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accounts  for  the phase shift between the reflected component 
and  the direct ray of Eo(n) in (6). 

The received  E-field at the  nth element is obtained by 
adding  the reflected components to the direct ray component 

L 
GR(n,e) = Edn) + E R ( k n )  

2=1 

- exp [ - ’F (n - E) sin ($ - e)] (12) 

where Eo(n) is given  by (10) and ER(l,n) by (1 1). 

pulse due to a  unit  scatterer at e k  is given  by 
The E-field input  to  the  nth  array element on the mth 

GAIN (m,n,k) = GAok)GR(n,e) eXp 4?Ti(m - 1) [ E. 
(13) 

where S is the distance the  radar moves  between  pulses. 
An array of these GAIN functions is computed  in  the 

program  for M pulses (m), N array elements (n), and K 
far-field clutter  scatterers at uniformly spaced angular 
intervals (0,) within )90” from  the  array  normal.  This 
array of GAIN’s can be  used  in simulating an  adaptive 
AMTI  radar  or  in  computing  the covariance matrix of  the 
clutter field. 

In  the results presented here, simulation of a  random 
clutter field  was not used. Earlier studies have shown that 
the response of the system  can be calculated from  the 

covariance matrix more efficiently and  that  the  computed 
response follows a  simulation very  closely. Elements of the 
covariance matrix are  obtained by averaging products of 
the  GAIN’s 

M,,,,,p = E(V,*V,*,,*) 
K - a GAIN* (m,n,k) GAIN (rn’,n’,k) (14) 

assuming uniformly distributed  clutter, i.e., equal  intervals 
between the 0,. 

The steering signals  used  in the  analysis  and  the assumed 
echo from a target  in  the main beam did  not include the 
near-field scattering effects. This is a  good  approximation 
in most practical cases,  where the near-field scattering  has  a 
minor effect on the main beam gain, but significantly 
changes the sidelobe structure. 

k =  1 
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A Comparison of Adaptive  Algorithms  Based on 
the Methods of SteePest  Descent and Random 
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Search 
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Abstract-This paper compares the performanse characteristics of three 
algorithms useful  in adjusting the parameters of adaptive systems: the dif- 
ferential (DSD) and  least-mean-square (LMS) algorithms, both  based  on 
the method  of steepest descent,  and the linear random search (LRS) 
algorithm, based  on a random search procedure  derived from the Dar- 
winian  concept  of “natural selection.” The LRS algorithm is presented 
here for the fust time.  Analytical  expressions are developed that define 
the relationship between rate of adaptation and  “misadjustment,” a 
dimensionless  measure of the difference between actual and optimal 
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performance due to noise in the adaptive prooess. For a fked rate of 
adaptation it is shown that the LMS algorithm, which is the most 
efficient, has a misadjustment proportional to the number  of adaptive 
parameters, while the DSD and LRS algorithms have  misadjnstments 
proportional to the square of the number of adaptive parameters. The 
expressions  developed are  veri64 by computer  simulations that demon- 
strate the application of the three algorithms to system  modeling  prob- 
lems, of the LMS algorithm to the cancelling of broadband interference 
in the sidelobes of a receiving antenna array, and of the  DSD and LRS 
algorithms to the phase control of a transmitting antenna array. The 
second application introduces a new  method of constrained adaptive 
beamforming whose performance is not  significantly  affected by element 
nonuniformity. The third application represents a class of problems to 
which the LMS algorithm in the basic form described  in this paper is 
not applicable. 
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T 
I. INTRODUCTION 

HE APPLICATION of adaptive techniques has 
allowed development during  the  past fifteen  years of 

high-performance receiving antennas with a capability of 
automatically eliminating sidelobe interference. In such 
antennas  the main beam is steered in  a predetermined 
direction  in search of  expected  signals,  while interference 
received outside the  main beam causes the  formation of 
nulls in the  radiation  pattern [ l]-[lO]. New types of 
adaptive  antennas are also currently being  designed that 
will automatically seek and track desired signals. This 
application promises a  further significant enhancement of 
antenna capabilities. 

Many  adaptive  antenna systems are codgured by con- 
necting the elements of an  antenna  array to a multichannel 
adaptive filter. In its general form an  adaptive filter is a 
device that  adjusts  its  internal  parameters  and optimizes 
its performance according to the  statistical  characteristics 
of its  input  and  output signals. The  internal filter adjustment 
is made through  a series of variable settings controlled by an 
adaptive  algorithm. 

The  purpose of this  paper is to analyze and  compare  the 
properties of certain  algorithms available for use with 
adaptive filters. Two basic methods of adaptation  are 
considered,  those of  steepest  descent and  random  search. 
Theoretical performance comparisons of algofithms based 
on these methods, including the Widrow-Hoff LMS 
algorithm  and  a new linear random search algorithm,  are 
made by relating  quality of solution to speed  of adaptation. 
Results of computer  simulations  are presented to provide 
experimental confirmation of the theoretically predicted 
performance of the  algorithms  and to illustrate  their use in 
adaptive  antenna  applications. 

II. CHARACTERISTICS AND TERMINOLOGY 
OF THE ADAPTIVE PROCESS 

The  theoretical analyses of this  paper  are based on  the 
particular  form of adaptive  transversal filter illustrated in 
Fig. 1. This finite impulse response (FIR) filter consists of 
a  tapped delay  line connected to  an adaptive linear combiner 
that adjusts  the gain of (or “weights”) the signals derived 
from  the delay line  and combines them to form  an  output 
signal.’ All of the  algorithms described in  this  paper  can 
be used to govern the  operation of the  adaptive linear 
combiner;  the LMS algorithm is restricted to this use. 

The  input signal vector X j  of the  adaptive linear combiner 
is defined as 

Xj’ p [ X l j  x,j - * XnJ? (1) 

The  input signal components are assumed to appear 
simultaneously on all input lines at discrete times indexed 
by the subscript j .  The weighting  coefficients or multiplying 
factors w1,wZ; * -,wn are adjustable,  as symbolized in Fig. 1 

7-1 9- 1 
TAPPED DELAY LINE 
WITH UNIT DELAYS 

ADJUSTABLE 

I ADAPTIVE 
ALGORITHM 

DESI  RED 
RESPONSE 

(a) 

1 
di 

(b) 
Fig. 1. Adaptive Uter consisting of tapped delay line connected 

to adaptive linear combiner. (a) Adaptive 6lter configuration. (b) 
Adaptive linear combiner with input and output terminology. 

by  circles with arrows  through  them. The weight vector Wis 

W T  p [wl w2 * .  * wn]? (2) 

The  output y j  is  equal to the  inner  product of X j  and W :  

y .  = X.TW = W’Xj. (3) 

The  error cj  is defined as the difference  between the desired 
response dj  (an externally supplied input sometimes called 
the  “training signal”) and the  actual response y j :  

~j dj - Xj’W = dj - WTXj.  (4) 

In adaptive  antenna systems the desired response may  be 
derived by various methods, one of  which is to inject a 
“pilot  signal” whose characteristics determine the “look” 
direction and frequency response of the main  beam [4]. 
Other  methods  are illustrated in Section VI. 

It is the  purpose of the  adaptive process to adjust  the 
weights of the  adaptive  linear combiner to minimize the 
mean square of the  error ej .  Let the  input signals X j  and 
desired response dj be statistically stationary.  During 
adaptation  the weight vector vanes, so that even with 
stationary  inputs  the  output y j  and  error .si will generally 
be nonstationary.  Care must thus be taken in  defining the 
mean square  error  for an adaptive system. The only pos- 

The adaptive linear combiner is “linear” only when the weighting sibility is an ensemble average, which a n  be established in 
coefficients are fixed; adaptive systems, like all-systems whose charac- 
teristics change with those of their inputs, are by nature nonlinear. the following manner- 
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The  adaptive process progresses recursively or by iterative 
cycles. At  the  kth  iteration let the weight vector be wk. 
Squaring and expanding (4) and letting W = wk yields 

E j 2  = dj2 - 2djXj'wk + Wk'xjxj'wk. (5)  

Now assume an ensemble  of identical adaptive linear 
combiners,  each  having the same  weight vector wk at  the 
kth iteration. Let  each  combiner  have individual inputs 
X j  and dj derived, respectively, from  stationary ergodic 
ensembles.  Each  combiner will produce an individual error 

represented by (5). Averaging ( 5 )  over the ensemble 
yields 

+ w k T E [ x j x j ~ w p  (6) 

Defining the vector P as the cross correlation between the 
desired response (a scalar) and  the X-vector then yields 

PT 4 E[d jXjT]  = E[djx t j   d jx2j  * djxnjlT. (7) 

The  input  correlation matrix R is  defined in terms  of the 
ensemble  average 

1 

L 
(8) 

This matrix is real, symmetric, and positive definite, or in 
rare cases positive semi-definite. The mean square  error 
t k  can  thus be  expressed as 

t k  4 E [ & j 2 ] ~ = w k  = E[dj2] - 2PTWk + wkTRwk. (9) 

Note  that  the mean square  error is a  quadratic function of 
the weights that  can be pictured as  a concave  hyper- 
paraboloidal surface, a function that never  goes negative. 
Adjusting the weights involves descending along  this surface 
with the objective of  reaching its unique  minimum point 
("the bottom of the bowl" [ l l ] ) .  Gradient  methods are 
commonly  used for this purpose. 

The  gradient vk of the mean square  error function with 
W = wk is obtained by differentiating (9): 

= -2P + 

w k  

The  optimal weight vector W*,  generally called the Wiener 
weight vector, is obtained by setting the gradient to zero: 

W* = R-'P. ( 1  1 )  

This equation is a matrix form of the Wiener-Hopf equation 

For the purposes  of  subsequent analysis it is convenient 
to reexpress the mean square  error  function (9) and  the 
gradient function (IO) in  more compact form. Substituting 

[12]-[14]. 

(1 1) in (9) yields the minimum  mean square  error: 

tmin = E[d j2 ]  - W*TP.  (12) 

Recombining (12) with (9) and (1 1 )  yields 

5.4 = t m i n  + vkTRvk (1 3) 
where 

vk wk - w * .  (14) 

The  gradient may be expressed in terms  of vk as 

vk = 2RVk. ( 1  5) 

If one assumes that  the R-matrix is positive definite, it 
may be  expressed in  normal  form as follows 

R = QAQ-' (1 6) 

where the columns  of the  square  modal matrix Q are  the 
eigenvectors of R and A is the  diagonal  matrix of  eigen- 
values. If Q is constructed to be orthonormal,2 then one 
may write 

Q - l  = QT. (1 7) 

Note  further that  the inverse of R is 

R-' = Q A M I Q - ' .  ( 1  8 )  

The mean square  error may thus be  expressed as 

<k = <min + vkTQAQTVk. ( 1  9) 

A new set of coordinates may  now  be  defined as follows: 

V' = QTv = Q-lv (20) 

and 
V'' = V'Q. (21) 

Substituting (20) and (21) into (19) then yields 

t k  = cmin + VklTAVk'. (22) 

The  transformation Q projects V into V'-that  is, projects 
V into primed coordinates. It can be  observed from (22) 
that, since A is diagonal,  the primed coordinates  must 
comprise the principal axes  of the  quadratic mean square 
error performance surface. The gradient expressed in 
primed coordinates  then becomes 

v k r  = 2Avk'.  (23) 

111. .THE M ~ O D  OF STEEPEX DESCENT 

The practical objective of the  adaptive process is to find 
a  solution to (1 1 ) .  One way of doing so would  be  by analytical 
means. An analytical solution, however,  would present 
serious computational difficulties  when the  number  of 
weights  was large or when the  input  data  rate was high. 
In  addition to the inversion of an n x n matrix, it  could 
require as many as n(n + 3)/2 autocorrelation and cross 
correlation measurements to obtain  the elements  of R 
and P.  Furthermore,  this process  would  have to be con- 
tinually repeated in most circumstances, where the  input 

This can always be done when R is positive  definite. 
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signal statistics would  be  slowly varying. For these reasons 
it is  more practicable to make use  of other recursive statistical 
estimation methods in devising algorithms for use in 
adaptive filters. 

A well known and proven  method for adjusting  the 
response  of an adaptive system  is that of steepest descent 
[l5], [16]. Adaptation by this method starts with an 
arbitrary initial value W, for  the weight vector. The 
gradient of the mean square  error  function is measured 
and the weight vector altered in accordance  with the 
negative of the value obtained.  This procedure is repeated, 
causing the  error to be  successively  reduced and  the weight 
vector to approach the optimal value. 

The method  of steepest descent can be described by the 
relation 

W,+l = W, + P(-V,> (24) 
where p is a  parameter  that  controls stability and  rate of 
convergence, and V, is the value  of the  gradient at a  point 
on the  error surface corresponding to W = W,. An 
expression for  the  gradient,  a linear function of the weights, 
is given  by  (15). Substituting this expression into (24) yields 

W,. 1 = W, - 2pRVk. (25) 

Subtracting W* from  both sides of (25) yields 

V,+,  = V, - 2pRVk = ( I  - 2pR)Vk.  (26) 

Equation (26) is a linear homogeneous vector difference 
equation whose solution characterizes the dynamic  be- 
havior  of the weight vector as  it begins at W, and, if the 
process  is  convergent,  relaxes toward W*. The solution of 
(26) is given  by 

v, = ( I  - 2pR)“,. (27) 

This  solution is stable (convergent) if 

lim ( I  - 2pR), = 0. (28) 

Since 
k + c o  

( I  - 2pR) = Q(Z - 2pA)Q-1 (29) 
and 

( I  - 2pR), = Q(I - 2pA))”Q-’ (30) 

condition (28) will  be  satisfied  if 

lim ( I  - 2pA), = 0. (31) 
k - t m  

Condition (31)  will  be  met  when 

11 - 2&[ < 1 (32) 

for p = 1,2, * .,n. Since all eigenvalues are positive, 

1 - > p > o  (33) 
&lax 

where La, is the largest eigenvalue of R.  Equation (33) 
gives the stable range for p. 

It is easily  shown that  in primed coordinates  the method 
of steepest descent  is represented by 

VL+ 1 = ( I  - 2pA) V,’ (34) 

whose solution is 

V i  = ( I  - 2pA)’Vo’. (35) 

For  the  pth coordinate one  may write 

up; = ( 1  - 2p~$up,’.  (36) 

Equation (36) represents a simple  geometric  progression for 
up,‘, starting  from  the initial condition up,’. The  pth 
geometric ratio is 

rp  = (1 - 2pIJ (37) 

An exponential  envelope  of  time constant z p  can be 
fitted to the geometric  sequence represented by (36). If the 
unit of  time  is  one iteration cycle, then 

1 1 rp = exp(-l/z,) = 1 - - + - - ... - (38) 

In practical adaptive processes p is chosen so that z p  is 
large compared to  one; the series  of (38) can  thus  be 
represented by its first two terms. Combining (38) with (37) 
gives a  formula for the pth time constant of the  method of 
steepest descent: 

T p  2 !  zp2 

(39) 

Transient  phenomena in the weights, as seen from (35) 
and (36), are simple  geometric  sequences along  the primed 
coordinates. Along the original unprimed coordinates, the 
same phenomena, represented by (27), are more complicated. 
Transients in the weights  themselves thus consist of sums 
of  geometric sequences, the  number of  time constants 
typically being equal  to  the  number of  weights. 

While transients are occurring in  the weights as they 
relax toward  the  optimal Wiener solution,  the mean square 
error undergoes changes. The expected error,  for W = W,, 
is  given  by (22). The weight transients, expressed in terms 
of V,‘, are given  by (35) .  A “learning curve”  showing  mean 
square  error as a  function of number of iterations k-can be 
computed by substituting (35) into (22): 

5, = emin + VofT(1 - 2pA)2kAVo’. (40) 

As long  as conditions (31) and (33) are met, the adaptive 
process will  converge on the minimum point of the mean 
square  error surface : 

lim t, = <mi,* (41) 
k+ co 

The mean square  error solution starts  at k = 0 with an 
initial value tmin + VoTAVO’, corresponding to V,’ = V,‘, 
and relaxes toward tmin. The relaxation process is a  sum of 
geometric  sequences  whose pth mode has  a geometric ratio 
of (1 - 2 ~ 1 ~ ) ~ .  Thus the mean square  error  learning curve 
has a pth mode  time constant of 

Learning  curves of computer simulated adaptive processes 
will be  presented  below. 
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These finite differences are exact for  the  quadratic t- 
function. 

. The  procedure illustrated in Fig. 2 requires that  the weight 
adjustment be altered while the  gradient measurement is 
being made. It is assumed that  no  time is spent at the 
nominal adjustment v k  but  that  equal  time3 is spent at 
v k  + 6 and vk - 6 .  The result is that  on  the average the 
mean square  error is greater by an  amount y than  it would 
have  been if the  adjustment  had remained at v,. A per- 
formance penalty thus results from  the weight vector 
alteration, 

The  quantity y can be calculated for  the one-dimensional 
quadratic <-function as follows : 

6 6  

w 
“k V 

Fig. 2. Gradient  estimation by derivative  measurement. Y =  + 6)’ + - 6)’ + 2Smin 
2 - - ‘ k i n  

If exact gradient measurements could be  made each 
iteration,  the  adaptive weight vector would  converge to the 
Wiener optimal weight vector. In reality, however, exact 
gradient measurements are  not possible, and  the  gradient 
vector must be estimated from  a limited statistical sample. 
The following sections describe two algorithms based on the 
method of steepest descent that use different techniques 
to obtain  the necessary gradient estimates. The first  uses 
differentiation and  requires  that finite perturbations be 
made in the weight vector. The second, the LMS algorithm, 
obtains  gradient estimates directly and without perturbing 
or  “dithering”  the nominal weight  vector adjustment. 

A .  Dlyerential Algorithm ’ 

One  way  of estimating gradient vectors is by the direct 
measurement of derivatives. Although  this technique is 
straightforward  and easy to implement, it  has been  largely 
overlooked in  the  literature  and is here analyzed in  detail. 
For convenience the resulting algorithm is designated the 
DSD (“differential steepest descent”) algorithm. 

1) Gradient estimation by derivative measurement: A 
single component of the  gradient vector can be measured 
in  the  manner  illustrated in Fig. 2. The curve representing 
the  parabolic mean square  error  function of a single 
variable is defined by 

<(vk) t k  = 1% + <rnin* 
2 (43) 

Its first and second derivatives are 

(44) 

The derivatives are numerically estimated by taking 
“symmetric differences” : 

= jJ2. (48) 

Notice that  the value of y depends only on 1 and 6 and 
not  on v,. A dimensionless measure of how much the 
adaptive system is perturbed each time the  gradient is 
measured, a  parameter  that may  be  called the  “perturbation” 
P, is defined as follows: 

(49) 

This is the average increase in  mean square  error normalized 
with  respect to the minimum achievable mean square  error. 

The  estimation of two-dimensional gradients may  now  be 
considered. In this case the R-matrix is  given  by 

and  the  <-function is 

5 = rOOv12 + rllvzz + 2rO1u1u2 + tmin. (51) 

When the  partial derivative of the error surface along 
coordinate u1 is measured, the  perturbation is 

P = r006z/tmin. (52) 

The  perturbation  for measurement along  coordinate u2 is 

P = r11621trnin. (53) 
Assuming that  equal time is required for  the measurement 
of each gradient  component  (that is, that 2N data samples 
are used for  each measurement), the average perturbation 
during  the measurement is given  by 

(54) 

If  one now  defines a general perturbation  for n dimensions 
as the average of the  perturbations of the individual 
gradient  component measurements, one  obtains 
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Since the trace of the R-matrix is equal to the sum  of its 
eigenvalues, and since the s u m  divided by the number of 
eigenvalues  is equal to the average  of the eigenvalues, the 
perturbation may  be  conveniently  expressed as 

Other  means of gradient measurement have  been  used  in 
practical systems. A weight can be perturbed or dithered 
sinusoidally, and  the cross correlation between the weight 
value and  the value of the performance function determined. 
All  weights can be  simultaneously dithered at individual 
frequencies and the gradient components  obtained by cross 
correlation. The  procedure of  Fig. 2 corresponds  to square- 
wave dithering. 

2) Gradient measurement noise: Gradients measured in 
the manner shown in Fig. 2 are noisy  because  they are 
based on differences in {-measurements that  are noisy. 
Each 5-measurement  is an estimate based on N error 
samples : 

. N  

(57) 

It is  well known that the variance in an estimate of the mean 
square  obtained  from N independent samples  is equal to 
the difference  divided  by N between the mean  fourth  and 
the  square of the  mean square. The variance in the estimate 
of 5 may  accordingly  be  expressed as 

var [ E ]  = 
E[&?] - (E[&j2])2 

N 

If g j  is normally distributed with  zero  mean and variance 
of 02, its mean fourth is 304, and the square of its mean 
square is 04. The variance in the estimate o f 5  is thus 

Note  that the variance  is proportional to the square of 5 
and inversely proportional to the number of data samples. 
It can  thus in  general  be  expressed as 

var [ Q  = - K t 2  

N 

where IC has  a value  of 2 for  an unbiased  Gaussian probability 
density. If the probability density is other than  Gaussian,  the 
value of I: is  generally  less than  but close to two. It is thus 
assumed  for the purposes of subsequent analysis that 

2r2 var [Q = -. 
N (61) 

The derivatives required by the gradient estimation 
technique of  Fig. 2 are measured in accordance with (46). 
The  error in the derivative estimate will  be a s u m  of two 
components that, since the samples  of the error cj  are 
assumed to  be independent, will also be independent. The 
variance of  each component is determined by (61). If it is 

process  is  close to convergence, and  that the weight vector 
remains near the minimum point of the mean square  error 
surface, then the two  components wdl have  essentially 
the same variances, and these  variances will  be additive. 
The variance in the estimate of the derivative,  using (46) 
and (61), may  be  expressed as 

When a gradient vector is measured, the errors in each 
component  are independent. The gradient noise  Vector Nk 
may thus be  defined  in  terms  of the true gradient vk and 
the estimated gradient 8,: 

vk vk + Nk. 
A 

. (63) 

Under the assumed conditions the covariance of the gradient 
noise  vector is thus given  by 

Y 2  

It is also useful to obtain an expression for the covariance 
of the gradient noise  vector  in primed coordinates: 

NL = Q-'Nk. (65) 

Since the covariance matrix of ATk is scalar, projecting into 
primed coordinates through the orthonormal  transforma- 
tion Q-' yields the same covariance for Nk' : 

cov [ N i l  = EIQ-lNJV,'Q] = % I. (66) 
* 2  

N6 

Near the minimum point of the mean square  error surface 
the covariance of the gradient noise  is  essentially constant 
and  not  a function of wk. 

3) Noise in the  weight vector: Adaptation based on noisy 
gradient estimates results  in  noise  in the weight  vector, 
The  method of steepest  descent  with  ideal gradients is 
represented  by (26). With estimated gradients this equation 
may  be rewritten as 

Vk+1 = v k  + p(-fk) = vk f /.f(-vk - Nk). (67) 

Substituting (15) and  combining  terms yields 

vk+1 = (1 - 2pR)Vk - pNk (68) 

a first-order vector difference equation with a stochastic 
driving function of -,uNk. Projection into primed co- 
ordinates may  be  accomplished  by premultiplying both 
sides  of (68) by Q-' : 

VL+1 = ( I  - 2pA)V; - pNL. (69) 

In steady state, after initial adaptive transients have  died 
out, V,' undergoes a stationary random process  in  response 
to the stationary driving function -pNL.  Since there is 
no cross coupling between terms  and the components  of 

assumed that the perturbation P is small, that the adaptive N i  are mutually uncorrelated, the components of vk' 
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will also be mutually uncorrelated, and  the covariance Thus (77) can be  rewritten 
matrix of Nk’ will  be  diagonal. To find this matrix one first 
multiplies both sides  of (69) by their own transposes: E[ VkfTA vk’] = - nptiin 

4Nh2 ‘ (79) 

V;, VLT = ( I  - 2pA) Vk’ VkIT(Z - 2pA) 
A useful parameter in  the design  of adaptive processes 

+ ,f2Nk’N,” - p(1 - 2pA)V,INk’= is the misadiustment M, which is defined as  the average 

- PN,‘VktT(I - 2pA). 

Taking expected  values  of both sides  yields4 

cov [ V,’] = ( I  - 2pA) cov [ V;](Z - 2 4 )  

(70) excess mean square error divided by the minimum  mean 
square error: 

-t P 2  COV EN,’]. (71) The misadjustment is a dimensionless  measure of the dif- 
ference  between adaptive performance and optimal Wiener 
performance as a result of gradient noise. In other words, 

Combining terms further yields 

COV [Vk’] = P2(4PA - 4P2A2)- COV [ N i l .  (72) it is a measure  of the cost  of adaptability. 

In practical circumstances the method of steepest  descent 
is  implemented  with a small value of p, so that 

Using (79) one can express the misadjustment for  the 
DSD algorithm as follows: 

pA << I.  (73) 

Neglecting the squared terms in (72) thus yields This formula is  simple and clear but can be more usefully 
expressed in terms of  time constants of the learning process 

Each gradient component measurement  uses 2N samples 
Using (66) one may now  write of  data. Each iteration involves n gradient component 

measurements and therefore requires 2Nn data samples. 
(75) The time constant z,,, is  given  by (42) in number of 

iterations. a basic “unit of  time.”  If one now defines a new 

COV [ V i ]  = A-’ COV [Nk‘]. 
4 (74) and  the  perturbation of the gradient estimation process. 

cov [V;] = - P t i i n  A- 1. 
4hrS2 

The components of Vk‘ are mutually uncorrelated but  not time constant T ~ m ~ e  whose basic unit is the data and 
all of the Same variance. The covariance of Vk can be  whose  value  is  expressed  in number of  data samples, then 

obtained from (75) by  using (1 8) and (20) : for the DSD algorithm 

2 T,,,, P 2nN~,-=.  (82) 
COV [Vk] = E[Qvk‘ViTQ-  ] - - 1 - d m i n  R-1 

4N6 ’ - (76) 
The new  time constant is  easily  related to real  time if the 

4) Misadjustment: Without noise in  the weight vector, 
adaptation by the method of steepest  descent  would con- 
verge to a steady-state solution at the minimum point of 
the mean square error surface. The mean square error 
would  therefore  be Smin. Noise  in the weight vector, however, 
tends to cause the steady-state solution to vary randomly 
about the minimum  point-that  is, to “climb the sides of 
the bowl.” The result  is an “excess” mean square error, a 
mean square  error that is greater than tmin. 

An expression for mean square  error in terms of V’ 
is  given  by (22), where the excess mean square error is 
VkrTAVk’. The average  excess mean square  error is 

E [  Vk”A v k ’ ]  = >bpE[(Up,’)2].  (77) 
p =  1 

sampling rate is known. 

misadjustment for the DSD algorithm (81) as 
Using the  perturbation formula (56) one can reexpress the 

Using (42) the time constant defined  by (82) can also be 
reexpressed as 

which  is  equivalent to 

From (75) one may write or 

2 av =L - 
(78) ;r (T:s)ai 

Combining (86) with (83)  shows the misadjustment to be 

adaptive cycles, VL and NL are uncorrelated. 
Note that since V,’ is affected  only by gradient noise from  previous 
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For the DSD algorithm, misadjustment is thus  pro- 
portional to the square of the number of  weights and 
inversely proportional to the perturbation. It is also in- 
versely proportional to the speed  of adaptation;  that is, 
fast adaptation results  in a high misadjustment. More 
specifically, the misadjustment is dependent  on the average 
reciprocal time constant of the learning curve  whose  time 
base is calibrated in number of data samples. Note that 
very fast modes  may dominate this average and cause an 
increase in misadjustment, while the  rate of  convergence 
will  remain  limited  by the slowest  mode. In other words, 
with disparate eigenvalues  in the R-matrix, the adaptive 
process ‘may  be aBcted wjth the misadjustment of its 
fastest modes Gut may  converge  only at the rate of its 
slowest  modes. With  equal  or closely  similar  eigenvalues, 
the process  is more efficient, and the misadjustment  is 
given  by 

In this case the learning curve has only one time constant, 

Misadjustment as defined here is a  normalized per- 
formance penalty resulting from noise  in the weight  vector 
and is a  stochastic. effect. In  an  actual adaptive system, 
where  the  weight  vector  is  deterministically perturbed to 
measure the gradient, another penalty accrues, the perturba- 
tion, also a  ratio of excess  mean square  error to minimum 
mean square  error.  The  total excess  mean square  error  can 
be  shown to be the sum of the “stochastic” and “deter- 
ministic” components.  The  total  misadjastment is thus 

Tmse. 

M,,, P M + P. (89) 

Adding these components yields 

The perturbation is a design parameter. Its choice  is 
optimized by differentiating (90) with  respect to P and 
setting the  derivative to zero. The result  is to make the two 
right-hand terms of (90) equal. The  optimal perturbation 
is thus 

Popt = w t o ,  (91) 

and the minimum total  misadjustment is 

The use  of the above misadjushent formulas in the 
design  of adaptive systems will  be illustrated in  Section V 
below. 

B. LMS Algorithm 

The LMS algorithm is an implementation of the method 
of steepest  descent that employs  a gradient estimation 

use is restricted to the adaptive linear combiner  of Fig. 1, 
where inputs X j  and dj are given. 

1) Gradient estimation, convergence, time constants: The 
error c j  of the adaptive linear combiner of  Fig. 1 is given 
by  (4). A gradient estimate may be  obtained by squaring 
the single  value of z j  and differentiating it as if it were the 
mean square error: 

> = 2 E j  . =  - 

Substituting (93) into (24) yields the LMS algorithm: 

= wj -I- 2j.lEjxj. (94) 

Since a new gradient estimate is obtained with  each data 
sample, an adaptive iteration is effected  with the arrival of 
each sample. The index k is thus replaced  with the  index j .  

The gradient estimate of (93) may  be implemented in a 
practical system without further squaring, averaging, or 
differentiation and is elegant in its simplicity and efficiency. 
All components of the giadient vector are obtained  from a 
single data sample without  perturbation of the weight  vector. 
Since the estimate is obtained  without averaging, it contains 
a large component of noise. The noise,  however,  is  averaged 
and attenuated by the adaptive process,  which acts as a 
low-pass  filter  in this respect. It is important to note also 
that  for a fixed  value  of W the estimate is unbiased: 

E[?J = -2E[zjXj]  = -2E[djXj  - XjXj’W]. 

(95) 

From (lo), the formula for the true gradient, this expression 
can be rewritten as 

E[?j] = -2(P - RW) = V .  (96) 

Proofs of  convergence of the LMS algorithm  have 
appeared in the literature [4], [I l l ,  [17]-[20].5 These 
proofs show that the algorithm is stable when 

m n a x  > P > 0 (97) 

which  is the same as the condition for stability of the method 
of  steepest  descent in general, given  by (33). It is also shown 
in [4] and [ 191 that  the time constants of the LMS algorithm 
are 

which are similarly identical to  the time constants for the 
method of steepest  descent,  given  by (42). Once again, rP 
is the time constant of thepth mode for transient phenomena 
in the weights,  while T,~ , ,  is the  corresponding  time constant 
of the learning curve.  Since  only one  data sample  per itera- 

technique more efficient than derivative measurement.  This 
algorithm, however,  is not universally applicable, and  its correlated  input  vectors  have  been  developed in [21] and [Z]. 

For input vectors X, mutually  uncorrelated  over time: proofs for 
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tion is  used, the time constant expressed in number of data 
samples  is 

' Tpmsc = z h s c .  (99) 
2) Gradient measurement noise: Let it be  assumed that 

the adaptive process, using a small value of  the  adaptive 
constant p, has converged to a steady state  near  the 
minimum point  of  the mean square  error surface defined 
by (9). The  gradient estimation noise of the LMS algorithm 
at the minimum point, where the  true  gradient is zero, is 
the  gradient estimate itself: 

N. = V .  = -2c.X 
A 

j .  (100) 
The covariance  of this noise is given  by 

cov [Nj] = E[NjNjT] = 4E[&jZXjXjq. (101) 

It is well known from Wiener filter theory that, when the 
weight vector is  optimized (that is, when Wj = W*), the 
error cj  is  uncorrelated  with the  input vector Xj.  If  one 
assumes that e j  and  Xj  are  Gaussian,  not only are they 
uncorrelated at the minimum point of the  error surface 
but also statistically independent. Under these conditions 
(101) becomes 

cov [Nil = 4E[cj2]E[XjXj'] = 4tminR. (102) 

In primed coordinates the covariance  is 

cov [Nil = Q-l cov [Nj]Q = 4CminA. (103) 

3) Noise in the  weight vector: Equations (67)-(74) above 
apply to  the method  of steepest descent with any means  of 
gradient estimation that results in  a  diagonal covariance 
matrix for Nj'-that  is, to both  the DSD algorithm and  the 
LMS algorithm. For the LMS algorithm, using (74) and 
(103), one may  write 

cov [Vi] = - A (4tminA) = ptminZ. (104) 

The covariance  of the steady state noise in the weight 
vector (at or near  the minimum point of the mean square 
error surface) is 

lu - 1  

4 

cov [ Vj]  = ptminz. (105) 

4) Misadjustment: For  the LMS algorithm the misad- 
justment M ,  defined  by (80), may  be found  as follows. 
The average  excess  mean square  error, given  by (77), may 
be written as 

= &,in tr R (106) 

where,  according to (104), E [ ( V ~ ~ ' ) ~ ]  = ,utmin for all p .  
The misadjustment is thus given  by 

M =  E [  Vjf  'A Vj'] 
= p tr R. (107) 

t A n  

This  useful formula may  be  reexpressed in a manner that 
allows one to perceive the relationship between misadjust- 

ment and rate of adaptation. According to (98) one may 
write 

1 pAp = - 
A,  

and 
Y ' P U l S C  

The misadjustment  may thus be written 

M = l 1 ( L )  . (1 10) 
4 zpmsc av 

It is interesting to compare (1 10) with (87), the misadjust- 
ment  formula for  the DSD algorithm. Once again  it is 
apparent  that misadjustment is reduced  by  slow adaptation, 
by making the values of T ~ ~ ~ ~ ,  where p = 1,  - . .,n, large. 
With  the LMS algorithm, however, for a given  value  of 
misadjustment, the  adaptive time constants increase linearly 
with the  number of  weights rather  than with the  square of 
the  number of  weights. Furthermore, there is no perturba- 
tion. In typical circumstances  much faster adaptation is 
thus possible than with the DSD algorithm, as will be borne 
out by the numerical  examples  presented in Section VI. 

It may also be  observed from (110) that  the  LMS 
algorithm, since it is based on  the method  of steepest 
descent, suffers like the DSD algorithm when there is a 
great disparity in the eigenvalues of R. Under such  con- 
ditions misadjustment  once  again can be dominated by 
the fastest modes (those with the smallest time constant 
T ~ , , ~ ) ,  while rate of  convergence can be limited by the 
slowest  modes. 

When the eigenvalues are  equal,  a useful formula  for the 
misadjustment  of the LMS algorithm is 

Experience has shown this  formula to be a  good  approx- 
imation of the relationship between  misadjustment,  time 
constant of the  learning curve, and number of  weights  even 
when the eigenvalues are  not equal. Such a relationship is 
needed in designing an adaptive system  when the eigenvalues 
are unknown. 

Since trace R is the  total power  of the  inputs to the weights, 
which is generally known,  one can use (107) in choosing 
a value  of p that will produce a desired value  of M. One 
can accordingly  combine (1  11) and (107) to obtain  a general 
formula for time constant of the learning curve  with equal 
eigenvalues : 

(1.12) 

This formula is also  a good approximation in many cases 
when the eigenvalues of R are unequal. 

IV. RANDOM SEARCH 
The method  of steepest descent is a systematic surface- 

searching procedure.  Although  randomness enters  in 
practice through  gradient estimation noise, adaptation by 
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this method is  basically a deterministic process. Random 
search, by contrast, seeks to improve  performance by 
making  random changes in system parameters. A simple 
algorithm based on this method, inspired by the Darwinian 
concept of evolution, may be called random search by 
“natural selection.” Though derived from  a  natural model 
this algorithm  appears to offer a practical approach to the 
adaptive process that may have engineering merit [23].  

In random search by natural selection a  random  change 
is made in the weight  vector of an adaptive processor, such 
as  the linear combiner of  Fig.  1. The mean square  error is 
measured before and after the change and the measurements 
compared. If the change  causes the error to be  lower, it is 
accepted. If it does not, it is  rejected, and a new random 
change is tried. This  procedure  can  be described  algebraically 
as follows : 

W k + l  = wk + 3[1 + sm {t(.wd - P(wk + U k ) > l u k  

(1  13) 

where U, is a  random vector; e( w k )  is an estimate of mean 
square  error based on N samples of  with W = w k ;  

E(  w k  + u k )  is an estimate of  mean square  error based on 
N samples  of cj  with W = w k  + u k ;  and s g n  { z }  is +1 
for z 2 0 and - 1 for z <: 0. 

This algorithm, though easy to implement,  has the 
drawback  that  nothing is learned when a trial change is 
rejected and forgotten. For this reason a  more efficient 
“linear” random search algorithm, hereafter called the 
“LRS algorithm,” has been  devised. In this algorithm, 
first  described  here, a small random  change u k  is tentatively 
added to the weight  vector at  the beginning  of  each iteration. 
The  corresponding change  in  mean square  error  perform- 
ance is observed. A  permanent weight  vector  change, 
proportional  to the product of the change in performance 
and the initial tentative change,  is then  made.  This  procedure 
can be  expressed  algebraically as follows: 

w k + l  = wk + p [ t ( w k )  - ?cwk + uk>]uk (114) 

where u k  is a random vector from  a  random vector generator 
designed to have a covariance ofo21; e ( w k )  and W, + u k )  

are defined as in  (113); and the terms  and 0’ are design 
constants affecting stability and  rate of adaptation. 

The LRS algorithm is “linear” because the weight change 
is proportional to the change in mean square  error,  and in 
this respect it differs from  random search by natural 
selection as described in (113). The  latter  algorithm is 
simpler to implement  but  does  not  perform as well. It is 
also difficult to  treat mathematically, and  a  performance 
analysis is not attempted in this  paper. 

For the  purpose of  analyzing the LRS algorithm, the 
following  definitions are useful. The  true change  in  mean 
square  error resulting from the addition of u k  to w k  is 
given  by 

( A c ) k  a c ( w k  f uk> - r( wk>* (1  15) 

The  corresponding estimated change in mean square  error is 

The error in the estimated change is 

c k  4 - ( A c ) k  

A 

(1  17) 
whose variance, from (59), is  given  by 

var [ c k ]  = var [(G),I 
= var [ t ( w k  + U k ) ]  + var [ [ ( W k ) ]  

= - [ r 2 ( w k  + uk) + t z ( w k ) ] -  
2 
N (1  18) 

In steady state operation near the minimum point of the 
mean  square  error surface, (1 18) can be expressed as 

A perturbation is  caused  by the tentative changes in  the 
weight  vector that  are a part of the LRS algorithm. At 
each iteration, N samples of data  are used to obtain [ ( W k ) ,  

with the weight vector set at its nominal value, and N 
samples to obtain t ( w k  + u k ) .  The next nominal value is 
chosen  immediately after.the  two t measurements are made. 
During  a given  cycle the average excess  mean square  error 
is thus given  by 

= - + uk)]. (120) 

Since U, has zero mean and is uncorrelated with w k ,  and 
since  cov [ u k ]  = cov [ u k ‘ ]  = 2 1 ,  the average excess 
mean  square  error  can also be expressed as 

3 E [ U k T R U k ]  = + E [ u k ’ T A U k ‘ ]  = $0’ tr R.  (121) 

The perturbation P is  deiined as the ratio of the average 
excess  mean square  error (resulting from tentative changes 
in the weight vector) to the minimum  mean square error. 
It may thus be  expressed as 

1) Stability, t h e  constants of LRS algorithm: Equation 
(114)  may  be rewritten, using (119, (116), and (117), as 
follows : 

w k + l  = wk + p [ - ( A c > k  + r k l U k  (123) 
or 

v k +  1 = vk + 8 [ - ( A c ) k  + r k ] u k -  ( 1 24) 

If one lets o2 be  small by design, so that u k  is always  small, 
one  can write 

(A<)k = u k T v k  = 2 u k T R v k .  (125) 

Substituting (125) into (124) then yields 

v , + 1  = v k  + p U k [ - 2 U k T R v k  + c k ]  

= (1 - 2 p U k U k T R ) V ,  + f l c k u k .  (126) 

Equations (1 14) and (126) are equivalent representations 
of the LRS algorithm, the former  more useful for im- 
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plementation and  the  latter  for analysis. Equation (126) 
shows that the weight  vector  is the solution of a first-order 
linear vector  difference equation having a randomly time- 
variable  coefficient -2pukukTR and a random driving 
function PckUk. 

Both sides of (126) may be  premultiplied  by Q-' to 
obtain an equivalent  expression in primed coordinates: 

VL+, = (1  - 2gu,'uk"A)vkr f BckUk'. (127) 

Though this expression  is  simpler than (126), it remains 
difficult to solve  because of cross coupling and randomness 
in the matrix coefficient. It is thus necessary to derive 
stability conditions for the LRS algorithm without an 
explicit solution to (127). One may begin  by studying the 
behavior of the mean of the weight  vector. 

By taking expected  values  of both sides of (127) and 
observing that uk' is a random vector uncorrelated with r k  

and vk, one obtains 

E[V,'+,]  = E[(Z - 2fiu,'uk'TA)vk'] -k pE[&u,'] 

= (1  - 2PE[Uk'U,'T]A)E[V,'] 4- 0 

= ( Z  - 2pa2A)E[V,']. ( 128) 

This equation is analogous to (34) for the method of steepest 
descent. Its solution is 

E [  vk'] = (1 - 2/?ci'A)'vv,'. (129) 

Equation (129) gives, for  an initial condition of vk' = V,', 
the expected  value  of the weight  vector's transient response. 
Stability of (128) assures  convergence of the mean  of V,'. 
The stability condition is 

l/amax > pa2 > 0. (130) 

When Pa' is so chosen, the following condition is  fulfilled: 

lim E [  V,'] = 0. (131) 

By analogy with the method of steepest  descent,  whose 
transient behavior  is  characterized by (34) through (39), the 
time constant of the pth mode of the expected  value of the 
weight  vector  is 

k+cc 

The time constant of the pth mode of the mean square 
error learning curve is half this value : 

2) Noise in the weight vector of the LRS akorithm: If 
one lets pa2 be chosen so that (130) is  satisfied, then the 
mean of the weight  vector  will  converge according to (131). 
Convergence of the mean, however,  does not necessarily 
imply boundedness of the covariance of the weight  vector. 
For the purpose of obtaining an expression for  the noise 
in the weight  vector,  such  boundedness  is  here  assumed 
without proof. It is also assumed that the weight  vector 
undergoes a stationary stochastic process after initial 
adaptive transients have  died out. 

The assumed  steady state covariance  of  the  weight 
vector  may  be  calculated as follows.  Multiplying both 
sides of (127) by their own transposes yields 

and 

cov [V,'] 

= E[(Z - 2puk'uk''li) COV [vk'](z - 2jl~iUk'U,'~)J 

4 
N 

-k p' - < i i n 0 2 Z  

= COV [ vk'] - 2PE[Uk'Uk'TT]A COV [ vk'] 
- 28 cov [ vk']hE[ ui u,"] 
+ 4p2E[ U,' U i T A  COY [ vk']Auk'uk"] 

+ p' - <;ina21 
2 
N 

= cov [ vk'] - 2pa2A cov [ vk'] - 2pC2 cov [ vk']A 

+ 4b2E[ U,' U i T A  COV [ vL]fiuk'u,'T] 

+ p 2  - < i i n D 2 Z .  
4 
Iv (137) 

Solving (137) to find the covariance of Vk' is  difficult 
because  the  matrices cannot be factored. After  reexamining 
(130), however, one could argue heuristically that in  steady 
state the covariance matrix should be  diagonal.  All  com- 
ponents of the driving function of (127) are uncorrelated 
with each other  and uncorrelated  over  time. The random 
coefficient I - 2pUk'Uk'TA is furthermore diagonal on the 
average, though generally not for each  value of k, and 
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uncorrelated with Vk' and with  itself  over time. Though 
this argument does not constitute a  proof  that  the covariance 
of V,' is diagonal, it makes  such an assumption plausible. 

If the covariance  matrix  of Vk' is thus assumed to be 
diagonal, then with  some  rearranging  of  terms  (137) 
becomes 

4Ba2A  cov [ Vk'] - 4B2E[ Uk'Uk''A cov [ V,l]AULuk"] 

= 8' - [,$no21. (138) 4 
N 

For slow adaptation,  the case of greatest interest, it may  be 
noted that 

Bo2A << I (139) 

which  is analogous to (75) for  the method  of steepest 
descent.6 One  may note  further that 

p2E[uLuk"h COV [VL]AULULq COV [ V i ]  

(140) 
and  from (139) that 

(Po2A)' cov [ V i ]  << Bo2A cov [ V;]. (141) 

The term -4B2E[ ] of  (138)  is thus small and can be 
neglected. Equation (138)  accordingly  becomes 

Though this expression has not been rigorously derived, 
experience has shown it  to lead to misadjustment formulas 
that  are generally accurate. 

3) Misadjustrnent of LRS algorithm: The average  excess 
mean square  error due to noise in the weight vector is 
given  by  (77).  Using  (142) one may  write for  the LRS 
algorithm 

According to  the definition of (80) the misadjustment  of 
the LRS algorithm is thus 

This result can be  usefully expressed, using  (121),  in 
terms  of the perturbation of the LRS process: 

M =  ngo' tr R - n2Bcr2Aav 
2NP  2NP 

-~ 

It can  also be  expressed in terms  of  time constants of the 
adaptive process. The time constant of thepth mode  of the 

this time constant expressed in number of data samples is 

Note  the difference  between  (146) and  the equivalent 
expression (82) for the DSD algorithm, reflecting the 
difference in utilization of data per adaptive  cycle  by the 
two algorithms. 

According to (146) one  may write 

and 

Inserting (148) into (145)  yields 

This formula closely  resembles its  counterpart (87) for  the 
DSD algorithm. 

According to (89) the  total misadjustment must include 
the effects  of perturbation.  One may thus write 

Optimal choice  of P requires that  both  right-hand  terms of 
(150)  be equal and  that P, therefore, be  one-half the  total 
misadjustment  (91).  One  may thus  further write 

This  formula once again closely  resembles its counterpart 
(92) for  the DSD algorithm and is further indicative of the 
fact that many  behavioral properties of the LRS algorithm 
resemble those of steepest descent algorithms despite the 
difference in search procedure. 

Other  random search algorithms applicable to adaptive 
control  and  pattern recognition systems  have  been described 
in the  literature [24]-[31]. These algorithms are capable 
of taking  advantage of  performance  measurements from 
previous iterations  in determining current  parameter changes 
and  are useful in searching multimodal  performance 
surfaces. They  tend to be  complicated in implementation 
and mathematical description, however, and have not been 
analyzed to determine their misadjustment as a  function of 
rate of adaptation.  It is  conjectured in  this regard that their 
behavior  may  be  somewhat similar to  that of the LRS 
algorithm and  that their convergence close to  optimal 
points is relatively  slow in high  dimensional spaces. 

learning curve, expressed in number of iterations, is given V. SUMMARY OF ANALYTICAL RESULTS 
by  (132).  Since 2N samples  of data  are used  per iteration, In the foregoing sections analytical expressions have been 

derived that characterize the performance  of the DSD 
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TABLE I 
PERFORWCE CHARA~~EIUSTICS OF ADAPTIVE ALGORITHMS 
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DSD algorithm LMS algoritlm LRS algo:ithm 

Total  misadjustment, Mtot M + P hl M + P  

Time constant of p a  node :  

In number of adaprive I I I 

iterations, 7 
Pmse 

4PXP 4 P X p  4.2pxp 

In number of data I N 

ln m 

2 5 5.24 X lo6 

2 1.31 X lo6 
6 n 3.28 X lo5 
0 8.19 X 104 

2 2 . 1 0 ~  107 

Y 

2.05 x 104 

Fig. 3. Time constant of adaptive process as function of number of 
weights  with total misadjustment MI,, fixed at 10 percent (perturba- 
tion P optimized for DSD and LRS algorithms). 

procedure. The most important of these  expressions are 
presented in Table I in a manner that allows the three 
algorithms to be  readily compared. 

The. principal measure  of  performance  is the misadjust- 
ment M ,  which  is the penalty arising from the imperfect 
statistical estimation  process. The formulas presented  show 
that misadjustment increases  with  speed  of adaptation,  and 
this result  can  be taken as a general rule of adaptive proces- 
sing. For a given  real-time  speed  of adaptation’ and given 
number of adaptive parameters, however, misadjustment 
varies  considerably among the three algorithms. The most 
efficient in this respect  is the LMS algorithm. The  DSD 
and  LRS algorithms,.whose misadjustment  expressions are 
nearly  equivalent, are considerably  less  efficient. 

Fig. 3 shows the relative  efficiency of the three algorithms 
by plotting the required adaptive time constant as a function 
of number of adaptive weights  with total misadjustment 
M,,, fixed at 10  percent. The eigenvalues of the R-matrix 

’ The baiic unit of time in digital systems is the sampling period; 
in analog systems it is the equivalent Nyquist sampling period cor- 
responding to the bandwidth of the  error signal. 

are assumed to be equal, and  the value of the total mis- 
adjustment for the  DSD  and LRS algorithms is  minimized 
according to (92) and (151). It is  readily  seen that  for a large 
number of  weights the DSD and  LRS algorithms have 
similar time constants. The LMS algorithm, on  the  other 
hand,  has a much  smaller time constant. 

The formulas presented  in  Table I and  the curves  of  Fig. 3 
provide a practical tool for use in  the design of adaptive 
filters. For the purposes of illustration let  us  assume that 
an adaptive digital  filter  with 10 weights  is  needed for a 
particular application. Let  us further assume that a total 
misadjustment  of 10 percent  would  be  acceptable and that 
the eigenvalues  of the R-matrix are essentially equal. For 
the DSD algorithm, a total misadjustment  of 10 percent, 
according to (91),  yields an optimal perturbation of 5 
percent. Thus the misadjustment M is 

= ~ - = 5 percent. (1  52) 
(n 8fP’l2 (TpLSIav 

This equation can be  solved by substituting the appropriate 
values  of rz and P to obtain the average  reciprocal  time 
constant in number of data samples: 

Since all eigenvalues are assumed to be equal, there is  only 
one time constant associated  with the mean square error 
curve, and (153) can be  rewritten as 

T,,, = - lo4 - - 5000 data samples. 
2 ( 1 54) 

This is a large adaptive time constant for a 10-weight  filter. 
If the LMS algorithm is used instead of the DSD 

algorithm, then there  is no perturbation  and  the misadjust- 
ment  is 

M = -  - = 10 percent (1 55)  
(TpYSIav 
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which  yields a  time constant of 

T,,, = 25 data samples.  (156) 

This is a much more favorable value. Within  about four 
time constants adaptive transients would  essentially  die 
out. Settling time would  be about 100 sampling periods or 

For the LRS  algorithm  one  must once again allocate one- 
half the total  misadjustment to the perturbation P. The 
misadjustment M is thus 

. iterations. 

“21 
t 
1 

which  yields a value  of the time constant of 

T,,, = 10000 data samples. (158) 

The  LRS  algorithm  thus would require twice the settling 
time required for the DSD algorithm. Note  that  the per- 
turbation is set as follows: 

(r2 tr  R P = 0.05 = ~ 

2t rn in  

which  is equivalent to 

(r2 = O.l&Jtr R. (160) 

To set d for the random vector generator one would  need 
to know the values  of tmin and trace R.  Approximate values 
would be  adequate in  most practical circumstances. 

These  results illustrate the efficiency  of the LMS algorithm, 
which has been  shown to approach a theoretical limit for 
adaptive algorithms when the eigenvalues  of the R-matrix 
are equal or close to equal in value [32].’ There are 
circumstances,  however,  where the LMS algorithm  cannot 
be  used and where the DSD and  LRS algorithms provide 
a valuable option. An example  is  included  in the applica- 
tions described  in the next  section. 

VI. EXPERIMENTAL RESULTS 

In this section the results  of  experiments performed by 
computer simulation are presented.  These  results  show the 
relative performance of the DSD, LMS, and LRS algorithms 
in practical circumstances of  varying  complexity.  They also 
provide  a means of verifying the expressions for misadjust- 
ment and adaptive time constant derived  in the preceding 
sections. 

A .  Modeling Experiments 
Two modeling or system  identification problems were 

simulated by computer  to  demonstrate the convergence  of 
the three algorithms and the degree of correspondence 

DSD and LRS algorithms involve taking the difference between two 
The gradient and performance estimation methods used in the 

large, noisy c-quantities. Some of this difference  is due to statistical 
fluctuation (that is, to a change in data statistics from one sample to 
the next), an undesirable effect, and some to the actual weight change, 

confined to the  latter effect, the result would  be a reduction In ,the 
a desirable effect. If the data could be repeated and the difference 

amount of data required and  a much better estimate. The gradlent 
estimation technique of the LMS algorithm is equivalent to such 
“data repeating,” which accounts for its inherent efficiency. 

Fig. 4. Modeling a fixed delay with an adaptive flter. 

between actual and theoretical performance. In these 
simulations an adaptive transversal filter  with four weights 
was  used. In the first the algorithms were required to con- 
verge to a weight vector solution that modeled the impulse 
response  of a “digital” filter  with a single k e d  delay A 
of z-’, where z-’ is the transfer function of the unit delay. 
In the second  they  were required to converge to a solution 
that best approximated the infinite  impulse  response  of a 
one-pole recursive digital lilter. 

1) Modeling afixed delay: Fig. 4 shows the experimental 
configuration used to test convergence of the algorithms 
to model the fixed  delay. An  input signal n,,  composed of 
independent samples  of  white  noise  of unit power,  was 
routed in parallel to the delay  filter and the adaptive filter. 
The  output  of the delay filter was corrupted by a second 
input n,, composed  of independent additive white  noise 
with a power  of 0.5, to form the output of the system to be 
modeled. This output, the desired  response dj of the adaptive 
process,  was compared with the adaptive filter output y j  
in the normal way to  form the error signal c j .  

The  optimal weight  vector solution W* for this experi- 
ment  is zero for all weights  except that whose tap delay 
corresponds to the delay A. The value of this weight  is 
one. Thus, when the adaptive process has converged, the 
error c j  is the noise n2,  which  is uncorrelated over  time. 
The minimum  mean square  error &,,in is not zero but  has a 
value equal to the power  of the noise n,. In addition, because 
the input n,  is  white and of unit power, all inputs to the 
weights are mutually uncorrelated and  of unit power. The 
input correlation matrix  R is thus  equal to the unit matrix Z, 
and all eigenvalues  of R  are equal  to one.  These circum- 
stances are  the simplest that  could be  devised to test the 
three adaptive algorithms. 

Fig. 5 shows learning curves of the adaptive process 
when the three algorithms were  implemented  with a fixed 
theoretical time constant T,,, of 2048 data samples. An 
individual learning curve and  an ensemble  average  of 32 
independent learning curves are presented for each 
algorithm. The averaged  curves  allow the misadjustment  of 
the adaptive process to be  experimentally  measured.’ The 

between the average value of asymptotic mean square error and Smb. 
The measurement is made by dividing by Tmi, the difference 
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Fig. 5. Results of fixed  delay modeling.experiment with theoretical time constant Tmse fixed at 2048 data samples. 
(a) Individual learnlng curves. (b) Ensemble averages of 32 learning curves. 

TABLE I1 
RESULTS OF FIXED DELAY MODELING EXPERIMENT WITH T ~ ~ C A L  TIME CONSTANT T,,, 

FIXED AT 2048 DATA SMLES 

Total 

Perturbation P, \liiadjustment M, misadjustment %ltot, Tllcorclic-l t imc 

Convergence  constants  percent  percent  percent  constant T,,,. 
.agorithm g x p g2 X Theor. Meas. Theor. Meas. Theor. hleas. no. ofdata  Samples 

DSD 15.625 - - 2.21 2.19 4.42 5.70 6.63 7.89 2048 

LMS 0.12207 - - - - 0.0488 0.05 0.0488 0.05 2018 

LRS - 0.5 7.8125 X125 3.12 6.25 8.08 9.375 11.20 2048 

“high-frequency” variations of the curves  representing the 
DSD and LRS algorithms are due to the required perturba- 
tion of the weight  vector at each iteration. At the beginning 
of each  experiment  all adaptive weights  were  set to zero. 

Table I1 presents  the  theoretical and measured  values of 
perturbation  and misadjustment for the  learning  curves of 
Fig. 5. Also  shown are the values of the parameters p, B, 
and 0’. It is  readily  seen that the theoretical and measured 
values are in  close  agreement for all three algorithms. 

Fig. 6 presents  individual learning curves and ensemble 
averages of 32 learning curves  showing  convergence  of the 

three algorithms with a fixed  theoretical total misadjustment 
M,,, of 9.375  percent. Table I11 shows the values of pertur- 
bation, misadjustment, and time constant together with the 
values of the parameters p, p, and 0’. Once again close 
agreement  between the theoretical and experimental  results 
is  observed. 

2) Modeling a one-pole recursive Jilter: Fig. 7 shows the 
experimental configuration for the second  modeling 
experiment. An input n, composed once again  of independent 
samples of white  noise of unit power, is routed in  parallel 
to  an adaptive transversal  filter and a one-pole  recursive 
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Fig. 6.  Results of k e d  delay modeling experiment with theoretical total misadjustment M,,, fixed at 9.375 percent. 

(a) Individual learning curves. (b) Ensemble averages of 32 learning curves. 

TABLE III 
RESULTS OF FIXED DELAY MODELING EXPERI~EW WITH THEORETICAL TOTAL  ADJUSTMENT M,,, 

FIXED AT 9.375 PERCENT 

Total 

Perturbation P. Misadjustment Xi.  misaajustmenr $Lot, Tkoretical  time 

Convergence constants pe:cenr percent  percent  constant  Tnse, 

Algorithm p X P o2 X Theor. Meas. Theor. Meas. Theor. Meas. no. o ida tasanples  

DSD 3.125 - - 3.135 3.11 6.35 8.26 9.375 1137 1024 

L\l s 2.34 - 

LRS - 0.5 7.8125 3.125 3.12 6.25 S.0S 9.375  11.22 2048 

- - - 9.375 10.35 9.375 10.35 10.7 

digital filter whose transfer  function is 1/(1 - az - l ) .  The impulse response. Since the  input n is white noise, the 
output of the one-pole  filter is the desired response d j ,  optimal  solution is to cause the  adaptive filter’s impulse 
which is combined with the  adaptive filter output y j  to response to match the one-pole filter’s geometrical impulse 
produce  the  error gj. response to  the extent allowed by the length of the  adaptive 

In this experiment the four-weight adaptive filter  is tapped delay line. A residual mean square  error will be 
attemoting to model a one-Dole a t e r  with an infinite Dresent because the best match attainable is imDerfect. 
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Fig. 8. Results of one-pole Hter modeling experiment with theoretical total misadjustment M,ot fixed at 7.5 percent for 
DSD and LRS algorithms and  at 0.75 percent for LMS algorithm. (a) Individual learning curves. (b) Ensemble averages 
of 32 learning curves. 

In this case,  when the adaptive filter has converged to  the 
optimal solution, the error gj  will  be correlated over  time. 
This  latter condition violates one of the assumptions on 
which the previous derivations of misadjustment and time 
constant were  based and  can be  expected to affect the 
agreement  between  theoretical and measured  misadjustment 
and time constant. 

Fig. 8 shows  individual and averaged learning curves of 

ment M,,, of 7.5 percent for the DSD and LRS algorithms 
and of 0.75 percent for  the LMS algorithm. Note  the 
difference in time  scales and  the rapid convergence of the 
LMS algorithm. Table IV presents the values of perturba- 
tion, misadjustment, and time constant and of the con- 
vergence parameters. It may be  seen that the measured 
misadjustment  is approximately twice  the theoretical 
misadjustment for the  DSD  and LRS algorithms. For the 
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TABLE IV 
RESULTS OF ONE-POLE FILTER MODELING EWE- WITH THEORETICAL TOTAL MISADJUSTMENT M,,, 

FIXED AT 7.5 PERCENT FOR DSD AND L s  ALGORlTHMS  AND 0.75 PERCENT FOR L m  &GO~ 

Total 

Perturbation P,  Misadjustment M, misadjustment  hltot,  Theoretical  time 

Convergence constants  percent  percent  percent  constant Tmse, 

Algorithm p X 0 o2 X Theor. Meas. Theor. ?,leas. Theor. Meas. no. ofdata  samples 

DSD 40 - ~ 2.5 2.51  5  10.31 7.5 12.82 I GOO 

LMS 1.875 - - - - 0.75  0.77  0.75  0.77 133 

LRS - 1.1467  2.8675 2.5  2.67 5 9.23 7.5 11.90 3200 

adjustment are in close agreement. The results for  the 
DSD  and  LRS algorithms  are expected and  can be attributed 
to the  fact  that  the correlation in  the  error cj  over  time 
makes the effective statistical sample  size  less than  the actual 
number of error samples. The reason that  the LMS algorithm 
is  not sensitive in this respect and does not experience a 
loss in performance is not understood at the present time 
and is a subject under investigation. 

This experiment and  the foregoing  fixed delay experiment 
demonstrate that,  in accordance  with the  theoretical 
expectation, the performance  of the  LMS  algorithm is 
superior to that of the  DSD  and  LRS algorithms, whose 
performance  is  approximately equivalent. The LMS 
algorithm  converges more rapidly for  a given  level  of 
rnisadjustment or is less  noisy  (produces  less  misadjustment) 
for a given rate of adaptation.  For  the  DSD  and  LRS 
algorithms  the relationship between rate of adaptation  and 
misadjustment is known  approximately for a wide variety 
of input statistical conditions. For the  LMS algorithm the 
relationship under  the same variety of input conditions is 
known to a closer approximation. 

B. Adaptive Cancelling of Sidelobe Interference in a 
Receiving  Antenna Array 

The objective of this experiment is to demonstrate one  of 
the ways in which adaptive filtering can be applied to 
reduce interference received  by the sidelobes of an  antenna 
array. Results are presented  only for  the LMS algorithm. 
The  DSD  and  LRS  algorithms could also be used  with this 
problem, but their performance  would not equal that of the 
LMS algorithm, as indicated by the  formulas and ex- 
perimental results already presented. An experiment  where 
the DSD and  LRS  algorithms are applied to  a problem that 
cannot be  solved  by the LMS algorithm is presented in the 
next section. 

A number of adaptive beamforming  methods  capable 
of  reducing interference in the sidelobes of an antenna 
array have  been described in the literature [Ill-[lo].  These 
methods have the disadvantage that, unless the  adaptive 
process is constrained, strong signal components  in the 
main  beam are rejected. When the adaptive process is 
constrained  the signal is preserved, but there may  be a loss 
in array performance  caused by gain or phase errors  due 
to nonuniformity  in  element  placement, transfer function, 
or near-field effects. 

CONVENTIONAL BEAMFORMER 
r----------- 1 

T \  
I 
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I - 
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FILTERS 
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Fig. 9. Block diagram of null-constrained adaptive beamformer 
tolerant of array element gain and phase errors. 

By the use  of adaptive noise cancelling techniques” it 
is possible to realize a constrained adaptive  beamformer 
that does not suffer a significant loss in performance  when 
array element properties are  not uniform.  This  beamformer, 
described here for  the first time, is  capable of reducing 
broadband and narrowband interference in  the sidelobes of 
an antenna  array  without rejecting broadband signal 
components  in the main beam, regardless of their  strength. 
It is also simple and easy to implement. 

Fig. 9 is a block diagram of the constrained adaptive 
beamformer. An array  of receiving  elements is connected 
to a conventional  time delay and s u m  beamformer,  which is 
steered in the direction of the signal. The conventional 
beamformer’s output,  containing signal and interference, 
forms  the primary input to  an adaptive noise canceller. This 
input is delayed by an  amount Al2, where A is  defined 
below, to form  the desired response d j  of the adaptive 
process. Multiple reference inputs to the noise canceller are 
derived by taking  the delayed  element outputs  from  the 
conventional  beamformer  before summation. These inputs 
are routed to a  bank of adaptive transversal iilters, each 
comprising a tapped delay line with a total delay of A. 
The filter outputs  are summed to  form  a single output y j ,  
which is subtracted  from dj  to  obtain  the canceller output zj.  

makes use  of two inputs, a “primary” input consisting of signal and 
lo  Adaptive noise cancelling [33] is a form of optimal filtering that 

noise and a “reference” input consisting of noise correlated in  some 
unknown way  with that in the primary input. The reference input is 
adaptively filtered and subtracted from the primary input to obtain 
a signal estimate in many cases superior to  that obtainable by other 
forms of adaptive or conventional iiltering. 
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Fig. 10. Weighting  coefficient  matrices for null-constrained  adaptive 

beamformer. (a) Single  column-of-zeros  constraint. (b) Triple 
column-of-zeros constraint. (c) “Hourglass”  constraint. 

This  output also provides the  “error” signal for  the 
adaptive process. 

The  operation of the  adaptive  beamformer of  Fig. 9 is 
constrained by constraining  the weighting  coefficients 
(gains) of the  adaptive filter taps. Fig. 10  shows three  forms 
of  constraint, each suitable  for  a different purpose. Fig. 
10(a) represents the  matrix of  coefficients appropriate  for 
an ideal line array with a plane-wave signal incident in the 
“look”  direction of the  conventional beamformer. The gain 
of  the  central  taps is constrained to be zero. The gains w 
of each of the  other  taps  are independently controlled by 
the  adaptive process. Note  that  the  matrix  has  as many 
rows  as  there  are reference inputs, 

In this problem the signal appearing at the  central tap of 
each adaptive filter is identical except in  scale to dj. If one 
assumes that  the received signal is “white” and  has an 
impulsive autocorrelation  function,  the signals appearing 
at the  other  taps will be uncorrelated with dj. It is thus 
apparent  that  the signal components  in y j  will be uncor- 
related with those in dj and  that  the  adaptive process will 
have no tendency to cancel the received broadband signal. 
Interference  components  arriving  from  other  than  the 
‘‘look’’ direction,  on  the  other  hand, will  be correlated with 
the interference components in dj at one or more of the 
unconstrained  taps. These components will thus be cancelled 
by  the  adaptive process, which adjusts  the gain of the un- 
constrained  taps to minimize the mean square of the  error 
zj (in this case, output power). 

In  practical  applications  arrays with ideal properties 
cannot be realized because perfect receiving elements, 
perfect element placement,  and freedom from near-field 
irregularities  cannot be achieved. Fig.  10(b) shows a  form 
of constraint proposed to desensitize the behavior of the 
adaptive sidelobe canceller to imperfections in  the  properties 

of  the receiving  elements. This  constraint consists of 
inserting an additional column of zeros on either side of the 
central column. Fig. 1O(c) shows a configuration of the 
weighting  coefficients that would  allow the reception of 
strong  broadband signals over a finite and  controllable 
angular  sector; in this configuration the zeros are  arranged 
in  the  form of an “hourglass.” 

Fig. 11 shows directional response patterns  obtained by 
computer  simulation  that indicate the  performance of the 
adaptive beamformer of Fig. 9 with an ideal  and  a  nonideal 
array using the single and triple “column-of-zeros” con- 
straints.  The  ideal  array consists of ten elements in  a  linear 
configuration and with half-wavelength spacing at the 
sampling  frequency;  for  the  nonideal  array  the single 
elements at each end of the  array  are moved forward one- 
quarter of a wavelength. The simulated received signal has a 
power of one, a white spectrum,  and originates from  a  point 
source. The simulated interference is isotropic, with a 
power  of 0.01 and a white spectrum.  The  directional 
response of the  conventional time delay and sum  beam- 
former is shown as a dotted line for  purposes of comparison. 

Fig. ll(a) represents the  adaptive beamformer’s per- 
formance with the ideal array  and  the single column-of- 
zeros  constraint, while Fig. 1  l(b) represents performance 
with the  nonideal  array  and single column-of-zeros con- 
straint.  Note that the beam formed is “super-directive” 
-that  is, much narrower  than  the  conventional beam-but 
severely  reduced in sensitivity when array  properties  are  not 
ideal. 

Fig. 1 l(c)  and Fig. 1  l(d) show beamformer  performance 
with the  triple column-of-zeros constraint.  In  this case the 
adaptive beam is close in width to the  conventional beam, 
and its sensitivity is not affected by element irregularity. 
Even at high signal-to-noise ratios sensitivity is sustained 
over a finite range of angles, an unusual result since adaptive 
beamformers generally  lose signals not incident exactly in 
the “look” direction. 

C. Adaptive Phase Control of a Transmitting 
Antenna Array 

This experiment illustrates  the use  of the DSD and LRS 
algorithms to solve a problem that  cannot be  solved with 
the LMS algorithm.”  The  problem selected, adaptive 
phase control of a  transmitting  array, is representative of a 
class of problems more general than those heretofore 
treated  in  this  paper.  Other problems of a similar nature 
include adaptive  adjustment of the  parameters of  microwave 
resonators, waveguides, and coaxial transmission lines. A 
related problem at optical frequencies is adaptive  adjust- 
ment by controlled warping of laser mirrors. 

It should be noted  that  the  formulas  for time constant, 
perturbation,  and misadjustment of the DSD and LRS 
algorithms given in Table I were  derived by assuming 
stationary  stochastic  inputs to  an adaptive system so 
configured that mean square performance is a  quadratic 

used only to adjust  variable  weights.  The DSD and LRS algorithms 
’’ In the  form  described  in  this  paper  the LMS algorithm  can be 

do  not suffer  from this limitation. 
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Fig. 12. Satellite transmitting information to receiver on earth. 

function of the adjustable parameters. The conditions on 
which  these formulas  and  proof  of convergence are based 
are  not satisfied  in the adaptive phase control problem 
examined  here.  If one ignores the deterministic nature of 
the sinusoidal input signals and treats input power as in 
the stochastic case,  however, the expressions  of Table I 
provide predictions borne out well  by experimental 
simulation. 

Fig. 12 shows a typical application for  a transmitting 
array with adaptive phase control. A satellite is  relaying 
information over a large distance to  a receiver on  the  earth. 

The power available to drive the transmitter is limited, and 
it is desirable for maximum  power transfer to keep the 
main  beam  of the transmitting antenna  optimized and 
steered toward the receiving station, whose position with 
respect to the satellite changes with the earth’s rotation  and 
the satellite’s orientation. The array’s  elements  need not be 
ideal. It is assumed that  the power of the received signal can 
be  measured or estimated and transmitted via a  feedback 
link to the satellite for use as  an  input  to  an adaptive beam- 
forming process. To avoid  a loss  of  signal  power that would 
partially or wholly  offset the directional gain, the beam- 
forming process must control the output  phase  rather  than 
the gain of the satellite antenna’s elements. 

Fig; 13 is a block diagram  showing the model  used to 
simulate an adaptive transmitting antenna array of n 
elements. The signal  is  represented by a sine  wave produced 
by a signal generator. An  array of n phase  compensators 
governed  by an adaptive algorithm represents the adaptive 
processor. A corresponding  array of n phase shifters provides 
a means  of simulating the unknown phase shifts between 
the antenna elements and the receiver. The  outputs of the 
phase shifters are summed and injected  with  “receiver” 
noise to simulate a weak  received  signal. This signal is 
sampled, squared, and averaged, providing  a power estimate 
for the adaptive algorithm. The  algorithm adjusts the  phase 
compensators to maximize measured power. It is clear that 
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Fig. 13. Digital simulation of adaptive transmitting antenna. 

maximum power will be transmitted when the combined 
phase shifts on each berich of the block diagram  are 
integral multiples of 360 degrees relative to each other. 
Although  there  is no unique  solution to the  problem,  there 
are families  of equivalent solutions  that provide maximum 
power transfer. 

This model comprises all aspects of the satellite trans- 
mission  example  described above except the two-way time 
delay of  the transmission path.  This delay would.  affect the 
rate of adaptation  of  the processor and would  have to be 
taken  into  account  in designing a real system. 

Fig. 14 shows learriing curves of the  adaptive process 
for  the DSD and LRS  algorithms when the injected noise 
of Fig. 13 is set equal to zero. The  transmitting  antenna was 
composed of 16 isotropic elements in  a line array.  Note  that 
the curves rise to  an asymptote representing maximum 
power rather  than decaying toward  a minimum. Note 
further  that they are  not exponential except as the  optimal 
solution is approached.  Exponential  learning curves occur 
only when the  algorithms  are  applied to quadratic per- 
formance surfaces. The performance surface for  the 
simulated problem is a  representation of output power as 
a function of phase and is not  quadratic except near 
stationary  points, where it can be represented by first- and 
second-degree terms of a  Taylor expansion.12 For this 
application  the  method. of steepest descent might better be 
designated the  “method of  steepest ascent.”  It is described 
by  (24) with the sign  of p reversed. A corresponding reversal 
of sign is also required in applying  the LRS algorithm to 
this problem. 

The  “theoretical” time constant of both  learning curves 
of Fig. 14  is 128 data samples. This value is based on  the 
characteristics of the performance surface (that is, its 

for the course EE 373, Adaptive Systems, in the Department of 
l2 It has been shown by M. K. Leavitt, in a June 1975 term paper 

Electrical Engineering at Stanford University, that  the performance 
surface is a sum of terms containing sums of cosines of differences in 
the adaptive phase settings. This surface has many global and relative 
optima and many saddle points where the gradient goes to zero. Only 
the global optima, however, are stable. Leavitt further shows that  the 
presence of saddle points may result in slow convergence for algorithms 
based on the method of steepest descent. The LRS and  other  random 
search algorithms, on the  other  hand, may have an advantage on such 
irregular performance surfaces, though not enough experience has yet 
been gained to confirm this expectation. 

!! z 0 OO 51 2 1024 1536 2048 

DATA SAMPLE 

(4 

(b) 
Fig. 14. Learning curves of simulated adabtive transmitting antenna 

without noise. (a) DSD algorithm. (b) LRS algorithm. 

“R-matrix”)  in  the vicinity of the global optimum.13 
Visual inspection indicates  that  the  actual time constants 
of the two curves are similar and agree well  with the  above 
value. The convergence parameter p for  the DSD algorithm 
was 8 x The convergence parameters p and c2 
for  the LRS algorithm were 1 and 8 x respectively. 
The maximum transmitted power c,,, was equal to 32. The 
“perturbation” P for  both  algorithms was 5 percent,  and 
the value of N was one. 

Fig. 15 shows  sequences of radiation  patterns  correspond- 
ing to the  learning curves of Fig. 14. Real time is indicated 
in terms of data samples equivalent to sampling periods of 
the digital system  of  Fig. 13. The simulated receiving site 
was located at  a relative angle of 20 degrees. The  initial 
setting of the phase compensators was zero. The unknown 
phase settings of the phase shifters were chosen at random. 
Note  the  rapid  formation  of  the main lobe at 20 degrees and 
the suppression of sidelobes. 

Fig. 16 shows learning curves of the  adaptive process 
when independent samples of  white  noise  with a power of 
0.01 were  injected into  the simulated received  signal. Array 
configuration  and  adaptive  parameters  are  the same as in 
the noiseless case represented by Fig. 14.  As  well as can be 
determined by visual inspection, the  actual time constants 

the “R-matrix” of the performance surface can be shown to be 

The assumptions are that n is large and  that equal power flows through 
all phase shifters. The maximum output power is ti,,. Note  that all 
eigenvalues are equal and negative. 

* In the vicinity of a global optimum (when all phases are aligned), 

R = -&J. 
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for  both algorithms are also approximately the same as in Though the appropriate formulas have not yet  been  derived, 
the noiseless  case. the formulas for stochastic inputs and quadratic perform- 

Noise in the adaptive phase control process, as evident  in ance  surfaces  would  suggest that with equal theoretical time 
Fig. 16, causes a steady-state  average loss of array power constants the misadjustment  of the LRS algorithm would  be 
gain. One  can  define for this case a form of  misadjustment greater than  that of the DSD algorithm. This expectation is 
that is a ratio of the loss  in  power to the peak power t,,,. confirmed  by the results obtained in this experiment. 
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Fig. 16. Learning curves of simulated adaptive transmitting antenna 
with  noise.  (a) DSD algorithm. (b) LRS algorithm. 

VII. COSCLUSION 

The theoretical and experimental results  presented in this 
paper show that  the LMS algorithm is the most  efficient  by 
a large factor of the three algorithms compared and 
indicate that it should be  used  whenever  circumstances 
permit. The  DSD algorithm is  less  efficient than the LMS 
but  more efficient  by a factor  of two than  the LRS algorithm. 
Its use  is appropriate where  technical or economic con- 
siderations preclude  use  of the LMS algorithm or where 
a high  speed  of adaptation is not required. Use of the LRS 
algorithm may  be appropriate in cases  where the per- 
formance surface for  the adaptive process  is not well 
behaved and has both local and global optima.  Further 
experience  is required, however, to confirm that  the  random 
weight  vector  changes  associated  with this algorithm can 
provide an advantage in the presence  of  local optima  that 
may slow or prevent  global  convergence  of algorithms 
based  on the method of steepest  descent. Further work  is 
also required to extend the theoretical derivations for time 
constant  and misadjustment of the three algorithms to 
applications other  than  those entailing stochastic inputs 
and quadratic performance surfaces, 

ACKNOWLEDGMENT 

The  authors wish to acknowledge the  contributions of 
Dr. 0. L. Frost of Argo Systems, Inc., and Prof. L. J. 
Griffiths  of the University of  Colorado to the concept of 
the constrained adaptive sidelobe  canceller  presented  in 
this paper. Thanks are also due to R .  Fraser of the Naval 
Undersea Center for assistance in editing the paper. 

[l] P. Howells, “Intermediate frequency side-lobe canceller,” U.S. 
Patent 3  202  990, Aug. 24,  1965. 

[2] S. P. Applebaum, “Adaptive arrays,” Special Projects Lab., 
Syracuse Univ. Res. Corp., Rep. SPL TR 66-1, Aug. 1966. 

[3] J. Capon, R. J. Greenfield, and R. J. Kolker, “Multidimensional 
maximum likelihood processing of a large aperture seismic array,” 

[4] B. Widrow, P. Mantey, L. Griffiths, and B. Goode, “Adaptive 
Proc. IEEE, vol. 55, pp. 192-211, Feb. 1967. 

antenna systems,” Proc. IEEE, vol. 55, pp. 2143-2159, Dec. 
1967. 

[4 L. J. Griffiths, “A simple adaptive algorithm for real-time proces- 
sing in a n t e h a  arrays,” Proc. IEEE, vol. 57, pp. 1696-1704, 
Oct. 1969. 

[q 0. L. Frost, In, “An algorithm for linearly constrained adaptive 
array processing,” Proc. IEEE, vol. 6Q, pp. 926935, Aug. .1972. 

[A A. H. Nuttall and D. W. Hyde, “A unlfied approach to optimum 
and suboptimum processing for arrays,” Navy Underwater 
Sound Laboratory, Rep. 992, April 1969. 

[8] R. Riegler and R. Compton,  Jr., “An adaptive array for’inter- 

[9] W. F. Gabriel, “Adaptive arrays-An introduction,” Proc. IEEE, 
ference rejection,” Proc. IEEE, vol. 61, pp. 748-758, June 1973. 

vol. 64, pp. 239-272, Feb. !976. 
[lo] A. M. Vufal, “An overwew of adaptive array processing for 

sonar appl~cations,” in IEEE EASCON Conc. Rec., pp. 34A- 
34M,  1975. 

[ll] B. Widrow, “Adaptive filters,” in Aspects of Network and System 

Rinehart, and Winston, 1971, pp. 563-587. 
Theory, R. Kalman and N. DeClaris, Eds. New York: Holt, 

[12] N.  Wiener, Extrapolation, InterpolationandSmoothingofStationary 
Time Series, with Engineering Applications. New York: Wiley, 
1949. 

1131 H. Bode and C. Shannon,  “A simplified derivation of linear least 
squares smoothing and prediction theory,” Proc. IRE, vol. 38, 
pp. 417-425, April 1950. 

[14] T. Kailath, “A view of three decades of linear filtering theory,” 
IEEE Trans. Inform. Theory, vol. IT-20, pp. 145-181, March 1974. 

[15] R. V. Southwell, Relaxation Methods in  Engineering Science. 
New York: Oxford, 1940. 

[16] D. J. Wilde, Optimum Seeking Methods. Englewood Cliffs, NJ: 
Prentice-Hall, 1964. 

[17] B. Widrow and M. Hoff, Jr., “Adaptive switching circuits,” in 
IRE  WESCON Conv. Rec., pt. 4, pp. 96104, 1960. 

[18] N. Nilsson, Learning  Machines. New York: McGraw-Hill, 1965. 
[191 J. Koford and G. Groner, “The use of an adaptive threshold 

element to design a linear optimal pattern classifier,” IEEE 
Trans. Inform. Theory, vol. IT-12, pp. 42-50, Jan. 1966. 
L. J. Griffiths, “Rapid measurement of instantaneous frequency,” 
IEEE Trans. Acoustics. Sneech. and Sianal Processina. vol. ASSP- 
23, pp. 209-222, Apri1’1975. ’ 

K. Senne, “Adaptive linear discrete-time estimation,” Stanford 

June 1968 (Ph.D. dissertation). 
Electronics Laboratories, Stanford Univ., Rep. SEL-68490, 

T. Daniell, “Adaptive estimation with mutually correlated training 
samples,” Stanford Electronics Laboratories, Stanford Univ., 

Y.  P. Lin, “Adaptive models for natural selection,” E.E. Thesis, 
Rep. SEL-68-083, Aug. 1968 (Ph.D. dissertation). 

Department of Electrical Engineering, Stanford Univ., Aug. 1972. 
C. Karnopp,  “Random search techniques for optimization 
problems,” Automatica, vol. 1;  pp. 111-121, Aug. 1963. 
G. J. McMurty and K. S. Fu, “A variable structure  automaton 
used as a multimodal searching technique,” IEEE Trans. Automat. 
Contr., vol. AC-11, pp. 379-387, July 1966. 
R. L. Barron, “Self-organizing control: The elementary SOC- 
Part I,” Contr. Engr., Feb. 1968. 
-, “Self-organizing control:  The general purpose SOC- 
Part II,” Contr. Engr., March 1968. 

search,” IEEE Trans. Automat. Contr., vol. AC-13, pp. 27e276, 
M. A. Schumer and K. Steiglitz, “Adaptive step size random 

June 1968. 
R. A. Jarvis. “Adautive rrlobal search in a time-variant environ- 

- -. ~ 

ment using a probabilistk  automaton with pattern recognition 
supervision,” IEEE Trans. Syst. S i .  Cybern., vol. SSC-6, pp. 
209-21 7. ~~~t~ 1970. I ---, - -  - -  
A. N. Mucciardi, “Self-organizing probability state variable 
parameter search algorithms for systems that must avoid high- 
penalty operating regions,” IEEE Trans. Systems, Man, and 
Cybernetics, vol. SMC-4, pp. 356362, July 1974. 
R. A. Jarvis. “Adautive dobal search bv the urocess of comDetitive 
evolution,” ’ IEEE‘  Tra;. Systems, k a n ,  and CybernetiLs, vol. 
SMC-5, pp. 297-311, May 1975. 

1321 B. Widrow et ai., “Stationary and nonstationary learning charac- 
teristics of the  LMS adaptive filter,” Proc. IEEE, vol. 64, Aug. 
1976 (forthcoming). 

[33] -, “Adaptive noise cancelling: Principles and applications,” 
Proc. IEEE, vol. 63, pp. 1692-1716, Dec. 1975. 


