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The Time-Sequenced Adaptive Filter 

Abstract-A new form of adaptiye filter  is proposed  which is especially 
suited for the estimation of a class of nonstationary signals. This new filter, 
called the tim&sequenced adaptive filter, is an extension of the least 
mean-square error (LMS) adaptive filter. Both the LMS and time- 
sequenced adaptive filters  are digital filters composed of a tapped  delay line 
and adjustable weights,  whose  impulse response is controlled by an  adaptive 
algorithm. For stationary stochastic inputs the mean-square erior, which is 
the expected value of the squared difference between the  filter output and 
an externally supplied  “desired  response,” is a quadratic function of the 
weights-a  paraboloid  with a single fixed minimum  point  which can be 
sought by gradient techniques, such as the LMS algorithm: For nonsta- 
tionary inputs however the minimum point, curvature, and orientation of 
the error.surface could be changing  over  time. The time-sequenced  adap- 
tive filter is  applicable to  the estimation of, that subset of nonstationary 
signals having a recurring (but not  necessarily  periodic) statistice char- 
acter, e.g., recuping pulses in  noise. In this case there  are a finite number 
of different paraboloidal error surfaces, also recurring in  time. 

The time-sequenced ‘adaptive filter uses  multiple Sets, of adjustable 
weights. At each. point in  time, one and  only one  set of weights is selected 
to form the, filter output and to be adapted  using the LMS algorith. The 
index of the set of weights  chosen is synchronized  with the &urring 
statistical character of the  filter input so that each set of weights  is 
associated with’ a single error surface. After many adaptations of each set 
of weights, the minimum  point of each error surface is reached. resulting in 
an optimal time-uarying filter. For this procedure,  some a priori knowledge 
of the filter input is required to synchronize the selection of the  set of 
weights  with the recurring statistics of the  filter input., For pulse-type 
signals, this a priori knowledge  could be the location of the pulses  in  time; 
for signals with periodic statistics, knowledge of the period is sufficient. 

Possible applications of the time-sequenced  adaptive filter include  elec- 
trocardiogram enhancement and electric load  prediction. 

I. INTRODUCTION 

A SIGNAL-enhancing  technique  for  statistically  sta- 
tionary  signals  based  on  conventional  least  mean- 

square (LMS) adaptive  filtering  has  been  proposed [l]. 
This  technique yields a  substantial  reduction in back- 
ground noise but  often at the  expense of considerable 
signal distortion at moderately low signal-to-noise  ratios 
(SNRs). This  paper  demonstrates  that  by  modeling  certain 
signals as nonstationary  stochastic processes, an optimally 
time-varying adaptive  filter may be derived which can 
significantly  outperform  the  comparable LMS adaptive 
filter.  Applications of this  technique  include  electrocardio- 
gram  enhancement and electric  load  prediction. 
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An adaptive  transversal  filter  consists of a  tapped  delay 
line  connected  to  an  adaptive  linear  combiner  that  adjusts 
the gain of (or  “weights”)  the signals derived from  the  taps 
of the delay line  and  combines them to  form  an  output 
signal. A minor  extension of the  adaptive  transversal  filter 
includes  a  separate  input which is fixed. This  input  is 
multiplied by a  “bias weight” and  then summed with the 
other weighted signals to form  the  output. A bias weight is 
often used  when the  filter  input  and desired response have 
nonzero means. 

The  input signal vector Xj  of the  adaptive  linear  com- 
biner is defined  as 

x 7 = [ 1  J XJ xi-, * *  * x j - ( * - l ) ]  T . (1.1) 

The  input signal components  are assumed to  appear 
simultaneously  on  all  input lines at  discrete times indexed 
by the  subscript j .  The weighting coefficients or multiply- 
ing  factors wo, w,; * -,wn are  adjustable.  The weight vector 
W is 

W T =  [ wo w1 w2 * . * w,] T .  ( 1 4 
The  output yj is equal  to  the  inner  product of Xj  and W. 

y.=XTW= w’q.. 
J J  (1.3) 

The  error c j  is  defined  as  the  difference between the 
desired  response dj (an  externally  supplied  input  some- 
times called the  “training signal”) and the  actual  response 
Yj : 

E . =  d . -XTW=d - WTXj. A 

J J J  J ( 1 -4) 
In adaptive  filtering  applications  the desired response  is 
usually composed of some underlying signal to be  esti- 
mated plus additive noise uncorrelated with both  the signal 
and the  filter  input. 

Assume that the, sequence of pairs {( d j ,  Xj)}y= is a 
stochastic process which need not  be  stationary.  The expec- 
tations i n .  this paper will be  taken over the  ensemble 
described by this stochastic process. The  correlation  matrix 
at time j ,  defined by 

Rj =E[ . , 4T]  (1.5) 

is  assumed to be  positive  definite. The cross-correlation 
vector is defined  by 

PJ = E [  d jX , ] .  ( 1 -6) 

We  will be  interested  in  the  mean-square  error  at timej, 

EARL R. FERRARA,  JR., MEMBER,  IEEE, AND BERNARD  WIDROW,  FELLOW, IEEE 

0096-3518/81/0600-0679$00.75 0 1981 IEEE 



680 IEEE TRANSACTIONS  ON ACOUSTICS, SPEECH,  AND  SIGNAL  PROCESSING, VOL. ASSP-29,  NO. 3, JUNE 198 

Fig. I .  
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Time-varying error surface  for a nonstationary process. 

given  by 

tj = E [ (  d j  - ?‘x,) ] 2 

=E[d,’] - 

It can be shown [3] that the optimal weight  vector y 
which  minimizes the mean-square error is  given by 

y* = R i  IC. ( 1  -8) 

This vector IT* will be called the “Wiener weight vector” 
at  timej. If Rj  and Pj were known, performance could be 
optimized by choosing Y. according to (1.8). More  often, 
however, these statistics are  not known and an adaptive 
approach must be used for approximating Y. Note  that 
the error surface (1.7)  is a quadratic function of the weight 
vector at any  particular time and  can  be pictured as a 
concave hyperparaboloidal surface, a function that never 
goes  negative. Choosing y. = Y* corresponds to operation 
at the minimum of the error surface at time j .  With 
nonstationary  inputs, the minimum point,  orientation,  and 
curvature of the error surface could be changing over  time, 
as shown in Fig. 1. If,  however, the desired  signal and 
input signal  vectors are  jointly  stationary then the statistics 
R j  and P, are constant,  and in accord with  (1.7) only a 
single error surface need be considered. In this case gradi- 
ent search techniques may be used to find the minimum. 
One method that has proven to  be very  useful  is the 
Widrow-Hoff LMS algorithm [3]-[5],  based on the  method 
of steepest descent [6],  [7]. According to this method,  the 
“next” weight  vector ?+ I is equal to the “present” weight 
vector WJ plus a change proportional to  an estimate of the 
negative gradient of the  error surface: 

= y. +2pjxj. (1.9) 

Signals composed of recurring pulses  in noise are highly 
nohstationary due  to their time-varying statistical char- 
acter. The  LMS  adaptive filter, being unable to track such 
rapidly varying nonstationarities, would  essentially con- 
verge to the best time-invariant filter. For these  signals an 
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Fig. 2. Statistically  recurring  signals. 

adaptive  filter which could exhibit a rapidly varying im- 
pulse response may perform in a vastly superior fashion to 
the LMS adaptive filter. The utility of time-variable filtering 
to electrocardiographic signals has been  suggested  in [SI. 

In Section  I1 an extension of the LMS  adaptive filter 
better  able to track rapidly varying nonstationarities is 
proposed.  This new  filter,  called the “time-sequenced adap- 
tive  filter,”  converges to a time-varying solution and is 
especially suited to the filtering of signals in noise having a 
recurring (not necessarily periodic) statistical nature. A 
comparison of optimal time-varying and time-invariant 
filtering is presented for randomly shaped pulses  in  noise. 
Applications  are considered in  Section 111. 

11. THE TIME-SEQUENCED ADAPTIVE FILTER 
This section describes an extension of the LMS  adaptive 

filter that allows the weight  vector to change freely  in time 
in order to accommodate rapid changes in the statistics of 
a certain class of nonstationary signals,  while  allowing  slow 
precise adaptation.  The signals to be considered are those 
whose statistical properties recur at various points in  time, 
called regeneration times. In particular we require that the 
autocorrelation matrix R j  and cross-correlation vector p/  at 
any  particular time are elements of some finite set and  that 
they occur in identical sequence after each regeneration 
time. The times between regenerations are allowed to be 
variable. Thus  the entire sequence of R matrices and P 
vectors will not in  general be used  each  cycle,  since the 
occurrence of a regeneration starts  the sequence over. 
Examples of signals  which  may be modeled as statistically 
recurring are shown  in  Fig. 2 and include electrocardio- 
grams, radar signals, and  trains of randomly shaped pulses. 

Each member of the (R, P )  sequence described above 
possesses a corresponding error surface described by (1.7). 
Thus there exists a sequence of recurring error surfaces as 
in Fig. 1. The time-sequence adaptive filter proposed here 
uses a multiplicity of weight  vectors-usually one corre- 
sponding to each error surface. Since the number of differ- 
ent error surfaces for a statistically recurring process is 
finite, the number of weight  vectors  is also finite. These 
weight  vectors  will be  denoted by G)Ll&,, qK2, . . . . At 
each station in  time, one and only one weight  vector  is 
selected, based on the error surface present at  that time, 
and  adapted toward the minimum of the error surface by 
the LMS algorithm. When the minimum point is reached, 
after many adaptations, the weight  vector  is identical to the 
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Fig. 3. The time-sequenced ada tive filter. (a) Conceptual realization as 
a bank of LMS adaptive fi8ers. (b) Symbolic  representation. 

Wiener weight vector for that error  surface, yielding a  filter 

Fig. 4. Comparison of time-sequenced and conventional LMS perfor- 
mance  in estimating notched triangle  pulses.  (a) Underlying signal. (b) 
Desired  response.  (c) Filter input. (d) Conventional LMS filtering.  (e) 
Time-sequenced  filtering. 

s no* 
DESIRED  RESPONSE d] 

output which is  a best least  squares match  to the-desired 
output at that station  in time. Thus each weight vector 
becomes an expert  in  fiitering  a  particular  portion of the 
interval between regenerations. For this  procedure  an ex- 
ternal input  to the  filter, called the sequence number  and 
denoted b j ,  is required  to  determine  the  appropriate weight 
vector to  use  at time j .  Thus when dj = i the ith  error 
surface  is  assumed  present, so that  the ith weight vector is 
used to form  the  filter  output and  then  adapted  toward  the 
bottom of its  error surface. In order  to set the sequence 
number,  some a priori knowledge of the  filter  input  is 
required. For pulse-type signals this a priori knowledge 
could  ,be  the  location of the pulses in  time;  for signals with 
periodic  statistics (soriletimes called cyclostationary [9]), 
knowledge of the period is sufficient. 

Mathematically  the time-sequenced adaptive  algorithm 

and 

where Wi(j) is the value of theith weight vector at  timej. 
A different p. is used for each weight vector in  order  to 
keep the percent loss in steady-state  performance  due  to 
the  adaptive process, referred to  as  the  “misadjustment,” 
the  same  for  each weight vector. A  conceptual block dia- 
gram of the time-sequenced adaptive  filter  is shown in Fig. 
3(a), iilustrating  the prdcess as  a  bank of LMS adaptive 
filters. Fig. 3(b) shows the symbolic representation  adopted 
for  the time-sequenced adaptive  filter. 

By using a  different weight vector for each error  surface, 
the time-sequenced adaptive  filter  eliminates  the  Wiener 
weight vector tracking  error [5] present when the LMS 

Fig. 5 .  Block diagram for a  signal enhancing experiment. The noises no 
and n I are uncorrelated. The output is an estimate of the signals. 

adaptive  filter  is used with nonstationary signals. However, 
a  different  sort of error  is  introduced  in  some  applications 
due  to  uncertainty or  jitter in d j  at  any  particular time. The 
performance of the time-sequenced adaptive  filter  in  the 
face of this  uncertainty  is analyzed in [2].  If the sequence 
number  can  be chosen perfectly, then it  can  be shown that 
the time-sequenced adaptive  filter converges to  the  optimal 
time-varying filter whefi adaptation  is  berformed slowly 
enough. This  and  other  properties  are discussed in [Z]. 

Although the time-sequenced adaptive  filter may seem tcr 
be a costly approach  to signal processing, the  amount of 
computing involved is essentially the  same  as  that  for  a 
single LMS adaptive  filter.  This is because, in  either case, 
one vector dot  product  and  one weight vector adaptation is 
required with each input  data point.  The  number of input 
data samples required for the time-sequenced adaptive 
filter  to converge to  its time-varying solution is greater 
than that  required  for  the LMS adaptive  filter  to converge 
to  its essentially time-invariant  solution, since adaptation  is 
effected for each weight vector only once  per  regeneration 
rather  than for every data sample. However, the  increased 
performance  resulting  from  the time-varying solution  more 
than  compensates for this drawback  in  many  applications. 
The  amount of memory  required by the time-sequenced 
adaptive  filter is of course increased due  to  the multiple 
weight vectors. 

Fig. 4 shows the  results of a  computer  simulation  com- 
paring the performance of the time-sequenced and conven- 
tional LMS adaptive  filters  in  the signal enhancer of Fig. 5. 
The  concept  of  the  adaptive signal enhancer  is described in 
detail  in [l]. All  weight vectors in this example  contained 
75 weights plus  a  bias weight. The  underlying signal, s, to 
be estimated was the  recurring  notched  triangle  pulse of 
Fig.  4(a). White  Gaussian noise was added  to  this signal 
and used as the  filter input xi, shown in Fig. 4(c). A  similar 
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Fig. 6. A signal  composed of randomly shaped  pulses 

n n  
Fig. 8. Simulation comparing time-sequenced and conventional LMS 

enhancing  for a randomly shaped  pulse train with  increased  noise. 
Measured  improvement of time-sequenced  over  conventional LMS is 
3.7 dB. (a) Underlying  waveform. (b) Filter input. (c)  Time-sequenced 
enhancing. (d) Conventional LMS enhancing. 

Fig. 7. Simulation comparing time-sequenced and conventional LMS 
enhancing for a randomly  shaped  pulse train. Measured  improvement 

waveform. (b) Filter input. (c)  Time-sequenced  enhancing. (d) Conven- 
of time-sequenced  over  conventional  LMS is 7.2 dB. (a) Underlying 

tional LMS enhancing. 

waveform  having  noise independent  from  the  first was 
used as  the desired response, Fig. 4(b). Although  the signal 
components of the desired response and filter input were 
identical in  the  experiment, they did  not need to be. 
Assuming perfect knowledge of the  regeneration times, the 
output of the time-sequenced adaptive  filter  after conver- 
gence is  shown in Fig. 4(e). Note  that  the  notch is clearly 
visible. This  experiment was repeated using the LMS adap- 
tive filter. The filter output  after convergence  is  shown in 
Fig. 4(d). Note  that  the  notch  has been smoothed  beyond 
recognition. This  distortion  due  to  smoothing is typical of 
the difference between the  optimal  time-invariant and 
time-varying filters when pulse-type signals are  to be esti- 
mated. 

Instead of a fixed  pulse shape  as in the previous  exam- 
ple, let the pulses have a  randomly varying shape  as  in Fig. 
6. Each  pulse  is generated by  choosing  two independent 
random variables (e.g., z, and z2  in  Fig. 6 )  as the heights of 
the pulse edges, then connecting these values by a  straight 
line. These random variables are chosen independently 
from pulse to pulse. Simulations were performed  to mea- 
sure the difference in performance between the  optimal 
time-varying and time-invariant filters in estimating  the 
underlying pulse train  in white noise. A time-sequenced 
adaptive filter was  used to learn the  optimal time-varying 
filter. A conventional LMS adaptive filter was  used to 
learn  the  optimal time-invariant filter. The  actual  underly- 
ing waveform  was  used as  the desired response for  both 
adaptive filters. Although a known desired response would 
not be generally available, this example  provides a  funda- 
mental  comparison of time-varying and time-invariant ap- 
proaches. Similar performance  can  be achieved  with a 
noisy desired response  by adapting more  slowly. The re- 
sults of a  simulation  are shown in Fig. 7. Fig. 7(a) is  the 

underlying waveform to  be  estimated.  Independent white 
noise  was added  to this waveform to form the filter input 
Fig. 7(b). The  output of the time-sequenced adaptive filter 
after convergence  is  shown in Fig. 7(c) and  that of the 
LMS  adaptive filter in  Fig. 7(d).  The desirability of a 
time-varying filter is clear. The average square  error over 
30  cycles  was  measured for  both filter outputs  to quantify 
the increase in performance. The time-sequenced filter 
reduced the average square  error by 7.2 dB  as  compared to 
the LMS filter. 

Fig. 8 shows the results of another simulation  with 
increased noise power. The measured performance of the 
time-sequenced filter was  3.7 dB  better  than  that of the 
LMS filter in this case. 

111. APPLICATIONS OF THE TIME-SEQUENCED 
FILTER 

One  application of the time-sequenced adaptive filter is 
to fetal electrocardiography. The  interfering  maternal elec- 
trocardiogram is adaptively cancelled by  synchronizing the 
adaptive  filter with the  maternal  heart beat. Then,  a  second 
adaptive filter is synchronized  with the fetal heart  beat to 
enhance  it against the  remaining  background noise. Sub- 
stantial  improvement in performance over conventional 
LMS adaptive filtering has been demonstrated [2 ] .  

The time-sequenced filter can also be used to predict 
future samples of stochastic processes which  have a peri- 
odic  character. The sequence number  input is easy to 
generate if the period of the process  is available, e.g.,  when 
the process is known to cycle daily or  annually. One 
possible application is to electric load forecasting [IO]. In 
this  application  a utility desires to predict power consump- 
tion one-half hour  to  one week  in the  future based on past 
values of consumption. Load prediction is necessary to 
supply electric energy in  a secure and economic manner. 
Although  power consumption exhibits a clear daily cycle, 
the  actual  demand  during  a  particular  hour varies from day 
to  day. The time-sequenced adaptive filter can  be used as  a 
predictor for this problem  as  illustrated in Fig. 9. Samples 
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Fig. 9. An adaptive predictor for electric load forecasting. 

of the power consumption, x ( k ) ,  taken every half-hour  are 
used as the  desired response of the  adaptive  filter.  These 
same samples are  also used as  the  adaptive  filter  input,  but 
first they are delayed by  the  number A of half-hour  incre- 
ments for which prediction is desired. If the  adaptive  filter 
has n weights, it  will adjust itself to  form  the  best  least 
square  predictor of the  present load x ( k )  based on x ( k -  
A),  x ( k - A -  1); 1 . , x ( k - A - n +  1). Call  this  estimate of 
the  present given the  past i ( k / k -  A). A time-sequenced, 
rather  than  conventional LMS, adaptive  filter is used since 
the  statistics of power consumption vary approximately  on 
a 24-hour cycle so that  a  different weight vector should  be 
used for each half-hour of the  day.  The  sequence  number 
of the  adaptive  filter can be  generated by the time of day. 
To predict  the  load A half-hours  in  the  future  a slave filter 
is  required.  The slave filter is also  a time-varying transver- 
sal filter whose weights have been previously calculated 
and stored by the  adaptive  filter.  The  sequence  number 
input to the slave filter  determines which of the  precalcu- 
lated weight vectors it should use at  that time. Since the 
filter  input  and  sequence  number of the slave filter  are 
advanced A time units with respect to the  adaptive  filter, 
the slave filter  output is the  desired  estimate  for  the  load A 
units  in  the  future,  denoted i( k + A / k )  in Fig. 9. 

IV. CONCLUSION 
The time-sequenced  adaptive  filter  described  in this paper 

is  a new form of adaptive  filter  particularly  suited  to  the 
optimal  estimation of those  nonstationary signals having a 
recurring  statistical  character.  The  principle  advantages of 
the  method  are  that  it  does  not  require  that signal statistics 
be  known a priori and  that  its  computational  requirements 
are  modest. Possible applications of time-sequenced filter- 
ing  include  fetal  electrocardiogram  enhancement  and elec- 
tric  load  prediction. 

By conceptualizing  the time-sequenced adaptive  filter  as 
a  bank of LMS adaptive  filters, several convergence prop- 
erties of the time-sequenced filter  can be derived [2]. When 
the  sequence  number,  required to choose  the  appropriate 
filter in the  bank, is known the  time-sequenced  filter  con- 
verges to  the  optimal time-varying Wiener filter. 

One suggestion for  further  research is to modify  the 
adaptive  algorithm to incorporate  the  information  learned 
about  the  optimal  solution  at  one  point in time with that 
learned at other  points  in time. In  this way a  faster 

converging time-sequenced adaptive  filter  could be real- 
ized. 
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