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the recursive fdter d o e s  not have enpugh degrees of  freedom to repre- 
sent  the Wiener filter)  then d and b will not,  in general, converge to 
a and b since the  assumptions  in (3) and (4) are  that  the  correlation 
functions  correspond  to  those  of  the Wiener filter. If,  for  example 
H (z-’), the  filter to  be  modeled, is  given instead  by 

H(z-’) = a 
1 - bz-’ 

then 
d = a  

(1 - b 2 ) b  a b = - - -  - b. 
a 1 - b 2  

That is, the  equiliirium values for $ and 8 are  the Wiener filter 
settings.  Thus  the recursive algorithm, (7) and (8), converges to the 
Wiener fdter. 

Now let us return to (7) and (8). Because none of the  statistics  are 
known a priori, (9) and  (10)  replace  them  by estimates. The  estimates 
of RXX, Rxd are unbiased. The  estimates of Rxy, R yy, and Rd y are 
possibly biased but  more  importantly, are functions of A and B .  

Johnson  and  Larimore assume, and are supported  by  simulation 
results,  that  the  steady  state behavior of the mean weights of the 
system are statistically  independent of  the  present  data. This assumption 
is implicit  in being able  to solve equation @) explicitly  for  the  station- 
ary point  of  the  algorithm  in [ I]. Thus  by  their  two  examples  they 
have supported  the  hypothesis  that ( 5 )  and (6 )  give the values to which 
the  means of (9 )  and (10) (the recursive LMS algorithm) converge. The 
recursive LMS algorithm  does  not converge to  the  least mean-square 
error  filter in this example since (7) and (8) do  not converge to  the 
MMSE weights for a and b. This  does  not imply that  the  algorithm is 
faulty since the  examples of the above letter  do  not  legitimately con- 
sider unconstrained LMS filters. The problem of finding  the  best  filter 
within  a given structural class is not  the basis for deriving a Wiener 
fdter.  The Wiener filter can be derived by using the  orthogonality 
principle,  making  the  error  orthogonal  to all of  the  data.  Equation @) 
is not  the  orthogonality  principle since we should require 

E[€(k)X( l?]  = 0, for aui 4 k. 
It is suspected that  the second  condition 

E [ ~ ( k ) y ( l ? ]  = 0, for alii 4 k - 1 

implies the  fnst whenever the  feedback  structure  has  sufficient degrees 
of freedom  to  represent  the Wiener fdter. 

It is important  to  note  that seeking the Wiener fdter  implemented  in  a 
specified recursive structure  is  the  motivation in [I]. The resulting 
filter  may not provide the minimum  mean  square  error  in  all cases. The 
object was to obtain  a  filter  that  reduces  mean-square  error.  The 
resulting algorithm is of interest, since in  many cases it  does this,  and it, 
rather  than  its  motivation, should be  the  subject  of discussion. The 
point  here is that  for  the case presented  in  the  above  letter,  the Wiener 
fdter  cannot  be  implemented  for  the severe set  of  constraints  on  the 
problem.  This is evidenced by the minimum-mean-square  error occur- 
ring at  a  point where the  error is not orthogonal to  the  data. Since the 
recursive adaptive  algorithm  attempts  to set the  error  orthogonal to  the 
data,  for this example  it provides a higher mean-square  error. 

Among the  features of the  adaptive recursive LMS filter is that  when 
given sufficient degrees of freedom, i.e., two  feedforward  and  two 
feedbackward  adaptive  taps to model  the  two pole-two zero fvred 
parameter  network,  then  the  system converges to the  proper  tap values. 
This is documented in Table I. In addition, if the  adaptive  algorithm 
is given three  feedforward  and  three  feedback  taps,  then  it converges 
more  rapidly to  a  solution  with smaller mean  square  error,  but  with 
different  tap values (Table II). Interestingly,  the  transfer  function  of 
the recursive adaptive  filter  matches  the  network behg modeled.  That 
is, given additional degrees of  freedom,  the  algorithm  produces  a 
redundant pole-zero pair which cancels. The same  property  holds  for 
higher order  filters.  On the  other  hand,  as  the  number  of  taps  in  the 
adaptive  system is reduced  below  that  required to provide a  solution, 
the  degradation  in  performance is not  the  dramatic  threshold behavior 
implied in  the above  letter.  Instead,  for higher order systems, it is 
gradual, becoming  more severe as fewer taps  are used, as  simulations 
have shown. 

In most  adaptive  system  applications,  the  order of the system re- 
quired is not known.  The designer allocates  more  taps to  the  problem 
than  the minimum  number  sufficient to provide  a  solution.  The  limita- 

TABLE I 
MODELIYG H ( Z )  = (0.05 - 0.402-’):(1 - 1.13142-’ + 0.252.’) W I T H  T H E  

R E C U R S I ~ E  A D A P T I V E  FILTER W I T H  Two FEEDFORWARD AYD Two 
FEEDBACK TAPS; kl = k~ = -4.3 X WEIGHTS INITIALLY ALL  ZERO 

8192 
16384 
24576 
32768 
40960 
49152 
57344 
65536 

.04% -.3633 -.2968 -.3816 -.3845 -.0573 

.0520 -.3649 -.2701 -.4497 -.4431 .0713 

.OM3 -.3676 -.255¶ -.4805 -.4530 .1273 

.OM3 -.X79 -.2552 -.4926 -.4613 .1466 

.OM2 -.3682 -.2538 -.4967 -.4639 .1539 

. O M 0  -.X83 -.2533 -.4982 -.4648 .1%6 

.OM0 -.X84 -.2531 -.4988 -.4652 .1576 

. O M 0  -.3684 -.25B -.4989 -.a53 .1580 

.2096 

.om 

.0378 

.0143 

.0049 

.W18 

. m 7  

.COO3 

TABLE 11 
MODELING H ( Z )  = (0.05 - 0.40Z-1)/(1 - 1.1342-’ + 0 . 2 W 2 )  WITH T H E  

R E C U R S I V E  ADAPTIVE FILTER WITH THREE FEEDFORWARD ASD THREE 
FEEDBACK TAPS; k l  = k 2  = -4.3 X WEIGHTS INITIALLY ALL  ZERO 

8192 

16384 

24576 

32768 

40960 

49152 

57344 

65536 

.0460 

.Os8 

.OS03 

. 0 518 

. M 2 4  

.0497 

.0497 

.OM2 

-. 374 

-.381 

-.393 

-.393 

-.ma 
-.398 

-. 400 

-.NO 

-.636 

-.E17 

-.945 

-1.035 

-1.082 

-1.107 

-1.121 

-1.126 

..295 .4984 

..095 .3652 

.056 . 2 M B  

.141 .1545 

.194 .OS07 

.223 .0416 

.238 .0205 

.244 .om0 

“wrrect 
value” .OS -.40  -1.131 .25 

tion  pointed  out  does  not  present  a  restriction  in  practice and should 
not  detract  from  the large  class of  problems  which  the processor can 
handle.  Determination of that class  is an area of active  research. 

The  two  simulations  presented  in [I] were  representative of a large 
number  of  runs  under diverse. inputs  and initial conditions.  The adap  
tive network was  given a  sufficient  number of taps  capable  to  handle 
the problems. Significantly,  it did provide  effective  solutions.  Revious 
work  in this  area [ 2 1  indicated  that  an  adaptive recursive fdter was not 
technically feasible. Our  results  have  demonstrated  otherwise. 
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Comments on “An Adaptive Recursive LMS Filter” 
BERNARD WIDROW AND JOHN M. MCCOOL 

The usual application of the “least mean-square” or LMS algorithm  of 
Widrow and Hoff [ 11 is to nonrecursive or feedback-free  adaptive sys- 
tems. An example of such a  system  is  the  adaptive transversal filter, 
which has  been shown to be capable, when its  operation is governed  by 
the LMS algorithm, of adjusting itself to mininiize meansquare  error, 
[ 21 , [ 31 where  “error” is defined  as  the  difference  between  the  fdter’s 
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output  and a “desired  response” or  externally  supplied  training signal. 
The drawback  of  the nonrecursive  LMS filter is that  it has  a  finite  im- 
pulse  response and can realize only  zeros of a digital filter  transfer 
function.’ 

In  the above letter,’  a recursive adaptive  filter based on the LMS al- 
gorithm has been described.  This  particular  filter is structurally ca- 
pable of realizing both zeros and  poles of a  transfer  function  and 
of  having an  infinite  impulse  response. It  thus promises to be a useful 
and  powerful tool in certain  practical  applications,  indicated below. 
We must  regrettably  report, however, that  the mathematical  derivation 
of the recursive LMS algorithm  presented in the  letter is incorrect  and 
that,  contrary  to Feintuch’s  claim, the  algorithm  does  not in general 
minimize  mean-square error.3 

Feintuch specifies the recursive filter by the  equation 

In vector notation  he  obtains 

y ( n )  = ATX(n) + BTY(n).  ( 2 )  

He defies  the  error as the  difference  between the desired response d(n)  
and  the  actual response y ( n )  

Since all algorithms  in  the LMS family [4 ]  -[ 191 are based on optimiza- 
tion by the  method of steepest  descent, the  next  step required is dif- 
ferentiation  of (4) to  obtain  the gradient. In taking  this  step,  however, 
Feintuch argues that  the covariance terms RXY,  R ~ Y ,  R y y  are  con- 
stants when differentiated  with  respect  to  the  feed-forward  and  feed- 
back  weights A and B. This argument is incorrect because these  terms 
are  functions of A and B.  The gradient  expressions given by his equa- 
tions ( 5 )  and (6)  are thus also incorrect  and the derivation  of his 
remaining (7)-(11) invalid. 

Let us examine  the recursive  LMS filter  from  another  point  of view. 
Fig. 1 shows  a  nonrecursive  filter comprising an adaptive transversal 
filter whose impulse response is controlled by adjusting its  weghting 
coefficients.  This  filter is an “LMS filter” when the coefficients are ad- 
justed  through  the LMS algorithm. Fig. 2 shows a recursive filter 
comprising two adaptive transversal filters, one providing a  feed-forward 
network  and  implementing  zeros  and the  other providing a  feedback 
network  and  implementing poles.‘  When the LMS algorithm is used to 
adjust  the weights of both filters, the result is a ‘‘recursive LMS filter” 
identical to  the  one described by Feintuch. If the  input signal and 

domain of of fixed  fdters;  they are  nevertheless useful in the analysis of 
1 The terms  “zero,”  “pole,”  and  “transfer function” belong to  the 

adaptive Filters, though  their meaning  in this  context  cannot  yet be 
precisely defined. 

PP. L. Feintuch,Proc.  IEEE,vol. 64, pp, 1622-1624, Nov. 1976. ’As well as is known at  the present  time, the algorithm minimizes 
some  function of the error.  Experimental evidence indicates that  this 
function may  in  general  be unimodul, but  what it is remains  a  subject 
of research. The mean-square error  function is in  general multimodal. 
When using the recursive LMS algorithm, in some cases mean-square 
error  apparently is minimized but in others it clearly is not. Under 

initially set  at  the  minimum  mean-squareerror  solution, to cause the 
certain  conditions we  have  observed the recursive LMS algorithm, 

weights to vary from  this solution  and  stabilize elsewhere. 

feedback, whose only  function  would be gain control, which is accom- 
‘The  unit delay  in the  feedback  network  eliminates  instantaneous 

plished by the feed-forward weights. 
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Fig. 1. Nonrecursive LMS Filter. (a) Simplified representation.  (b) 
Schematic diagram. 
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Fig. 2. Recursive LMS Filter. (a) Simplified representation.  (b)  Sche- 
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Fig. 3. The  adaptive  line  enhancer. 
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Fu. 4. Performance of a recursive adaptive line enhancer. 
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desired  response of  this  filter are statistically  stationary, it is  clear that 
the covariance matrix of the  inputs  to  the weights  of the  feed-forward 
filter is fixed  and  independent of the weight  values,  while the covari- 
ance  matrix of the  inputs  to  the feedback  filter is dependent  on  the 
values of both the  feed-forward  and  feedback  filter weights. The  latter 
dependence is characteristic of adaptive  feedback systems. 

The recursive adaptive  filter was studied more than  ten years ago by 
P. E. Mantey  as a  doctoral  student  at  Stanford. He showed  that  the 
mean-squareerror  function was not  quadratic  and was sometimes 
multimodal. Mantey  did not pursue his work because of the unpredict- 
ability of this  filter  and  the  difficulty of understanding its behavior. 
Instead he devised a recursive adaptive process  using the desired  re- 
sponse as  feedback signal rather  than  the  filter  output [ 171. His  goal 
was to achieve constancy  in  the covariance terms  and  to  obtain  ‘a 
quadratic  mean-squareerror  function  with  a linear gradient.  Feintuch’s 
mathematical  derivation  corresponds to Mantey’s  second algorithm 
rather  than to  the recursive LMS algorithm. 

Despite the foregoing ‘qualifications  Feintuch’s work is an  important 
contribution. He has  stimulated new interest in the recursive LMS 
filter  and  has shown experimentally that  it performs well as  a  substitute 
for  the nonrecursive  transversal filter in the self-tuning adaptive  filter 
or “adaptive  line enhancer” described  by  Widrow et  al. [ 181 and  shown 
in  Fig. 3. In  our  work  with  the line enhancer, we  have confirmed 
experimentally that low-level narrowband signals in noise can be 
effectively detected by a recursive LMS filter with poles close to  the 
unit ~ i r c l e . ~  Fig. 4 shows, for  example,  plotted on linear  scales, the 
input  and  output power spectral  densities  of  a signal before  and  after 
processing  by a  filter with three zeros and  two poles. The measured 
improvement in  signal-to-noise ratio, with only five adaptive weights, 
is approximately 40 dB. We are thus confident  that the recursive LMS 
filter  has  important  potential  applications in the fields of signal detec- 
tion,  instantaneous  frequency  estimation [ 191, and  spectral analysis. 
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Reply‘ by Paul L. Feintuch’ 

I should like to thank Professor  Widrow and Dr. McCool for their 
comments  and  simulation  examples which agree with mine [ 11. I too 
have found  that  the device is stable  and  has  potential  for signal detec- 
tion  and  spectral analysis applications. However, I must disagree with 
their claim that  the analysis is incorrect. A heuristic  derivation was pre- 
sented  for which the  key assumptions were  clearly pointed out. What is 
appearing  here is a  differing viewpoint rather  than  mathematical  error. 
There is  no question that when  viewed as in the above letter,  the  output 
correlation  statistics are functions  of  the weights. I was  aware of  this 
by  referencing  White [ 21. However, the  approach,  instead, was that  of 
a Wiener filter  for which a priori statistical  information is used to dic- 
tate  the filter  parameters  rather than  the reverse. For  the fixed param- 
eter case, it is certainly valid to view the problem in this way. The 
procedure was to assume that we have the Wiener filter  and  are using its 
input  and  output statistics to  determine  the  parameters in the recursive 
digital filter  structure. At t h i s  stage the correlation  matrices are not 
functions  of  the  filter weights and are thus  constants when forming  the 
gradient vectors. The  gradient search procedure removes the  need to 
invert  matrices,  and  the  problem  reduces to  one of  obtaining the 
statistics,  just  as it did in the transversal LMS case. The open  question, 
as  was noted, is the validity of replacing the  output correlations, which 
the Wiener filter  would  produce, by estimates using the  instantaneous 
output values. These  estimates  are biased at  the  outset  but have asymp 
totic  properties which,  though  not  yet  understood,  must be  desirable to 
produce  the  simulation  results that we  have both been observing. The 
heuristic  derivation was presented to show that a logical procedure 
suggested the processor structure,  rather than its being an adhoc hook- 
up. I suspect that when the  properties  of  the assumed estimates are 
understood,  the behavior  of the  entire  filter will be understood  as well. 

I have  also  carefully examined Mantey’s results [ 3 ]  and  do  not see 
how  his  work  could lead to  my algorithm.  Instead,  his  results  indicate 
that  an adaptive  feedback  structure  could not have  desirable stability 
or  steady-state  properties. He thus pursued  network modeling  in a 
feedforward  manner  only,  terminating  further research on  a recursive 
adaptive  filter. 

The processor is by no means  completely  understood  and its analysis 
is complicated. However, the device produces  exciting  results. 
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The  Analysis of a Third-Ordet System 
VIMAL SINGH 

Abstrrrct-An example of third-order nonlinear feedback system is 
considered. Its previously known sector for global asymptotic stabmty 
is (0, 11. In the present letter, several sectors for global Gmptot ic  
stability are obtained. 

We-consider a  third-order  nonlinear  feedback  system whose  linear 
part G(s) is given by 
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