Lehr
Stanford University Department of Electrical Engineering,
Stanford, CA 94305-4055

The feedforward network is one of the most widely used
neural network paradigms. We present here a brief tutorial
on two of the most popular feedforward network training
algorithms: LMS and backpropagation.

Introduction
The field of neural networks has enjoyed major advances
since 1960, a year which saw the introduction of two of the
earliest feedforward neural network algorithms: the
Perceptron rule [1] and the LMS algorithm (or Widrow-Hoff
rule) [2]. Around 1961, Widrow and his students devised
Madaline Rule I (MRI), the earliest learning rule for
feedforward networks with multiple adaptive elements [3].
The major extension of the feedforward neural network
beyond Madaline I took place in 1971 when Werbos
developed a backpropagation algorithm for training
multilayer neural networks, which in 1974, he first published
in his doctoral dissertation. Unfortunately, Werbos’s work
remained almost unknown in the scientific community. In
1982, Parker rediscovered the technique and in 1985,
published a report on it at MIT. Not long after Parker
published his findings, Rumelhart, Hinton, and Williams [4]
also rediscovered the technique and, largely as a result of the
clear framework within which they presented their ideas,
they finally succeeded in making it widely known.

Early applications of LMS and MRI were developed by
Widrow and his students in their studies of speech and
pattern recognition, weather forecasting, and adaptive
controls. After some success in these areas, work shifted in
the mid-1960’s to adaptive filtering and adaptive signal
processing. This proved to be a fruitful avenue for research
with applications including adaptive antennas, adaptive
inverse controls, adaptive noise cancelling, and seismic signal
processing. Outstanding work by R. W. Lucky and others at
Bell Laboratories led to major commercial applications of
adaptive filters and the LMS algorithm to adaptive
equalization in high speed modems and to adaptive echo
cancellers for long distance telephone and satellite circuits.
More recently, the development of backpropagation has made
it possible to attack problems requiring neural networks with
high degrees of nonlinearity and precision. Examples are
shown in [5]. Backpropagation networks with fewer than 150
neural elements have been successfully applied to vehicular
control simulations, speech generation, and undersea mine
detection. Small networks have also been used successfully
in airport explosive detection, expert systems, and scores of
other applications. Furthermore, efforts to develop parallel
neural network hardware are advancing rapidly, and these

INNS Above Threshold

systems are now becoming available for attacking more
difficult problems like continuous speech recognition.

The networks used to solve the above applications varied
widely in size and topology. A basic component of the
neural networks used in all of these applications, however, is
the adaptive linear combiner.

The Adaptive Linear Combiner

The adaptive linear combiner is diagrammed in Fig. 1. Its
output is a linear combination of its inputs. In a digital
implementation, this element receives at time k an input
signal vector or input pattern vector

Xy = [zo, Z1,,Z2,, .. -Zn,)T, and a desired response di, a
special input used to effect learning!. The components of the
input vector are weighted by a set of adaptive coefficients,
the weight vector Wy, = [wo,, w1,,ws,, - - -Wn,]T. The sum
of the weighted inputs is then computed, producing a linear
output, the inner product s = X{Wk. The components of
X may be either continuous analog values or binary values.
The weights are essentially continuously variable, and can
assume negative as well as positive values. By using a
training algorithm to adapt its weights, the adaptive linear
combiner has the ability to implement a wide range of
responses to the patterns in a given training set.

Input
Pattern +1
Vector
X Xk
k

d,
Weight Vector Desired Response

Figure 1: Adaptive linear combiner.

When a nonlinearity is placed on the output of an adaptive
linear combiner, we call the cascade an Adaline (ADAptive
LInear NEuron). In the 1960’s, the Adaline’s nonlinearity
was usually the sign or signum element. The Adaline was
also known as a linear threshold element, and its output was
either +1 or —1. Modern neural networks usually use an
“S”-shaped “sigmoid” function, a “soft” quantizer varying
smoothly from —1 to +1. An Adaline using this nonlinearity
is sometimes referred to as a Sigmoid Adaline. The Adaline
usually includes a bias weight wq, connected to a constant
input, zo = +1. This weight effectively controls the
threshold level of the quantizer or sigmoid.

t1f the neural network was being trained as a pattern classifier, the
desired response would be a representation of the class of the training
pattern (+1 or —1, for example).

December 1992

Multilayer Networks

The Madaline networks of the 1960s had an adaptive first
layer and a fixed threshold function in the second (output)
layer [5]. The feedforward neural networks of today often
have many layers, all of which are usually adaptive. The
backpropagation networks of Rumelhart et al. [4] are
perhaps the best-known examples of multilayer networks. A
fully-connected three-layer feedforward adaptive network is
illustrated in Fig. 2. In a “fully-connected” layered network,
each Adaline receives inputs from every output in the
preceding layer.

Output
Vector

output-layer
Adalines

Figure 2: A three-layer adaptive neural network.

During training, the responses of the output elements in the
network are compared with a corresponding set of desired
responses. Error signals associated with the elements of the
output layer are thus readily computed, so adaptation of the
output layer is straightforward. The fundamental difficulty
associated with adapting a layered network lies in obtaining
“error signals” for hidden layer Adalines, that is, for
Adalines in layers other than the output layer. The
backpropagation algorithm provides a method for
establishing these error signals.

Steepest-Descent Rules

The objective of adaptation for a feedforward neural
network is usually to reduce the error between the desired
response and the network’s actual response. The most
common error function is mean-square-error (MSE),
averaged over the training set. The most popular approaches
to mean-square-error reduction in both single-element and
multi-element networks are based upon the method of
steepest descent. '

Adaptation of a network by steepest-descent starts with an
arbitrary initial value Wy for the system’s weight vector.
The gradient of the mean-square-error function is measured
and the weight vector is altered in the direction opposite to
the measured gradient. This procedure is repeated, causing
the MSE to be successively reduced on average and causing
the weight vector to approach a locally optimal value.

The method of steepest descent can be described by the

relation
Wiy = Wi+ pu(=Vy), (1)

INNS Above Threshold

11

where p is a parameter that controls stability and rate of
convergence, and V; is the value of the gradient at a point
on the MSE surface corresponding to W = W;.

The LMS Algorithm The LMS algorithm works by
performing approximate steepest descent on the
mean-square-error surface in weight space. This surface is a
quadratic function of the weights, and is therefore convex
and has a unique (global) minimum. An instantaneous
gradient based upon the square of the instantaneous error is

d¢l

R 0€? Buo

Vi = a“fk = : . (2)
Sk
OWnk

LMS works by using this crude gradient estimate in place of
the true gradient V;. Making this replacement into Eq. (1)
yields

2
Oeg

Wk+1 = awk . (3)

Wk+l"(—<7k) =W —up

The instantaneous gradient is used because (a) it is an
unbiased estimate of the true gradient [6], and (b) it is easily
computed from single data samples. The true gradient is
generally difficult to obtain. Computing it would involve
averaging the instantaneous gradients associated with all
patterns in the training set. This is usually impractical and
almost always inefficient.

The present error or “linear” error ¢ is defined to be the
difference between the desired response dj and the linear
output s = W{Xk before adaptation:

e = dp — WX (4)

Performing the differentiation in Eq. (3) and replacing the
linear error by definition (4) gives

Oex
Wipr = Wi —2ue W,
(5)
Noting that d; and X}, are independent of Wy, yields
Wi = Wi+ 2ueXg. (6)

This is the LMS algorithm. The learning constant u
determines stability and convergence rate [6].

Backpropagation for the Sigmoid Adaline Fig. 3
shows a “Sigmoid Adaline” element which incorporates a
sigmoidal nonlinearity. The input-output relation of the
sigmoid can be denoted by yx = sgm(si). A typical sigmoid
function is the hyperbolic tangent:

1—e 25
Yk = tanh(sk) = <~1—_’-m> . (7)

December 1992

12

Input Pattern '
Weight Vector

Vector
X, ‘/‘Wk

;F

sigmoid

Yy
Sigmoid
Output

Desired Response
Figure 3: Adaline with sigmoidal nonlinearity.

We shall adapt this Adaline with the objective of
minimizing the mean square of the “sigmoid error” €,
defined as

& 2 di — y = di — sgm(sy).

8)
The method of steepest descent is again used to adapt the
weight vector. By following the same line of reasoning used
to develop LMS, the instantaneous gradient estimate
obtained during presentation of the kth input vector X can
be found to be

0(&)? . O&

W, = 2&; W, = —2&sgm (sg)Xg.

Vi= 9)
Using this gradient estimate with the method of steepest
descent provides a means for minimizing the
mean-square-error even after the summed signal s; goes
through the nonlinear sigmoid. The algorithm is

Wipr = Wi+ u(—Vi) = Wi + 2u6:. Xy, (10)
where 6 denotes éxsgm’ (s;). Algorithm (10) is the
backpropagation algorithm for the single Adaline element.
The backpropagation name makes more sense when the
algorithm is utilized in a layered network, which will be
studied below. Implementation of algorithm (10) is
illustrated in Fig. 4.
If the sigmoid is chosen to be the hyperbolic tangent
function (7), then the derivative sgm’(sk) is given by

) h
sgm (sg) = 9 (tanh(st)) (ta(;sz(sk))
= 11— (tanh(sx))’ = 1- o (11)
Accordingly Eq. (10) becomes
Wit = Wi+ 2ué(l — 32)Xs. (12)

Backpropagation for networks The basic concepts of
backpropagation are easily grasped. Formal derivations are
often tedious, however, so here we merely present the

INNS Above Threshold

Input Pattern Weight Vector

Vector
X W,
k
+1®
X1k
X2
xnk
AW,
“:x £ LMS |
—»~1 %k Algorithm

. \ Desired
2u€, sgm'(s,) d, Response

Figure 4: Implementation of backpropagation for the Sigmoid
Adaline element.

algorithm and illustrate how it works for the simple network
shown in Fig. 5.

The backpropagation technique is a substantial
generalization of the single Sigmoid Adaline case discussed
in the previous section. When applied to multi-element
networks, the backpropagation technique adjusts the weights
in the direction opposite to the instantaneous gradient of the
sum square error in weight space.

The instantaneous sum square error €2 is the sum of the
squares of the errors at each of the Ny outputs of the

network. Thus
NV
2 _ Z 2
€k = Eik'
i=1

In the network example shown in Fig. 5, this is given by

(13)

€2 = (dix — y1x)® + (dok — yax)?.

(14)

In its simplest form, backpropagation training begins by
presenting an input pattern vector X to the network,
sweeping forward through the system to generate an output
response vector Y, and computing the errors at each output.
We continue by sweeping the effects of the errors backward
through the network to associate a “square error derivative”
6 with each Adaline, computing a gradient from each §, and
finally updating the weights of each Adaline based upon the
corresponding gradient. A new pattern is then presented
and the process is repeated. The initial weight values are
normally set to small random values. The algorithm will not
work properly with multilayer networks if the initial weights
are either zero or poorly chosen nonzero values.

We can see the calculations needed by the backpropagation
algorithm by examining the network of Fig. 5. Each of the
five large circles represents a linear combiner, as well as
some associated signal paths for error backpropagation, and
the corresponding adaptive machinery for updating the
weights. The solid lines in this diagram represent forward
signal paths through the network, and the dotted lines

December 1992

13

Output
+1 Response
I O Vector
nput .
Pattern sgm() Y
Vector y.=x®
171

X

(0)

xlle
)

Xz—x2
)

"3"‘3 -

=l
s D VN

() 2

¥ 295

2 (¢ 2
0. Lol e-ids o 1a?
Zaxgl) ds, 2 "2 23,‘;2)

| Desired
a Responses

Figure 5: Example two-layer backpropagation network architecture.

represent the separate backward paths used in calculation of
the square error derivatives §. We see that the é’s in the
output layer are computed just as they are for the Sigmoid
Adaline element. Hidden layer calculations, however, are
more complicated. The procedure for finding the value of
6(9), the value of § associated with a given Adaline in hidden
layer £, involves respectively multiplying each derivative
6(¢+1) associated with each element in the layer immediately
downstream from the given Adaline by the weight
connecting it to the given Adaline. These weighted square
error derivatives are then added together, producmg an error
term ¢(©), which, in turn, is multiplied by sgm’(s()), the

, denvatlve of the given Adaline’s sigmoid function at its
current operating point.
Updating the weights of the Adaline element using the
method of steepest descent with the instantaneous gradient
is a process represented by

Wit = Wi 4+ u(=Vi) = Wi + 2u6: X o (1y)

Thus, after backpropagating all square error derivatives, we
complete a backpropagation iteration by adding to each
weight vector the corresponding input vector scaled by the
associated square error derivative. Eq. (15) and the means
for finding 6z comprise the general weight update rule of the

INNS Above Threshold

backpropagation algorithm.

This brief tutorial is a compressed version of reference [5],
which derives backpropagation simply but in much more
detail and gives a number of practical applications.

References

[1] F. Rosenblatt. On the convergence of reinforcement procedures in
simple perceptrons. Cornell Aeronautical Laboratory Report
VG-1196-G-4, Buffalo, New York, February 1960.

[2] B. Widrow and M. E. Hoff, Jr. Adaptive switching circuits. In 1960
IRE Western Electric Show and Convention Record, Part 4, pages
96-104, August 23 1960.

[3] B. Widrow. Generalization and information storage in networks of
adaline “neurons”. In M. Yovitz, G. Jacobi, and G. Goldstein,
editors, Self-Organizing Systems 1962, pages 435-461. Spartan
Books, Washington, DC, 1962.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. In D. E. Rumelhart
and J. L. McClelland, editors, Parallel Distributed Processing,
volume 1, chapter 8. The MIT Press, Cambridge, MA, 1986.

[5] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks:
Perceptron, madaline, and backpropagation. Proc. IEEE, pages
1415-1442, September 1990.

(6] B. Widrow and S. D. Stearns. Adaptive Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ, 1985.

December 1992

Above qhyes

Volume 1 ® Number 4 ® December 1992

1992 INNS
Election Results

Call for Papers

DEeADLINE: JANUARY 15, 1993

All the ballots have been counted in for another three-year term. They are:

INNS WoRLD CONGRESS ON

NeuraL NETWORKS

PorTLAND, OREGON, U.S.A.

Jury 11-15, 1993

See pages 4 and 5

the 1992 INNS election. Nearly 900
members (29%, or 897, of INNS’s mem-
bership) took the opportunity to vote for
President-Elect and eight new Board of
Governors members. In the President-
Elect race, Walter Freeman of the
University of California-Berkeley, won
over Clifford Lau of the United States
Office of Naval Research. Dr. Freeman
will serve as President-Elect in 1993 and
become the President of INNS in 1994.
Five board members return to office

Shun-ichi Amari, University of Tokyo;
James Anderson, Brown University; Gail
Carpenter, Boston University; Stephen
Grossberg, Boston University; and
Christoph von der Malsburg, Ruhr-
University Bochum. New board mem-
bers for 1993 are Leon Cooper, Brown
University; John Taylor, King’s College-
London; and Lotfi Zadeh, University of
California-Berkeley. A special feature on
the 1993 INNS Officers and Board of
Governors begins on page 6.

In This Issue
Small Business Innovation
4 World Congress a u \
9
¢ sodotcovernos | (€tS U.S. Congress’s No
8 UK Technology Transfer ' ‘ ‘
WasHINGTON, DC—Before leaving Washington this fall, the U.S. Congress renewed
and expanded the Small Business Innovation Research (SBIR) program (P.L. 102-
10 Feedforward Networks - 564), one of the most significant and politically popular sources of federal support for
B. Widrow, M. Lehr small businesses involved in applied research and development (R&D). Neural
_ networks are typical of the kinds of projects supported by the SBIR, and demonstra-
14 Conference Reports tions of successful neural network technology have been instrumental in inspiring the
widespread support that exists for SBIR in Congress.
Established in 1982, the SBIR program requires federal agencies that spend more
7
17 In the News than $100 million annually on extramural research or R&D to devote a percentage of
those funds for grants or contracts to small businesses conducting innovative applied
20 SIG Developments research on topics relevant to agency missions. In essence, the SBIR provides seed
: money for higher-risk research that will not attract private investors, with the goal of
24 Calendar of Events getting emerging technologies into the marketplace sooner.

See SBIR oN Pace 8

