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Abstract-An important consideration when implementing neural 
networks with digital or analog hardware of limited precision is the 
sensitivity of neural networks to weight errors. In this paper, we ana- 

ments (threshold logic units) to weight errors. An approximation is 
derived which expresses the probability of error for an output neuron 

an Adaline to a combination of weight errors and input 
errors. ~ ~ ~ ~ r i ~ ~ ~ ~ ~ l  which support our theory on 

I x  uses the results on Adaline sensitivity to determine the 
sensitivity of a Madaline to weight errors. Finally, in Sec- 

lyze the sensitivity of feedforward layered networks of Adaline &- sensitivity are presented in Section Section 

of a large network (a network with many neurons per layer) as a func- 
tion of the percentage change in the weights. As would be expected, 
the probability of error increases with the number of layers in the net- 
work and with the percentage change in the weights. Surprisingly, the 
probability of error is essentially independent of the number of weights 
per neuron and of the number of neurons per layer, as long as these 
numbers are large (on the order of 100 or more). 

I. INTRODUCTION 
HE input-output function realized by a neural net- T work is determined by the values of its weights. Re- 

cently, a great deal of effort has been devoted to devel- 
oping algorithms which will adapt the weights to realize 
a desired input-output mapping [l], [2]. When using lim- 
ited-precision hardware to store the desired weights, an 
important issue is that of weight sensitivity; how sensitive 
is the input-output mapping of the neural network to 
weight errors? We will investigate this question for feed- 
forward networks of Adaline elements. 

The outline of the paper is as follows. The network of 
Adalines, called Madaline [ l ] ,  [3], [4], is described in 
Section 11. Notation and terminology from n-dimensional 
geometry is introduced in Section 111. Section IV de- 
scribes the Hoff hypersphere-area approximation which is 
used for the sensitivity analysis. In Section V, we deter- 
mine the sensitivity of an Adaline (the basic unit of the 
Madaline) to weight errors. Since output errors from one 
layer become input errors to the following layer, it is also 
necessary to determine the sensitivity of an Adaline to 
input errors; this is done in Section VI. In Section VII, 
we establish a method for determining the sensitivity of 

tion X, we present experimental results which support the 
theory developed in Section IX. In this manner, the sen- 
sitivity of a layered neural network to weight errors is 
determined. 

11. THE MADALINE ARCHITECTURE 
The Adaline (adaptive linear element) [3], [5] (also 

known as a linear threshold unit) is the basic building 
block of the Madaline (many Adalines) network. Fig. 1 
shows an Adaline with n variable inputs: x I ,  x2, * * , x,. 
The inputs take on binary values of either + 1 or - 1. The 
bias input xo is fixed at a value of + 1. Associated with 
the Adaline are n + 1 adjustable analog weights: wo, w l r  

, w,. The weights of the Adaline scale the corre- 
sponding inputs, the scaled inputs are summed, and the 
weighted sum is the input to a threshold device. The 
threshold device outputs a - 1 for negative inputs and a 
+ 1 for positive inputs. The output of the threshold device 
is the Adaline output. The input-output map of the Ada- 
line can be summarized as: 

. . .  

output of Adaline = (1) 

(-1, c xiw; < 0. 
i = O  

A layered network of Adaline elements (a Madaline) is 
shown in Fig. 2. The inputs to the network are presented 
to each of the Adalines in the first layer. The outputs from 
the first-layer Adalines then serve as inputs to the second- 
layer Adalines, and so on. The Adalines of the final layer 
(in this case, the third layer) are called the output Ada- 
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111. REVIEW OF  DIMENSIONAL GEOMETRY 
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Fig. 1. The adaptive linear element, or Adaline. 
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Fig. 2. A three-layer Madaline. 

on the geometry of n dimensions is [6]. The essential no- 
tation and terminology that we use in this paper is pre- 
sented below. 

The vector from the origin to the point (xo, x l ,  
. . .  , x,) in ( n  + 1 )-space is denoted by X. We will refer 
to the point ( xo, x1 , - - 

The collection of all points in rz space which are at a 
distance r from the point c is a hypersphere of radius r 
centered at c .  The surface area' of a hypersphere of radius 
r in n space An(  r )  is: 

, x,) as "the tip of X." 

A , ( r )  = Knr"-I (2) 

K, = 2 d 2 / r ( n / 2 )  (3 )  

where 

and I' ( - ) is the well-known Gamma function. 

tion of all points (xo, xl, * 

satisfy 

Given a vector W g [ wo, w l ,  * , w, 3 ,  the collec- 
* , x,) in ( n  + 1 ) space which 

n 

x. wg C x , w ; = c  (4 )  
I =o  

for some scalar c, is called a hyperplane. This hyperplane 
is perpendicular to the vector Wand is at a distance c/  I W I 
from the origin (where 1 W 1 is the magnitude of W ) .  We 
use the notation HPw to denote the hyperplane perpendic- 
ular to W which passes through the origin. Note that HPw 

'To be technically correct we should say surface content rather than 
surface area. 

is the hyperplane described by (4) when c = 0: 
/- n \ 

HPw @ [(xo, xl, * * , x n ) : X  W = c xiwi = 0 
i = O  

(5) 
Any hyperplane which passes through the center of a 

hypersphere divides the hypersphere in two hemihyper- 
spheres. Let X be a vector in ( n  + 1 ) space and let HPx 
denote the hyperplane which passes through the origin and 
which is perpendicular to X. Then HPx divides any hy- 
persphere centered at the origin in two hemihyperspheres 
which we call H i  and H i .  We use the notation H i  to 
denote the hemihypersphere on the +X side of HPx and 
H i  to denote the hemihypersphere on the - X  side of HP,. 

A lune is the section of a hypersphere sandwiched 
between designated sides of two hyperplanes both of 
which pass through the center of the hypersphere (see Fig. 
3). Let X and W be ( n  + 1 )-dimensional vectors. Con- 
sider any hypersphere centered at the origin in ( n  + 1)  
space. The hyperplane HPx divides the hypersphere into 
the hemihyperspheres H i  and H i  while the hyperplane 
HPw divides the hypersphere into the hemihyperspheres 
H $  and H,.  If the angle between X and W is 0, then the 
intersections H i  f l  H i  and H i  f l  H $  both describe 
lunes of angle 0 whereas the intersections H i  fl H &  and 
H i  fl H i  both describe lunes of angle ( 7~ - 0 ) .  The ratio 
of the surface content of a lune of angle 0 to the surface 
content of the entire hypersphere is 0/(27r). 

The geometric interpretation of the equation dictating 
the input-output map of an Adaline (1)  provides insight 
concerning the manner in which an Adaline's weight vec- 
tor dichotomizes the input space. For a given weight vec- 
tor W 

n 

x .  w =  c x ; w ; = o  (6)  
i = O  

is the equation of the hyperplane HPw. This hyperplane, 
sometimes referred to as the separating hyperplane, sep- 
arates the X for which X - W > 0 from those X for which 
X W < 0 (i.e., it separates those input vectors which 
yield a + 1 response from those input vectors which yield 
a - 1 response). Geometrically, we see that the output of 
the Adaline is determined by the angle between the input 
vector and the weight vector2; the output is + 1 if the an- 
gle between the two vectors is less than 90" and is - 1 if 
this angle is greater than 90". 

IV. THE HOFF HYPERSPHERE-AREA APPROXIMATION 
Assuming binary-valued ( i- 1 ) inputs, there are 2" pos- 

sible input patterns for an Adaline with n variable inputs. 
Each input pattern corresponds to a point in n space which 

2Note that if we had not included the bias input and bias weight as com- 
ponents of the input vector and weight vector, respectively, but had instead 
used the n-dimensional vectors with - w, replacing 0 as the threshold for 
the threshold device, the separating hyperplane would no longer pass 
through the origin and the output of the Adaline would no longer depend 
solely on the angle between the n-dimensional input and weight vectors. 
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Fig. 3 .  The hyperplane HP, divides the hypersphere in two hemihyper- 
spheres H i  and H i .  Similarly, the hyperplane HPw divides the hyper- 
sphere in two hemihyperspheres H $  and H i .  The section of the hyper- 
sphere on the +X side of HP, and on the - W side of HP, is a lune of 
angle 6 designated as H i  fl H ; .  

lies on a hypersphere of radius n' /*  centered at the origin. 
The Hoff hypersphere-area approximation states that as n 
gets large, the points corresponding to the n-dimensional 
input patterns are approximately uniformly distributed 
over the surface of a hypersphere in n space. Conse- 
quently, the percentage of input patterns which corre- 
spond to points on a selected region of the hypersphere 
can be approximated as the ratio of the surface content of 
the selected region to the surface content of the entire hy- 
persphere. The validity of this approximation was shown 
by Hoff in his doctoral dissertation [7]. As will be seen, 
the hypersphere-area approximation is an extremely use- 
ful tool for analyzing the expected behavior of the Ada- 
line. 

The hypersphere-area approximation requires a slight 
modification if we include the bias input as a component 
of the input vector. The reason for this is that the bias 
input, xo, is always + l ;  there are no input vectors with 
xo = - 1. This means that the points corresponding to the 
( n  + 1)-dimensional input vectors are distributed over 
only half of a hypersphere (the half corresponding to xo 
> 0). Glanz [8] modified the hypersphere-area approxi- 
mation for use in ( n  + 1 ) space. The hypersphere-area 
approximation as modified by Glanz states that for large 
n ,  the points corresponding to the ( n  + 1 )-dimensional 
input vectors are approximately uniformly distributed over 
a hemihypersphere of radius ( n  + 1 ) I / '  in ( n  + 1 ) space. 

V. ADALINE ERRORS DUE TO WEIGHT PERTURBATIONS 
The weight vector determines the input-output map of 

an Adaline. A slight change in the direction of the weight 
vector can alter this map. In this section, we study the 
effect of a weight vector perturbation on the input-output 
map of an Adaline. More specifically, we find the prob- 
ability that two weight vectors (one considered as a per- 
turbation of the other) map an arbitrary input vector into 
opposite output categories. This is the probability of an 
Adaline decision error due to the given weight perturba- 
tion. The main result of this section is an expression for 
the probability of an Adaline decision error as a function 
of the weight perturbation ratio. 

Consider an Adaline and its associated weight vector 
W. If a randomly oriented perturbation vector AW is 
added to W, then the resulting vector W, = W + AW is 

the perturbed weight vector. The weight perturbation ra- 
tio, denoted by 6W, is defined to be the ratio of the mag- 
nitude of the perturbation vector to the magnitude of the 
original weight vector: 

6W A [ A w l / [  WI. (7) 

Let Ow,, denote the angularperturbation (i.e., the angle 
between W and W,).  We will first show that the proba- 
bility of a decision error is proportional to the angular 
perturbation and then establish the relation between the 
weight perturbation ratio and the angular weight pertur- 
bation. 

Let HP, be the hyperplane perpendicular to W which 
passes through the origin. This hyperplane divides the in- 
put hypersphere (the hypersphere on which the tips of the 
input vectors lie) into the two hemihyperspheres: H $  and 
H , .  All input vectors whose tips lie on H $  have a posi- 
tive dot product with W and all input vectors whose tips 
lie on H i  have a negative dot product with W. Thus, an 
Adaline with weight vector W maps all input vectors cor- 
responding to points on H &  to + 1 and maps all input vec- 
tors corresponding to points on H i  to - 1. Similarly, the 
hyperplane HP,,, divides the input hypersphere into the 
two hemihyperspheres: H&,, and Hi,, .  An Adaline having 
W, as its weight vector will map all input vectors with 
tips on H$,, to + 1 and will map all input vectors with tips 
on H;,, to - 1 .  

The probability that an arbitrary input vector is mapped 
into opposite output categories by Wand W, is the fraction 
of input vectors with tips either on the intersection of 
H $  and H i , ,  or on the intersection of H i  and H$,,. Both 
of these intersections describe lunes of angle Ow,,. Note 
that these two lunes are spherical reflections of each other 
(i.e., the reflection through the origin of a point on the 
first lune results in a point on the second lune and vice 
versa). Therefore, if a third hyperplane HP,, is intro- 
duced, which also passes through the origin and which is 
randomly oriented with respect to HP, and HP,,,, then 
exactly half of the combined surface area of the two lunes 
will lie on the hemihypersphere H i ,  and half will lie on 
the hemihypersphere H i , .  The purpose of considering this 
third hyperplane is to account for the fact that the input 
vectors are distributed over only half of the input hyper- 
sphere. Applying the hypersphere-area approximation as 
modified by Glanz, the fraction of input vectors mapped 
into different categories by Wand Wp is computed as the 
fraction of the surface area of the hemihypersphere H i , ,  
which belongs to one of the two lunes described above. 
This fraction is given by the ratio of the surface area of a 
lune of angle Ow,, to the surface area of the hemihyper- 
sphere on which it lies. So the probability of a decision 
error due to an angular weight perturbation of Ow,, is: 

P(Decision Error) = Ow,,/r. (8 )  

For practical applications, the probability of a decision 
error should be expressed in terms of the weight pertur- 
bation ratio as opposed to the angular weight perturba- 
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tion. Given a weight perturbation ratio, the angular per- 
turbation is a random variable which, depending on the 
orientation of the perturbation vector with respect to the 
original weight vector, will have a value in the range: 0 
5 Owp I sin-' (6W). In this case, the probability of a 
decision error is computed by replacing Ow, in (8) by its 
expected value, Ow,: 

- 

P(Decision Error) = &/a. (9) 
The next task is to find an expression for 8, in terms 

of the weight perturbation ratio. The geometry of the 
problem is depicted in Fig. 4 where 4 denotes the un- 
known angle between Wand A W. From the figure, we see 
that OwP can be expressed in terms of 4, I W 1 ,  and I A W 1 
as follows: 

e w p = t a n - ' ( j ~ w I s i n m / ( / w I  + I A W / C O S ~ ) )  
(10) 

= tan-' (6Wsin +/(I  + ~ W C O S  4)) (11) 

= tan-' (6Wsin 4) ,  for 6~ << 1. ( 1 2 )  

Using tan-' x = x for small x 

Om, = SW sin 4, for small 6W. (13) 

We now have an expression for the random variable 
Ow, in terms of the weight perturbation ratio and the ran- 
dom variable $. Assuming the weight perturbation ratio 
is known, we find the expected value of 

= GWE(sin +} ,  for small 6W. (14) 

Glanz [8] showed that the probability density function for 
the random variable 4 (the angle between two randomly 
oriented variables in ( n  + 1)  space) is given by 

to be: 

f$(cp) = ( K , / f G + I )  sinn-'(o, 0 < cp < a (15) 

where K,, is defined in (3). Using this probability density 
function for the random variable 4, Winter [9] found that 
for large n ,  the expected value of sin 4 is very close to 
one. Briefly, his steps were as follows: 

sin (o ( K , / K , , + ' )  sin"-' (o d p  

@of# 

= ( K n / K , + ' ? 2 ~ / n .  (16) 
Stirling's approximation can be used to show that: 

K,,/K, + = ( 2 a / n ) - " ' ,  for large n. (17) 

So for large n ,  E {  sin ] = 1 and 
- 
Ow, = SW, for small 6W. (18) 

Substituting this expression for in (9), we conclude 
that the probability of an Adaline decision error resulting 
from a given weight perturbation ratio can be approxi- 
mated as the weight perturbation ratio divided by a: 

P[Decision Error] = 6W/a. (19) 

Fig. 4. For a given weight perturbation ratio, the value of Ow depends 
on the value of the random variable +: Ow, = tan-' ( 1 A W  I si:$/( I W 1 
+ ( A W I  cos 6)). 

This approximation is based on the assumptions that n is 
large and 6 W is small. 

VI. DECISION ERRORS DUE TO INPUT ERRORS 
In a network of Adalines, the outputs from the Adalines 

of one layer are the inputs to the Adalines of the next layer 
(see Fig. 2). This means that Adaline decision errors of 
one layer become input errors to the Adalines of the fol- 
lowing layer. For this reason, it is necessary to under- 
stand the effect of input errors on the input-output map- 
ping of an Adaline. In this section, we find the probability 
that two input vectors X and X, are mapped into opposite 
output categories by an arbitrary weight vector W. Al- 
though X, is itself an input vector, we view it as a pertur- 
bation of the input vector X and say that a decision error 
occurs whenever X and X, are mapped into different cat- 
egories. 

Let X and X, be input vectors of dimension ( n  + 1 ). 
The component of X and X, which corresponds to the bias 
input is fixed at a value of + 1; the other n components of 
X and X, are variables which take on values of either + 1 
or - 1. The Hamming distance between two binary-val- 
ued vectors is defined to be the number of components for 
which the two vectors differ in value. If X and X, are sep- 
arated by a Hamming distance of h (0  I h 5 n ), then 
the vector X, can be thought of as the vector X with h 
errors. The probability that X and X, are mapped into op- 
posite output categories by an arbitrary weight vector W 
is the probability of an Adaline decision error due to h 
input errors. If the tip of W is drawn from a uniform dis- 
tribution over the surface of a hypersphere centered at the 
origin in n + 1 space, then it is straightforward to show 
that this probability is given by O,,/a, where Om, is the 
angle between the angle between X and X,: 

P(Decision Error) = Omp/a. ( 2 0 )  

The angle Om, is easily computed using the fact that the 
dot product of two vectors is equal to the product of the 
magnitude of the two vectors and the cosine of the angle 
between them: 

Oxup  = cos-' ((X * XJ/(IXl IxpI)). ( 2 1 )  

Both X and X, have magnitude ( n  + 1 ) I / '  and the dot 
product of the two vectors is n + 1 - 2h, where h is the 
Hamming distance between X, and X: 

e,, = COS-' (1 - 2 h / ( n  + 1 ) ) .  (22) 
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Substituting this expression for OXu, in (20), we find the 
probability that two input vectors, separated by a Ham- 
ming distance of h,  are mapped into opposite output cat- 
egories by an arbitrary weight vector: 

P (Decision Error) 

= ( 1/a) cos-' ( 1  - 2 h / ( n  + 1)) 

5: (~/a) [ 4 h / ( n  + 1 ) 1 ' / ~  
(23)  

(24) 

( h  <e n + 1) 

where the last approximation uses cos (8) = 1 - 8 2 / 2 ,  
for small 8. 

For the purpose of expressing the probability of a de- 
cision error in terms of the input perturbation ratio, imag- 
ine that the inversion of h components of X is accom- 
plished by adding a perturbation vector A X  to X 

X, = X + A X .  (25) 
Let x i ,  x,,, and Axi  denote the ith component of X ,  X,, and 
A X ,  respectively. Then 

Since X and X, differ in h components, the magnitude of 
A X  is ( 4 h ) ' / 2 .  So the input perturbation ratio 6X result- 
ing from h input errors is: 

6X I A X I / l X l  = [ 4 h / ( n  + l)]'". (27) 

Comparing this expression with the approximation for the 
probability of a decision error due to h input errors (ap- 
proximation (24 ) ) ,  we see that the probability of an Ada- 
line decision error due to an input perturbation ratio of 6X 
is approximately : 

P(Decision Error) 5: 6 X / a .  (28) 
We conclude (compare (28) and (19)) that the probability 
of a decision error is approximated as the perturbation ra- 
tio divided by a; it makes no difference whether the per- 
turbation ratio describes an input perturbation or a weight 
perturbation. 

VII. DECISION ERRORS IN THE PRESENCE OF BOTH 
WEIGHT PERTURBATIONS AND INPUT ERRORS 

In the previous two sections, we have found the prob- 
ability that an Adaline makes an error due to either a 
weight perturbation or to input errors. However, if both 
the weight and input vectors are perturbed then it is not 
obvious how to deterinine the net effect of the two per- 
turbations. In this section we establish a method for find- 
ing the probability of an Adaline decision error due to a 
combination of weight perturbations and input errors. 

Comparing the results of the last two sections, it is clear 
that a given perturbation ratio results in the same error 
probability regardless of whether it refers to an input per- 
turbation or a weight perturbation. This suggests that 
when both types of perturbation are present, the proba- 

I I 
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bility that the perturbed Adaline makes a decision error 
(with respect to the original Adaline) can be found by 
considering both perturbations to be of the same type and 
then finding the expected net perturbation ratio. 

Consider an Adaline with both input and weight per- 
turbations. We can describe each of the perturbations in 
terms of the angle between the perturbed and unperturbed 
vectors. Let 8, be the angle between X and X,,, and let 
Ow, be the angle between Wand W,. Since both pertur- 
bation types have the same effect on the probability of 
error, the input perturbation can be considered as an ad- 
ditional weight perturbation (see Fig. 5 ) .  To do this, we 
first perturb (rotate) the original weight vector by the an- 
gle Ow, and call the resulting vector W,. Next, we perturb 
Wp.by the angle dXu,. This results in the doubly perturbed 
weight vector W,,. The net angular perturbation to the 
weight vector is given by the angle between Wand 
W . Depending on the relative directions of the pertur- 
bations, the net angular perturbation wi-ary between 
IOw,, - 8,1 and lOwP + O m p i .  Let 8wpp denote the 
expected value of the net angular perturbation given both 
the weight perturbation ratio and the input perturbation 
ratio. Then the probability that the perturbed Adaline 
makes a decision error with respect to the original Adaline 
(i.e.,  the probability that the output category to which W 
maps X is opposite to the output category to which W, 
maps X,) is: 

,'I 

- 
P(Decision Error) = 8w,,p/n. (29) 
- 

An expression for Ow,,,, must now be found in terms of 
the input and weight perturbation ratios. For small per- 
turbation ratios, the angular perturbation is approximately 
equal to the perturbation ratio. Thus, we will find the ex- 
pected value of the net perturbation ratio and use this as 
the expected value of the net angular perturbation. For 
this purpose, consider two randomly oriented vectors P I  
and P 2 ,  of fixed magnitudes in ( n  + 1 ) space. Let 4 be a 
random variable which denotes the angle between P I  and 
P2,  and let P be the vector sum of PI and P2.  Then the 
magnitude of P is a random variable and can be expressed 
as a function of the random variable 4 as shown below: 

I /2 
IPI = (IPIl2 + IP2I2 - 21PlI (Pzl c o s ( a  - 4)) . 

(30) 
The expected value of I P I is found by multiplying the 
expression for the magnitude of P by the probability den- 
sity function of 4 (see (15)) and integrating over the range 
of 4: 

I /2 
- 2 p I (  IP2( cos (a - 4) &. ( 3 1 )  

For large n, sinn-' (p) is close to 0, except when p is 
close to a / 2 .  This means that for large values of n,  there 
is a high probability that 4 has a value close to a / 2 .  When 
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Fig. 5 .  The input perturbation can be considered as an additional weight 
perturbation. The original weight vector W is first perturbed (rotated) by 

' 8  O h  02 0:3 0:4 2.5 

weight oerturbation ratio - .  
the weight perturbation angle Ow,, and then perturbed by the input per- 
turbation angle This results in the doubly perturbed weight vector 
Wpp. The net angular perturbation is given by Owww, the between 
Wand Wpp. 

Fig. 6.  Probability of Adaline decision error versus weight perturbation 
ratio for various input perturbation ratios. The results are shown for Ada- 
lines with 99 variable inputs. The continuous curves represent the prob- 
ability of error as given by (36) and the data points depict the experi- 
mental frequency of error. For Adalines with 99 variable inputs, one 
input error corresponds to an input perturbation ratio of 0.2, four inpui 
errors to an input perturbation ratio of 0.4, and eight input errors to an 
input perturbation ratio of 0.57. 

= n /2 ,  cos ( ?r - CP = 0- Hence, the integral above 
can be approximated as: 

a reference weight vector and a reference input vector 
were randomly chosen. The weight vector was chosen 
from a uniform distribution over the surface of a hyper- 

input vector was chosen from a uniform distribution over 
the 2" binary-valued input vectors. The weight vector was 
then perturbed in a random direction by the desired 

* ( K , / K , +  I )  sin"-' ( c p )  dp (32) 
< Y J sphere centered at the origin in ( n  + 1)  space, and the 

1 

(33) 

Equation (33) can be used to determine the expected mag- 
nitude of the net perturbation resulting from two indepen- 
dent perturbations. Let 6X be the input perturbation ratio 
and let 6W be the weight perturbation ratio. The plan is 
to regard both perturbations as weight perturbations. The 
input perturbation is converted to an equivalent weight 
perturbation by scaling the input perturbation ratio by the 
magnitude of the weight vector. Using (33), the expected 
magnitude of the net perturbation is: 

,?(magnitude of net perturbation) 

= [(&XI Wl)2 + ( 6 W I W I ) 2 y 2 .  (34) 
So the expected net perturbation ratio is approximated as 
the square root of the sum of the squares of the input per- 
turbation ratio and the weight perturbation ratio: 

(35) 
Using this approximation for the expected net perturba- 
tion ratio as an approximation for the expected net angular 
perturbation and substituting into (29), we find that the 
probability of an Adaline decision error due to an input 
perturbation of 6X and a weight perturbation ratio of 6 W 
is: 

P(Decision Error) = ( l / n )  [(SXf + (6W?]I". 

E(net perturbation ratio) = [ ( s x ~  + ( A W ) ~ ] " ~ .  

(36)  

VIII. SIMULATION RESULTS ON ADALINE SENSITIVITY 
A computer simulation was run to determine the rela- 

tive frequency of an Adaline error as a function of various 
combinations of weight and input perturbations. To do so, 

amount and the desired number of errors were introduced 
in the input vector. The output category to which the ref- 
erence weight vector mapped the reference input vector 
was compared with the output category to which the per- 
turbed weight vector mapped the perturbed input vector 
to determine whether or not the perturbations resulted in 
an Adaline decision error. This procedure was repeated 
18 OOO times for each data point. 

Data was generated for Adalines with various numbers 
of inputs. Fig. 6 shows a comparison of the computer 
generated data and the theoretical results for Adalines with 
99 variable units. The continuous curves represent the 
theoretical results whereas the data points depict the com- 
puter-generated experimental results. Each curve shows 
the probability of an Adaline decision error as a function 
of weight perturbation ratio for a specific input perturba- 
tion ratio. The input perturbation ratio associated with 
each error curve is given in terms of the number of input 
errors. The input perturbation ratio for an Adaline with n 
variable inputs and h input errors is given by (27). For an 
Adaline with 99 variable inputs, one input error corre- 
sponds to an input perturbation ratio of 0.2, four input 
errors correspond to an input perturbation ratio of 0.4, 
and eight input errors correspond to an input perturbation 
ratio of 0.57. 

The approximation for the probability of an Adaline er- 
ror (36) assumes a large number of inputs as well as small 
weight and input perturbation ratios. From Fig. 6, we see 
that the agreement between theoretical and experimental 
results is good for weight and input perturbation ratios 
less than 0.5. Perturbation ratios in this range are most 
important from a practical standpoint. Although the re- 
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sults shown in Fig. 6 apply to Adalines with 99 variable 
inputs, we found good agreement between theoretical and 
experimental results for Adalines with as few as 9 vari- 
able inputs. 

IX. PROBABILITY OF MADALINE OUTPUT ERROR DUE 
TO WEIGHT ERRORS 

Our final goal is the determination of the sensitivity of 
a network of Adalines to changes in the weights. For this 
purpose, consider a fixed Madaline network with arbi- 
trarily chosen weights as a reference network. A per- 
turbed network is generated from the reference network 
by adding randomly generated perturbation vectors (of 
desired magnitude) to the original weight vectors associ- 
ated with each of the Adalines in the network. The mag- 
nitudes of the random perturbation vectors are chosen so 
that all Adalines have the same weight perturbation ratio. 
In this section, we find the probability that a selected out- 
put of the perturbed network differs from the correspond- 
ing output of the reference network. 

It is straightforward to compute the probability of error 
for a first-layer Adaline (i.e., the probability that the out- 
put of a first-layer Adaline in the perturbed network is 
different from the output of the corresponding first-layer 
Adaline in the original network). The same inputs are pre- 
sented to both networks, so the only source of error in the 
first-layer Adalines is weight perturbation. According to 
(19), the probability of error for a first-layer Adaline PEI 
is approximately equal to the weight perturbation ratio di- 
vided by a: 

PE1 = 6W/a. (37) 

The outputs of the first-layer Adalines serve as inputs 
to the second-layer Adalines. This means that the Ada- 
lines of the second layer and all subsequent layers are sub- 
ject to input errors as well as weight perturbations. So for 
I > 1, the probability of error PEI for an Ith layer Adaline 
is a function of both the weight perturbation ratio for the 
network and of the input perturbation ratio for the Zth 
layer. The number of input errors to the Ith layer is the 
same as the number of output errors from layer 1 - 1. 
Assuming that the weight vectors of the n I -  I Adalines on 
layer 1 - 1 are independent, the probability that exactly 
k of these Adalines make output errors is computed using 
the binomial distribution with parameters nI - I and PEI - I : 

P (  k output errors on layer Z - 1 ) 

= (nI-]!/(k!(n/-] - k)!))  (PE,-])' 

(38) . (1 - PE 
/ - I  

The probability of error for an Adaline on layer 1 of the 
network can be computed by conditioning the error event 
on the number of input errors to the Adaline and then ap- 
propriately summing the resulting conditional probabili- 
ties. For example, let PEI l k  denote the conditional prob- 
ability that an lth layer Adaline of the perturbed network 
makes an error given that k of its n I -  I inputs are in error. 

The input perturbation ratio resulting from the k input er- 
rors is (4k / (n lP l  + 1))'12. Using (36), we find: 

PE,,' 5: ( l / ~ )  [4k/(n/-1 + 1) + (6WT] '12 .  (39) 
The probability that a selected Zth layer Adaline makes an 
error is found by weighting PEI l k  by the probability of k 
input errors and summing over all possible values of k: 

PEI = c PEI (,P(k output errors on layer 1 - 1) 

where nI- I is the number of Adalines on layer ( I  - 1 ). 
For convenience, we will refer to (37)-(40) as the bi- 

nomial approximation (this name is due to the use of the 
binomial distribution in (38)). Note that if we want to use 
the binomial approximation to estimate PE, (the proba- 
bility of error for a selected output of a perturbed network 
with L layers), we must first find PEI ,  PE2, - - , 
PEL- I .  An analytic expression for PEL cannot be ob- 
tained. Numerical values of PE, can be determined by 
computer, but this is a tedious process. For this reason, 
it seems appropriate to derive an easily computable ap- 
proximation to PE,. 

We now present a slightly less rigorous approach for 
evaluating network sensitivity to weight changes which 
results in a simpler approximation for PE,. As before, the 
probability that a first-layer Adaline makes an error is ap- 
proximated by: PEI = 6 W / r .  Given that there are nl 
Adalines on the first layer and assuming the weight vec- 
tors of the first-layer Adalines to be independent, the ex- 
pected number of input errors to the second layer is nlPEl . 
If we substitute nlPEl for the number of input errors h in 
(27), we arrive at the following approximation of the in- 
put perturbation ratio for layer 2: 

(41) 

The second approximation follows from the assumption 
that nl  is large. The net perturbation ratio for the Adalines 
of the second layer is approximated by the square root of 
the sum of the squares of the input perturbation ratio and 
the weight perturbation ratio: 

the net perturbation ratio for layer 2 

ni -  I 

(40) 
k = O  

AXlayer2 5: [4PElnl/(nl + 1)]1'2 = [4PEl]112. 

= [ ( 6 W y  + 4PE1]1/2. (42) 

Recalling that PE2 = ( 1  /r) (net perturbation ratio for 
layer 2) and substituting 6W/a for PEI,  we find the fol- 
lowing approximation for PE2: 

PE2 = (AW/a) (1  + 4 / ( ~ 6 W ) ) ~ / ~ .  (43) 
This sequence of approximations can be repeated to find 

PE3 from PE2, then again to find PE4 from PE3, * - * , 
and so on. Propagating the probability of error from one 
layer to the next in this manner, it is found that PEI, the 
probability that the output of a lth layer Adaline is in error 
is approximately: 

PEI = 6 W / r ( l  + P(1 + P(-*-(l 
112 1/2 112 112 1/2 

+ P ( 1  + P )  1 -3 1 1 (4) 
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where 

p 2 4/(7r&W) (45) 
and the number of square roots in the approximation for 
PE1 is 1 - 1. We will refer to (44) as the square root 
approximation. 

In comparison to the binomial approximation, the 
square root approximation is easy to evaluate and is in- 
dependent of the number of Adalines per layer. In order 
to illustrate the dependence of the binomial approxima- 
tion on the number of Adalines per layer, we have used 
the binomial approximation to compute PEI for networks 
which have equal numbers of Adalines on each layer. An 
n input-per-Adaline Madaline is one with n inputs, n first- 
layer Adalines, n second-layer Adalines, etc. Fig. 7 com- 
pares the binomial approximation for networks with 99, 
199, and 499 Adalines per layer to the square root ap- 
proximation which is independent of the number of lay- 
ers. It is interesting to note that as the number of Adalines 
per layer increases, the binomial approximation becomes 
less and less dependent on the number of Adalines per 
layer. In fact, as the number of Adalines per layer in- 
creases, the probability of error as predicted by the bi- 
nomial approximation approaches the probability of error 
predicted by the square root approximation. This com- 
parison is shown for one-, two-, three-, and four-layer 
networks. The difference between the probabilities of er- 
ror for networks with 499 Adalines per layer and 99 Ada- 
lines per layer is more pronounced for small weight per- 
turbation ratios and for networks with many layers. Since 
the first-layer Adalines are not subject to input errors, the 
probability of error for the one-layer networks is indepen- 
dent of the number of inputs per Adaline. 

The main difference in the derivations of the square root 
and binomial approximations is the manner in which the 
probability of error is propagated from one layer to the 
next. In the derivation of the binomial approximation, we 
conditioned the error event for an Ith layer Adaline on all 
possible numbers of input errors to the Adaline. The con- 
ditional probabilities were weighted by the probabilities 
of the events on which they were conditioned and then 
summed. In the derivation of the square root approxima- 
tion, we neglected the computation of the conditional 
probabilities and instead calculated the probability of er- 
ror for the 1th layer Adalines based on the expected num- 
ber of input errors to the 1th layer. 

In summary, we have derived two approximations for 
the probability of a Madaline output error as a result of 
weight errors. Both approximations were derived by prop- 
agating the probability of error through the network from 
one layer to the next. The binomial approximation (37)- 
(40) is the most accurate but requires evaluation by com- 
puter and is dependent on the number of Adalines per 
layer. As the number of Adalines per layer increases, the 
probability of error approaches a limit and is essentially 
independent of the number of Adalines per layer. Fig. 7 
suggests that this limit is given by the square root approx- 
imation (44). The square root approximation is not only 
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Fig. 7. Comparison of the square root and binomial approximations for 
the probability of error for a single Madaline output as a function of 
weight perturbation ratio. The binomial approximation is shown for net- 
works for 99, 199, and 499 Adalines per layer. The square root approx- 
imation is independent of the number of Adalines per layer. 

much easier to use, but agrees very closely with the bi- 
nomial approximation for large numbers of Adalines per 
layer. 

In the next section, we compare the probability of a 
Madaline output error as predicted by the square root ap- 
proximation to the experimental frequency of Madaline 
error as found by computer simulation. 

X. SIMULATION RESULTS 
A computer simulation was run to obtain experimental 

results for comparison with the theoretical results of the 
previous section. The purpose of the simulation was to 
find the experimental frequency of error for a Madaline 
output as a function of the weight perturbation ratio. To 
do so, a randomly generated weight vector was assigned 
to each Adaline of the network. A perturbed network was 
then generated from this (reference) network by perturb- 
ing each of the weight vectors in some random direction 
by the desired amount. A randomly selected input vector 
was then presented to both the reference network and the 
perturbed network and the outputs of the reference and 
perturbed networks were compared. Each data point is 
based on over 4000 comparisons. 

The results of the simulation are contrasted against the 
probability of error as predicted by the square root ap- 
proximation (44) in Fig. 8. Fig. 8(a) shows the results for 
networks with 49 Adalines per layer and Fig. 8(b) shows 
the results for networks with 299 Adalines per layer. In 
both cases, results are shown for one-, two-, three-, and 
four-layer networks. The same four theoretical curves are 
drawn in each of the figures since the square root approx- 
imation is independent of the number of inputs per Ada- 
line. Comparing Fig. 8(a) and (b), we see that for the 
small weight perturbation ratios, the networks with 299 
Adalines per layer have a slightly higher experimental 
probability of error than the networks with 49 Adalines 
per layer. However, for weight perturbation ratios greater 
than 5 percent, the difference is negligible. It is interest- 
ing to note that the agreement between theoretical and ex- 
perimental results hold for weight perturbation ratios as 
high as 50 percent. 



STEVENSON er al. : SENSITIVITY OF FEEDFORWARD NEURAL NETWORKS 

I I 

79 

0.4sr . . . . . . , , , , 

weight perturbation ratio 

(a) 

.*. 
0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0.5 O / ' "  ' ' ' ' ' ' ' ' I 

weight perturbation ralio 

(b) 
Fig. 8. Probability of error for a single Madaline output as a function of 

the weight perturbation ratio. Theoretical results (shown by the contin- 
uous curves) are based on the square root approximation. Data points 
depict the experimental frequency of error for a chosen output. (a) Re- 
sults for Madalines with 49 Adalines per layer. (b) Results for Madalines 
with 299 Adalines per layer. 

XI. CONCLUSION 
In this paper, we have investigated the sensitivity of the 

input-output mapping of a feedforward layered network 
of Adaline elements (a Madaline) to errors in the weights. 
We began by analyzing the sensitivity of the Adaline to 
both input errors and weight errors. It was found that the 
probability of an Adaline decision error due to a combi- 
nation of input errors and weight errors can be approxi- 
mated as: 

P(Adaline Decision Error) 

( i / ~ )  [ (6xy + (6W?]'/i (46) 

where 6X and 6W are the input and weight perturbation 
ratios, respectively. In deriving this approximation, we 
assumed small weight and input perturbation ratios as well 
as a large number of Adaline inputs. It was found that 
agreement between theoretical and experimental results 
was good for weight and input perturbation ratios less than 
0.5 and for Adalines with as few as 9 inputs. 

The results on Adaline sensitivity were then applied to 
feedforward networks of Adaline elements. Two approx- 
imations were derived which predict the probability of er- 
ror for a single output of the network as a function of the 
percentage error in the weights. The binomial approxi- 
mation (37)-(40) is the most accurate but requires evalu- 
ation by computer and depends on the network size (the 
number of layers and the number of Adalines per layer). 

The square root approximation (44) is much easier to 
evaluate and is independent of the number of Adalines per 
layer. However, it is based on the assumption that this 
number is large. The square root approximation is re- 
peated below for convenience: 

PEL 5: 6 W / ~ ( l  + p(1 + p(*--(l + p(1 

where 
PEL 2 probability of error for a single output of an L- 

layer network with weight perturbation ratio 
6 w, 

6 4/(T6W), 
6W 2 weight perturbation ratio I A W I / I W 1,  

and the number of square roots in the approximation for 
PEL is L - 1. 

In Fig. 7 ,  we compared the probability of error curves 
resulting from the binomial and square root approxima- 
tions. Based on this comparison, we concluded that as the 
number of Adalines per layer increases (while the weight 
perturbation ratio and the number of layers remains con- 
stant), the probability of error as predicted by the binom- 
ial approximation approaches the probability of error pre- 
dicted by the square root approximation. As long as there 
are enough Adalines per layer so that the difference be- 
tween the probabilities of error predicted by the two ap- 
proximations is "negligible," the probability of error is 
essentially independent of the number of Adalines per 
layer. The minimum number of Adalines per layer re- 
quired for this independence assumption to hold depends 
on the weight perturbation ratio and on the number of lay- 
ers in the network. The smaller the weight perturbation 
ratio and the greater the number of layers, the greater the 
number of Adalines per layer there must be before the 
probability of error becomes "independent" of the num- 
ber of Adalines per layer. 

A computer simulation was run to find the experimental 
frequency of error for an output of a Madaline with weight 
errors. A comparison of the experimental and theoretical 
data was illustrated in Fig. 8. Provided the number of 
Adalines per layer was sufficiently large (on the order of 
100 or more), the agreement between the theoretical and 
experimental data was excellent. Good agreement was ob- 
tained even when the number of Adalines per layer was 
as small as 49. The agreement between theoretical and 
experimental results was found to hold for weight pertur- 
bation ratios as high as 50 percent. 
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