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Abstmct-This paper describes the concept of adaptive noise cancel- 
ling, an  alternative method of estimating signals corrupted by additive 
noise or interfmm. The method uses a “primary” input containing 
the  comrpted Signrl and a “reference” input containiug noise corre- 
lated in some unknown way with the primary noise. The refaence 
input is adaptively filtered and subtracted from the  primary input to 
obtain the signal estimate. Adaptive filtering before subtraction allows 
the treatment of inputs  that are deterministic or stochastic, stationary 
or time variable. Wiener sdutions are developed to describe ~symptotic 
adaptive  performance  and output signal-to-noise ratio for s t p t i o l l p y  
stochastic  inputs, including  single  and multiple reference  inputs. These 
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solutions show that when the reference input is free of signal md cer- 
tain other conditions are met noise in the  primary input can be essen- 
W I y  eliminated  without sigrul distortion. It is further shown that in 

notch filter with narrow bandwidth, inlmite nun, and  the capability of 
treating pedodic intederence the adaptive noise candler acts as a 

tracking the  exact  frequency of the interference; in this case the can- 
der behaves as a liners, time-h-t systan,with the adaptive filter 

results are presented that illusbate the usefulness of the adaptive noise 
converging on a dynamic rather thm a static solution. Experimental 

candling technique in a variety of practical  applicalitms. These ap- 
plications  include  the candling of various forms  of periodic interfez- 
ence in elec-hy, the candling of periodic interference in 
speecfi signals, and the candling of  brod-bmd interference in the side- 
lobes of an antenna amy.  In further experiments it is shown that a 
sine wave  and Gaussian noise can be sepamted by using a reference 
input that is a delayed vezsion of the primary  input. Suggested a p p h -  
tions include  the  elimination  of tape hum or turntable rumble during 
the playback of liecofded broad-band signals and the automatic  detec- 
tion of  very4ow4evel pewdic signals masked by b d - b m d  noise. 

I. INTRODUCTION 
HE USUAL method of estimating a signal corrupted by 
additive noise’ is to pass it  through a fiiter  that  tends to 
suppress the noise while  leaving the signal  relatively 

unchanged. The design  of such  filters is the domain of optimal 
filtering, which originated with .the pioneering work of Wiener 

forms  of interference,  deterministic as well as stochastic. 
For simplicity the  term “noise” is used in this paper to signify all 
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and was extended  and enhanced by the work of Kalman, 
Bucy, and others [ 11 -[ 51. 

Filters used for  the above purpose can be fixed or adaptive. 
The design  of fixed filters is  based on  prior knowledge of both 
the signal and the noise. Adaptive filters,  on  the  other  hand, 
have the ability to adjust  their  own parameters automatically, 
and  their design requires little  or no u priori knowledge of 
signal or noise characteristics. 

Noise  cancelling  is a variation of optimal filtering that  is 
highly advantageous in many applications. It makes use  of an 
auxiliary or reference input derived from one  or more sensors 
located  at  points  in  the noise field where the signal is weak or 
undetectable. This input is filtered and  subtracted  from a 
primary input  containing  both signal and noise. As a result the 
primary noise is attenuated  or eliminated by cancellation. 

At first glance, subtracting noise from a received  signal 
would  seem to be a dangerous procedure. If done  improperly 
it could result in an increase in  output noise power. If, how- 
ever, filtering and subtraction are controlled  by  an  appropriate 
adaptive process, noise reduction can be  accomplished with 
little risk  of distorting  the signal or increasing the  output noise 
level.  In circumstances where adaptive noise  cancelling is ap- 
plicable, levels  of  noise rejection are often  attainable  that 
would be difficult or impossible to achieve by direct filtering. 

The purpose of this  paper is to describe the concept of 
adaptive noise cancelling, to  provide a theoretical  treatment of 
its advantages and limitations,  and to describe some of the ap- 
plications where it is most useful. 

11. EARLY WORK IN ADAPTIVE NOISE CANCELLING 

The earliest work in adaptive noise cancelling known to  the 
authors was performed by  Howells and Applebaum and  their 
colleagues at  the General Electric Company  between 1957 and 
1960.  They designed and built a system for  antenna sidelobe 
cancelling that used a reference input derived from an  auxil- 
iary  antenna and a simple two-weight adaptive filter [6] .  

At the time of this work,  only a handful of people were 
interested in adaptive systems,  and development of the multi- 
weight adaptive filter was just beginning. In 1959, Widrow 
and Hoff at Stanford University  were  devising the least-mean- 
square (LMS) adaptive algorithm and the  pattern recognition 
scheme known as Adaline (for “adaptive linear threshold logic 
element”) [ 71 , [ 81 . Rosenblatt  had  recently built his Percep- 
tron at the Cornell Aeronautical Laboratory [9]-[ 111 .2 

Aizermann and his  colleagues at  the  Institute of Automatics 
and Telemechanics in Moscow,  U.S.S.R., were constructing  an 
automatic gradient searching machine. In Great Britain, D. 
Gabor  and his associates were developing adaptive filters [ 121 . 
Each of these  efforts was proceeding independently. 

In the early and middle 1960’s, work on adaptive systems 
intensified. Hundreds of papers on  adaptation, adaptive con- 
trols, adaptive filtering, and adaptive signal  processing ap- 
peared in the  literature.  The best known commercial applica- 
tion of adaptive filtering grew from the work during this 
period of Lucky at  the Bell Laboratories [ 13 1 ,  [ 141 . His 
high-speed MODEM’S for digital communication are now 
widely  used in connecting remote terminals to computers as 
well  as one  computer  to  another, allowing an increase in the 
rate  and accuracy of data transmission by a reduction of inter- 
symbol  interference. 

tion in Washington, D.C. 
‘This pioneering  equipment now resides at  the Smithsonian  Institu- 

FILTER 
OUTPUT 

I 

The first adaptive noise  cancelling system at Stanford Uni- 
versity  was  designed and built in  1965 by two  students. Their 
work was undertaken as part of a term  paper project for a 
course in adaptive systems given by the Electrical Engineering 
Department. The purpose was to cancel 60-Hz interference  at 
the  output of an electrocardiographic amplifier and recorder. 
A description of the system, which made use  of a two-weight 
analog adaptive filter,  together  with results recently obtained 
by  computer implementation, is presented in Section VIII. 

Since 1965, adaptive noise cancelling has been successfully 
applied to a number of additional problems, including other 
aspects of electrocardiography, also  described in  Section  VIII, 
to  the elimination of periodic interference  in general [ 151 , and 
to the elimination of echoes on long-distance telephone trans- 
mission  lines [ 161 , [ 171. A recent paper on adaptive antennas 
by Riegler and Compton [ 181  generalizes the work originally 
performed by  Howells and Applebaum. Riegler and Compton’s 
approach is  based on  the LMS algorithm and is  an application 
of the adaptive antenna concepts of  Widrow e t  ul. [ 191 , [ 201 . 

111. THE CONCEPT OF ADAPTIVE NOISE CANCELLING 

Fig. 1 shows the basic problem and the adaptive noise can- 
celling solution to it. A signal s is  transmitted over a channel 
to a sensor that also  receives a noise no uncorrelated  with  the 
signal. The combined signal and noise s + n o  form the primary 
input  to  the canceller. A second sensor receives a noise nl 
uncorrelated  with  the signal but correlated in some unknown 
way with the noise no. This sensor provides the reference 
input  to  the canceller. The noise nl is filtered to produce  an 
output y that is as close a replica as possible of no. This 
output is subtracted  from  the primary input s + no to produce 
the system output z = s + no - y .  

If one knew the characteristics of the channels over which 
the noise  was transmitted to  the primary and reference 
sensors, it would theoretically be possible to design a fiied 
filter capable of  changing nl into no. The  filter  output could 
then be subtracted  from  the primary input, and the system 
output would be signal alone. Since, however, the character- 
istics of the transmission paths are as a rule unknown  or 
known only approximately and  are seldom of a fixed nature, 
the use  of a fixed fiiter is not feasible.  Moreover,  even if a 
fixed filter were feasible, its characteristics would  have to be 
adjusted with a precision difficult to attain, and the slightest 
error  could result in an increase in  output noise power. 

In  the system shown in Fig. 1 the reference input is pro- 
cessed by an adaptive filter. An adaptive filter differs from a 
fixed fiiter  in  that  it  automatically  adjusts  its own impulse 
response. Adjustment  is accomplished through  an algorithm 
that responds to an error signal dependent, among other 
things, on  the filter’s output.  Thus with the proper algorithm, 
the  filter  can  operate  under changing conditions  and can re- 
adjust itself continuously to minimize the  error signal. 
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The  error signal  used in an adaptive process depends  on  the 
nature of the application. In noise cancelling systems  the 
practical objective is to produce  a system output z = s + no - y 
that is a best fit  in the least squares sense to the signal s. This 
objective is accomplished by feeding the system output back 
to the  adaptive  filter  and  adjusting  the  filter  through  an LMS 
adaptive algorithm to minimize total system output  power.3 
In an adaptive noise cancelling system,  in  other words, the 
system output serves as the  error signal for  the adaptive process. 

It might seem that some prior  knowledge of the signal s or of 
the noises no and n l  would be necessary before  the  filter 
could be designed, or  before  it could adapt,  to  produce  the 
noise cancelling signal y. A simple argument will show,  how- 
ever, that  little  or  no  prior  knowledge of s, n o ,  or n l  , or of 
their  interrelationships,  either  statistical  or  deterministic, is 
required. 

Assume that s, n o ,  n 1, and y are statistically  stationary  and 
have zero means.  Assume that s is uncorrelated  with no and 
n l ,  and  suppose  that n1 is correlated  with n o .  The  output z is 

z = s t n o - y .  (1) 

Squaring, one  obtains 

z 2  = s2 + ( n o  - y)’ + 2s(no - y). (2) 

Taking expectations of both sides of (2), and realizing that S is 
uncorrelated  with no and withy, yields 

The signal power E [ s 2 ]  will  be unaffected as the fiiter is ad- 
justed to minimize E [ z 2  ]. Accordingly, the minimum output 
power is 

When the fiiter is adjusted so that E[z’ 1 is minimized, E [ ( n o  - 
y)’ ] is, therefore, also minimized. The  filter output  y is then 
a best least squares estimate of the  primary noise no .  More- 
over, when E [ ( n o  - y)’] is minimized, E [ ( z  - s)? ] is also 
minimized, since, from ( I ) ,  

( z  - s )  = (no  - y). 

Adjusting or  adapting  the  filter to minimize the  total  output 
power is thus  tantamount to causing the  output z to be a best 
least squares estimate of the signal s for the given structure  and 
adjustability of the  adaptive  fiiter  and  for  the given reference 
input. 

The  output z will contain  the signal s plus noise. From ( l ) ,  
the  output noise is given by (no - y) .  Since minimizing E [ z 2  1 
minimizes E [ ( n o  - y)’] , minimizing  the  total  output  power 
minimizes  the  output  noise  power. Since the signal in  the  out- 
put remains constant, minimizing  the  total  output  power 

Therefore,  y = n o ,  and z = s. In this case, minimizing output 
power causes the  output signal to be perfectly noise free! 

These arguments can readily be extended to the case  where 
the  primary and  reference  inputs  contain, in addition  to no 
and n l  , additive  random noises uncorrelated  with each other 
and  with s, n o ,  and n l  . They  can also readily be extended to 
the case where no and n l  are deterministic  rather  than 
stochastic. 

IV. WIENER SOLUTIONS TO STATISTICAL 
NOISE CANCELLING PROBLEMS 

In this  section,  optimal  unconstrained Wiener solutions to 
certain  statistical noise cancelling problems are derived. The 
purpose is to demonstrate  analytically the increase in signal- 
tonoise  ratio and other advantages of the  noire cancelling tech- 
nique.  Though  the idealized solutions  presented do  not  take 
into  account  the issues  of f i i t e  fiiter  length  or  causality, 
which are important in  practical  applications,  means of ap- 
proximating  optimal  unconstrained Wiener performance with 
physically realizable adaptive transversal filters  are readily 
available  and are described in  Appendix B. 

As previously noted,  fixed fiiters are for the  most  part  inap- 
plica,ble in noise cancelling because the  correlation  and cross 
correlation  functions of the  primary  and  reference  inputs are 
generally unknown  and  often variable with  time. Adaptive 
filters are required to “learn”  the  statistics  initially and to 
track  them if they vary slowly. For  stationary  stochastic 
inputs, however, the steady-state  performance of adaptive 
filters closely approximates  that of fixed Wiener fiiters, and 
Wiener filter  theory  thus provides a  convenient  method of 
mathematicalfy analyzing statistical noise cancelling problems. 

Fig. 2 shows a classic single-input single-output Wiener fiiter. 
The  input signal is xi, the  output signal yi, and the desired 
response di.  The  input and output signals are assumed to be 
discrete in time,  and  the  input signal and desired response are 
assumed to be statistically  stationary.  The  error signal is 
q = di - yi.  The filter is linear,  discrete, and  designed to be 
optimal  in  the  minimum  mean-squareerror. sense. It is com- 
posed  of an infinitely  long, two-sided tapped delay line. 

The  optimal impulse response of this  filter may be described 
in the following manner.  The  discrete  autocorrelation  func- 
tion of the  input signal X i  is defined as 

The  crosscorrelation  function  between xi and the desired 
response di is similarly defiied as 

The  optimal impulse response w*(k)  can then be obtained 
from  the discrete Wiener-Hopf equation: 
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Fig. 2 .  Singlechannel Wiener filter. 

/ L------------------j 
~ ~ ~ ~ ~ E N C E  ADAPTIVE  NOISE  CANCELLER 

Fig. 3. Singlechannel adaptive noise canceller with correlated and un- 
correlated noises in the primary  and reference inputs. 

The convolution  can be  more simply written as 

This form of the Wiener solution is unconstrained in  that  the 
impulse response w*(k) may be causal or noncausal and of 
finite  or  infinite  extent to the  left  or right of the  time origin.’ 

The  transfer  function of the Wiener fiter may  now be 
derived as follows. The  powerdensity spectrum of the  input 
signal  is the Z transform of @,(k): 

00 

S,(z)G @,(k)z -k .  (10) 
k = - m  

The cross power  spectrum  between the  input signal and desired 
response is 

00 

S & ( Z )  @&(k)Z-k. (1 1) 
k = - m  

The  transfer  function of the Wiener filter is 

W*(Z) k c W*(k)  Z-k. (12) 

Transfonning (8) then yields the optimal  unconstrained Wiener 
transfer  function: 

The application of Wiener fi ter theory to adaptive noise 
cancelling may  now be considered. Fig. 3 shows a single- 
channel  adaptive noise canceller with a typical  set of inputs. 
The primary input consists of a signal Si  plus a sum of two 
noises moi and ni. The reference input consists of a sum of 
two  other noises m l i  and ni * h( j ) ,  where h ( j )  is the impulse 

is conatrained to a causal response. This constraint generally leads to a 
The Shannon-Bode realization of the Wiener solution,  by contrast, 

loss of performance and, as shown in Appendix B,  can normally be 
avoided in adaptive noise cancelling applications. 

response of the channel whose transfer  function is J € ( z ) . ~  The 
noises ni and nj * h ( j )  have a common origin, are correlated 
with each other, and are uncorrelated with si .  They further are 
assumed to have a finite power spectrum at all frequencies. 
The noises m o j  and m l j  are uncorrelated  with each other, with 
si, and with ni and nj * h ( j ) .  For  the purposes of analysis all 
noise propagation paths are assumed to be equivalent to linear, 
time-invariant filters. 

The noise  canceller  of  Fig. 3 includes an adaptive filter 
whose input x i ,  the reference input to the canceller, is m l j  + 
nj * h ( j )  and whose  desired response d j ,  the primary input  to 
the canceller, is si + moi  + nj.  The  error signal ~j is the noise 
canceller’s output. If one assumes that  the adaptive process 
has converged and the minimum meansquareerror  solution 
has been found,  then  the adaptive filter is equivalent to a 
Wiener filter.  The  optimal  unconstrained  transfer function of 
the adaptive filter is thus given  by (1 3) and may be written as 
follows. 

The spectrum of the filter’s input S,(z) can  be  expressed 
in terms of the  spectra of its  two mutually uncorrelated addi- 
tive components. The spectrum  of the noise m l  is S m l m l ( z ) ,  
and that of the noise n arriving  via X ( Z )  is S , , ( Z )  I X ( z )  1 ’. The 
filter’s input spectrum is thus 

The cross power spectrum  between the filter’s input and the 
desired response depends  only on  the mutually correlated 
primary and reference components and is  given by 

The Wiener transfer  function is thus 

Note that W*(z) is independent of the primary signal spectrum 
S , ( Z )  and of the primary uncorrelated noise spectrum 
Sm,m,(z). 

An mteresting special  case occurs when the additive noise 
ml in the reference input is zero. Then&mlml(z) is zero and 
the optimal  transfer  function  (1  6) becomes 

0 * ( Z )  = 1 /J€(z). (1 7) 

This result is intuitively appealing. The adaptive filter, as in 
the balancing of a bridge,  causes the noise ni to  be perfectly 
nulled at  the noise canceller output.  The primary uncorrelated 
noise moj remains uncancelled. 

The performance of the singlechannel noise canceller  can be 
evaluated more generally in terms of the  ratio of the signal-to- 
noise density ratio  at  the  output, pout(z) to  the signal-to-noise 
density ratio  at  the primary input p*(z).’ Assuming that  the 
signal spectrum is greater than  zero  at all frequencies and 

from nj to the primary  input  has been set at unity. This procedure does 
6To simplify the  notation the transfer function of the noise path 

not restrict the analysis, since by a suitable choice of X @ )  and of 
statistics for ni any combination of mutually correlated noises can  be 
made to appear  at the primary  and reference inputs. Though X@) may 
consequently be  required to have poles inside and outside the unit 
circle in the Z-plane, a stable two-sided impulse response hQ will 
always exist. 

power density to noise power density and is thus a function of frequency. 
‘Signal-to-noise density ratio is here defined as the ratio of signal 
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factoring out  the signal power  spectrum yields 

pout(z) - primary noise power  spectrum 
p ~ ( z )  output noise power  spectrum 

- 5,(z) + 5m0mO(z)  

Soutput noise(z) . 
(18) 

The canceller’s output noise power spectrum, as may be seen 
from Fig.” 3, is a sum of three  components,  one  due to the 
propagation  of moi directly to the  output,  another due to the 
propagation of m l i  to  the  output via the  transfer  function 
- a * ( z ) ,  and another  due to the  propagation of ni to the  out- 
put via the  transfer  function  1 - x ( z )   w * ( z ) .  The  output 
noise power spectrum is thus 

S ~ ~ t p u t ~ o ~ ~ ~ ~ = S m o m o ~ ~ ~ + ~ m l m l ~ ~ ~ I  D * ( z ) I ’  
+S,(z)I[l - X ( z )  W*(z)l 1’. (19) 

If one  lets the ratios of the  spectra of the  uncorrelated to the 
spectra of the  correlated noises (“noise-to-noise  density 
ratios”)  at  the  primary  and  reference  inputs now be defiied as 

and 

then  the transfer  function (17) can be written as 

1 
W z ) [   H z )  + 1 I * 

a * ( Z )  = 

The  output noise power  spectrum (19) can accordingly be re- 
written as 

+ S , ( Z )  1 - - I B(z ;+  11’ 

The ratio of the  output to  the primary input noise power 
spectra is 

This expression is a general representation of ideal noise can- 
celler performance  with single primary  and  reference  inputs 
and  stationary signals and noises. It allows one to estimate the 
level of noise reduction to be  expected  with an ideal  noise 
cancelling system.  In  such  a  system  the signal propagates to 
the  output in an undistorted fashion (with  a  transfer  function 

of unity).’ Classical configurations of Wiener, Kalman, and 
adaptive  filters, in contrast, generally introduce  some signal 
distortion in the process of noise reduction. 

It is apparent  from (24)  that  the ability of a noise cancelling 
system to reduce noise is limited by the  uncorrelated-to- 
correlated noise density  ratios  at  the  primary and reference 
inputs.  The smaller are A ( z )  and B(z ) ,  the greater will  be 
pout(z)/p*(z) and the more  effective the action of the can- 
celler.  The  desirability of low levels  of uncorrelated noise in 
both  inputs is made  still  more  evident  by  considering  the 
following special cases. 

I )  Small A(z ) :  

2) Small B(z) .  

3) Small A ( z )  and B(z): 

Infinite  improvement is implied by these  relations when 
both A ( z )  and B ( z )  are zero.  In  this case there is complete 
removal of noise at  the  system  output, resulting m perfect 
signal reproduction. When A ( z )  and B ( z )  are small, however, 
other factors become important  in  limiting sys€em perfor- 
mance. These factors  include  the  finite  length of the adaptive 
filter  in  practical  systems, discussed in  Appendix B, and “mis- 
adjustment” caused by gradient  estimation noise in the adap- 
tive process, discussed in [ 191 and [ 201 . A third  factor, signal 
components  sometimes  present in the  reference input, is dis- 
cussed in the  following  section. 

v. EFFECT OF SIGNAL COMPONENTS 
IN THE REFERENCE INPUT 

In certain  instances  the available reference input  to an 
adaptive noise canceller  may  contain low-level signal com- 
ponents  in  addition to the usual correlated  and  uncorrelated 
noise components.  There is no  doubt  that these signal com- 
ponents will cause some  cancellation of the  primary input 
signal. The question is whether  they will cause sufficient 
cancellation to render the application of noise cancelling 
useless. An answer is provided in  the  present  section  through  a 
quantitative analysis based, like that of the previous section, 
on  unconstrained Wiener filter  theory.  In  this analysis expres- 
sions are derived for signal-to-noise density  ratio, signal distor- 
tion, and noise spectrum at  the canceller output. 

Fig. 4 shows an adaptive noise canceller whose reference 
input contains signal components  and whose primary  and 
reference  inputs  contain  additive  correlated noises. Additive 
uncorrelated noises have been  omitted to simplify the analysis. 
The signal components in the  reference input are assumed to 
be propagated  through  a  channel  with  the  transfer  function 
$(z). The  other terminology is the same as that of Fig. 3 .  

when the value of  the adaptation constant p ,  defined in Appendix A, is 
‘Some signal cancellation is possible when adaptation is rapid (that is, 

large)  because of  the dynamic response of the weight vector,  which 
approaches but do=  not equal the Wiener solution. In most cases this 
effect is negligible;  a particular case where  it is not  negligiile is de- 
scribed in Section VI. 
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Fig. 4. Adaptive noise canceller with signal components in the refer- 
ence input. 

The  spectrum of the signal in Fig. 4 is S,,(Z) and that of the 
noise S,(z). The  spectrum of the reference input, which  is 
identical to the  spectrum of the  input x i  to the adaptive  filter, 
is thus 

S,(z)= S,(z)IJ(z)I' +Snn(z)IJ€(z)12. (28) 

The  cross  spectrum  between the reference  and  primary  inputs, 
identical  to  the cross spectrum  between  the fdter's input xi  
and  desired  response di, is similarly 

S d ( Z )  = S,(Z) J(z-') + S,(z) X(z-'). (29) 

When the adaptive  process  has  converged, the unconstrained 
Wiener transfer  function of the  adaptive  filter, given by (13), 
is thus 

The first objective of the analysis is to find the signal-to- 
noise  density  ratio pout(z) at  the noise canceller output. The 
transfer  function of the propagation path from the signal input 
to  the noise  canceller output is 1 - J(z) W*(z) and that of the 
path  from  the noise input to  the canceller output is 1 - x(z )  . 
a*(z). The  spectrum of the signal component in the  output 
is thus 

The output signal-to-noise density ratio is thus 

(33) 

The output signal-to-noise density  ratio  can be conveniently 
expressed in terms of the signal-to-noise density  ratio at  the 
reference input p,f(z) as follows.  The  spectrum of the signal 
component in the  reference input is 

The signal-to-noise density  ratio  at the reference input is thus 

The output signal-to-noise density  ratio (33) is, therefore, 

This result is exact  and  somewhat surprising. It  shows that, 
assuming the adaptive  solution to be unconstrained  and the 
noises in the primary  and  reference inputs  to be mutually 
correlated,  the signal-to-noise density  ratio  at  the  noise  can- 
celler output is simply the reciprocal  at all frequencies of the 
signal-to-noise density  ratio  at the reference input. 

The  next  objective of the analysis is to derive  an expression 
for signal distortion  at  the  noise  canceller  output.  The  most 
useful  reference input is one  composed  almost entirely of 
noise correlated  with  the  noise  in the primary input. When 
signal components are present  some signal distortion will 
generally  occur.  The  amount will depend  on the  amount 
of  signal propagated  through the adaptive  filter,  which may  be 
determined as follows.  The transfer function of the propaga- 
tion  path  through  the filter is 

When I J(z) I is small, this  function can be approximated as 

- J(z) a*(z) 2 -j(z)/X(z). (3  9) 

The  spectrum of the signal component  propagated to  the 
noise canceller output  through  the adaptive filter is thus 
approximately 

5 d Z )  I Q(z)/JC(z) 1'. (4 0) 

The  combining of this  component  with  the signal component 
in the primary input involves complex  addition  and is the 
process that results in signal distortion.  The  worst case, 
bounding the  distortion to be expected in practice, occurs 
when the  two signal components are of opposite  phase. 

Let "signal distortion" B(z) be definedg as a  dimensionless 
ratio of the  spectrum of the  output signal component  pro- 
pagated  through the adaptive  filter to the  spectrum of the 
signal component  at  the  primary  input: 

= I J(z) D Y Z )  1 2 .  (41) 

From (39) it can be seen that, when J(z) is small, (41) reduces 
to 

D(z) z I J ( Z ) / W Z )  I' . (42) 

This  expression may  be rewritten  in a more  useful  form by 
combining the expressions  for the signal-to-noise density  ratio 
at  the  primary input: 

P@(z) &(z)/Snn(z) (43) 

related to alteration of the s i g n a l  waveform as it appears  at the noise 
'Note that s i g n a l  distortion as defmed here is a linear phenomenon 

canceller output and is not  to be confused with nonlinear harmonic 
distortion. 
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and the signal-to-noise density  ratio  at  the  reference input (36): 

%z) Pref (Z)hpri(Z). (44) 

Equation (44) shows that, with an unconstrained  adaptive 
solution  and  mutually  correlated noises at  the  primary  and 
reference  inputs, low signal distortion  results  from a high 
signal-to-noise density  ratio  at the primary  input  and  a  low 
signal-to-noise density  ratio at  the reference  input.  This  con- 
clusion is intuitively  reasonable. 

The  final  objective of the analysis is to derive an expression 
for  the spectrum of the  output noise. The noise n j  propagates 
to  the  output with  a  transfer  function 

1 - 1  

When f (z) 1 is small, (45) reduces to 

The  output noise spectrum is 

This equation  can be more  conveniently expressed in  terms of 
the signal-to-noise density  ratios at  the  reference  input (36) 
and primary input (43): 

Soutput noise(z) 2 5nn(z)lpdz)II  ~pri(z)I. (49) 

This result,  which may appear  strange  at f i t  glance, can be 
understood  intuitively as follows. The first  factor  implies  that 
the  output noise  spectrum  depends  on  the input noise spec- 
trum  and is readily  accepted.  The  second  factor  implies that, 
if the signal-to-noise density  ratio at  the  reference input is low, 
the  output noise will  be low;  that is,  the  smaller  the signal com- 
ponent  in  the  reference  input,  the  more  perfectly  the noise will 
be cancelled.  The  third  factor implies that, if the signal-to-noise 
density  ratio  in the primary input  (the desired response of the 
adaptive  filter) is low,  the  filter will  be trained  most  effectively 
to cancel the noise rather  than  the signal and consequently 
output noise will be low. 

The above analysis shows that signal components of low 
signal-to-noise ratio  in  the  reference  input,  though  undesirable, 
do  not render  the  application of adaptive noise cancelling use- 
less." For  an illustration of the level  of performance  attain- 
able in  practical  circumstances  consider the following  example. 
Fig. 5 shows an  adaptive  noise cancelling system designed to 
pass a plane-wave  signal received in the main beam  of an 
antenna  array  and to discriminate against strong  interference 
in  the  near field or  in  a  minor  lobe of the  array. If one assumes 
that  the signal and  interference have overlapping and similar 
power  spectra  and that  the interference  power  density is 

"It should be noted that if the reference input contained signal com- 
ponents but no noise components, correlated or uncorrelated, then the 
signal would be completely cancelled. When the reference input is 
properly derived, however, this  condition cannot occur. 

RECEIVING 
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/I 
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Fig. 5 .  Adaptive noise cancelling applied to a receiving  array. 

twenty  times  greater  than  the signal power  density at  the  in- 
dividual array  element,  then the signal-to-noise ratio  at  the 
reference input pref is 1/20. If one  further assumes that, be- 
cause of array gain, the signal power  equals  the  interference 
power at  the  array  output,  then  the signal-to-noise ratio  at  the 
primary input pfi is 1. After convergence of the  adaptive 
filter  the signal-to-noise ratio  at  the  system  output will thus be 

Pout = 1/Pref = 20. 

The  maximum signal distortion will similarly be 

9 = pref/ppri = (1/20)/1 = 5 percent. 

In  this case, theiefore,  adaptive noise cancelling improves 
signal-to-noise ratio  twentyfold  and  introduces  only  a small 
amount of  signal distortion. 

VI. THE ADAPTIVE NOISE CANCELLER 
AS A NOTCH FILTER 

In certain  situations  a  primary input is available consisting of 
a signal component with  an  additive  undesired  sinusoidal  inter- 
ference.  The  conventional method of eliminating  such  inter- 
ference is through the use of a  notch  filter.  In  this  section an 
unusual  form of notch  filter, realized by an adaptive noise 
canceller, is described. The advantages of this  form of notch 
filter  are that  it offers easy control of bandwidth, an i n f i t e  
null,  and the capability of adaptively  tracking  the  exact  fre- 
quency of the  interference.  The analysis presented deals with 
the  formation of a  notch  at  a single frequency.  Analytical 
and  experimental  results  show,  however, that if more than one 
frequency  is  present  in  the  reference input  a  notch  for each 
will  be formed [211. 

Fig. 6 shows  a  single-frequency noise canceller  with  two 
adaptive weights. The primary input is assumed to be any 
kind of signal-stochastic,  deterministic,  periodic,  transient, 
etc.-or any combination of signals. The reference  input is 
assumed to be a  pure  cosine wave C cos (wot + 9). The 
primary  and  reference  inputs are sampled at  the  frequency 
$2 = 2n/T rad/s. The reference  input is sampled directly, 
giving xlj,  and  after  undergoing  a 90' phase shift, giving X;j. 
The samplers are synchronous  and  strobe  at t = 0, f T ,  f 2 T ,  
etc. 

A transfer  function for  the noise canceller of  Fig. 6 may be 
obtained by analyzing signal propagation  from the primary 
input to  the system  output."  For  this  purpose  the  flow dia- 
gram  of  Fig. 7, showing  the  operation of the LMS algorithm in 
detail, is constructed.  Note that  the procedure for updating 

for  this propagation path in fact exists. Its existence is shown, however, 
It is not obvious, from inspection of Fig. 6, that a transfer function 

by  the subsequent analysis. 



WIDROW et 01.: ADAPTIVE NOISE  CANCELLING 1699 

NOISE 
PRIMARY 
INPUT / dl 

CANCELLER 

t 'I SYNCHRONOUS SAMPLERS 1 I I  
REFERENCE 
INPUT 

ADAPTIVE 

OUTPUT 
FILTER 

DELAY 
LMS 
ALGORITHM 

SAMPLING  PERIOD = T SEC 
SAMPLING  FRER. CZ = 9 RADiSEC 

Xzl = Cr in IwglT+# l  

Fig. 6 .  Single-frequency  adaptive noise canceller. 

Fi. 7.  Flow diagram showing signal propagation in single-frequency 
adaptive noise canceller. 

the weights, as indicated  in  the diagram, is given by 

W l j + l  = W l i  + 2 / ~ i x l i  

W Z ~ + I  = W Z ~  + 2 / ~ i x z i .  (50)  

The  sampled  reference inputs are 

x li = C cos (wojT + @) (5 1) 

and 

xzi = C sin (wojT + @). (52) 

The first step  in  the analysis is to obtain  the isolated impulse 
response from  the error ei, point C, to  the  fiter  output, point 
G, with  the  feedback  loop  from  point G to point B broken. 
Let an impulse of amplitude 01 be applied  at  point C at discrete 
time j = k; that is, 

ei = a&j - k) (53) 

where 

S ( j  - k) = I 1, f o r j = k  
0, f o r j f  k. 

The response at point D is then 

which is the  input impulse scaled in  amplitude  by  the  instan- 
taneous value of x l j  at j = k.  The signal flow path  from  point 
D to point E is that of a digital integrator  with  transfer  func- 
tion 2 p / ( z  - 1)  and  impulse response 2 p ( j  - 11, where u ( j )  is 

the discrete  unit  step  function 

u ( i )  = 
0, fo r j<O 
1, forj>O. 

Convolving 2 p ( j  - 1)  with e jx l i  yields the response at  point 
E :  

w l i  = 2 w C  COS (wokT + 9) (57) 

where j > k + 1. When the scaled and delayed step  function is 
multiplied  by x l i ,  the response at point F is obtained: 

y l i  = 2 w C Z  cos ( o o j T  + @) cos (wokT + @) (58) 

where j >  k + 1.  The  corresponding response at  point J ,  ob- 
tained  in  a similar manner,  is 

y z i  = 2 w C 2  sin (wojT + @) sin ( o o k T  + @) ( 5 9 )  

where j > k + 1. Combining (58) and ( 5 9 )  yields the response 
at the filter output,  point G :  

y i  = 2 w C Z  cos woT(j - k) 
= 2c(aC2u(j - k - 1) cos o o T ( j  - k). (60) 

Note  that  (60) is a  function  only of ( j  - k) and is thus  a  time- 
invariant impulse response,  proportional to  the  input impulse. 

A linear transfer  function for  the noise canceller may  now be 
derived in the following manner. If the  time k is set  equal to 
zero, the  unit impulse response of the linear timeinvariant 
signal-flow path  from  point C to point G is 

y i  = 2 p c Z u ( j  - 1) cos ( o o j T )  (6  1) 

and the  transfer  function of this path is 

G ( z )  = 2 p C 2  
Z(Z - COS wo T )  

z Z  - 22 COS c+T + 1 - l l  
2pC2 ( Z  COS 00  T - 1) - - (62) 

This function  can be expressed in  terms of a radian sampling 
frequency C2 = 2n/T as 

- ~ Z C O S U O T +  1 ' 

G ( z )  = 
2pCZ[z  cos(2nooC2-1)- 11 
z 2  - 22 cos (2nOoC2-') + 1 * 

(63) 

If the  feedback  loop  from  point G to point B is now  closed, 
the  transfer  function H(z) from  the  primary  input,  point A ,  
to the noise canceller output,  point C, can be obtained  from 
the  feedback  formula: 

z2 - 22 cos (2nWos2-1) + 1 
H(z) = (64) 

Equation  (64) shows that  the  singlefrequency noise can- 
celler has the  properties of a notch  filter at the  reference 
frequency wo. The zeros of the transfer  function are located 
in the 2 plane  at 

z 2  - 2(1 - pCZ) z cos ( 2 n o o a - ' )  + 1 - 2pcZ' 

z = exp (*i2nwos2-') (65) 

and are precisely on  the  unit circle at angles of *2nooS2-' 
rad. The poles are  located  at 

z = (1 - PC' cos (2nwo~2-' * i [( 1 - 2 p c Z  

- (1 - pC2)  cosz (2nwoC2-')1 (66) 
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NOTE:  NOTCH REPEATS 
ATSAMPLING FREQUENCY 

(b) 
Fig. 8.  Roperties of transfer function of single-frequency  adaptive 

transfer function. 
noise canceller.  (a)  Location of  poles and zeros. (b) Magnitude of 

The poles are inside the u@t  circle at a radial distance (1 - 
2pC2)'IZ, approximately equal to 1 - PC', from the origin 
and at angles  of 

*arc cos [( 1 - PC' ) (1 - 2pc2 )-'I2 cos (2nwo~2-' 11. 
For slow adaptation  (that is, small  values  of PC') these angles 
depend on  the factor 

1 - /icz = (1 - 2 p ~ 2  + p2 c4 lI2 
(1 - 2pC2)'12 1 - 2pc2 ) 

E (1 - p2c4 + . . . )1/2 

- " I - -  ; p 2  c 4 +... (67) 

which differs only slightly from a value  of one.  The result is 
that, in practical instances, the angles  of the poles are almost 
identical to those of the zeros. 

The  location of the poles and zeros and the magnitude of 
the transfer function in terms,of  frequency are shown in 
Fig. 8. Since the zeros lie on  the  unit circle, the  depth of the 
notch in the  transfer  function is infinite at  the frequency w = 
wo. The sharpness of the  notch is determined by  the closeness 
of the poles to  the zeros. Corresponding poles and zeros are 
separated by a distance approximately  equal to pC2. The  arc 
length along the  unit circle (centered at  the  position of a zero) 
spanning the distance between half-power points is approxi- 
mately 2pC2. This length  corresponds to a notch bandwidth of 

BW = pc2 !22/n. (68) 

The Q of the  notch is determined by  the  ratio of the  center 
frequency to  the bandwidth: 

The single-frequency  noise  canceller is, therefore, equivalent 
to a stable notch fiiter when the reference input is a pure 
cosine wave. The depth of the null achievable is generally 

FREQUENCY 
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Fig. 9 .  Results of single-frequency  adaptive noise cancelling  experi- 
ments.  (a) primary input composed of cosine  wave at 512 discrete 

white noise. 
frequencies. (b) primary  input composed of  uncmelated samples of 

superior to  that of a fixed digital or analog filter because the 
adaptive process maintains the null exactly at  the  reference 
frequency. 

Fig. 9 shows the results of two experiments  performed to 
demonstrate the characteristics of the adaptive notch filter. 
In the first the primary input was a cosine  wave  of unit power 
stepped at 5 12 discrete frequencies. The reference input was 
a cosine wave with a frequency wo of n/2T rad/s. The value 
of C was 1, and the value  of p was 1.25 X The fre- 
quency  resolution of the fast Fourier  transform was 5 12 bins. 
The  output power at each frequency is shown in Fig. 9(a). As 
the primary frequency  approaches the reference frequency, 
significant cancellation occurs. The weights do  not converge 
to stable values but "tumble" at  the  difference frequency," 
and the adaptive filter behaves  like a modulator, converting 
the reference frequency into the primary frequency. The 
theoretical  notch width  between half-power points, 1.59 X 
lo-' wo,  compares closely with the measured notch width 
of 1.62 X 1 O-' oo. 

In the second experiment, the primary input was composed 
of  uncorrelated samples of white noise of unit power. The 
reference input and the processing parameters were the same 
as in the  first experiment. An ensemble average of 4096 
power spectra at  the noise canceller output is shown in Fig. 
9(b). An infinite null was not obtained in this  experiment 
because of the  finite  frequency resolution of the  spectral 
analysis  algorithm. 

difference,  the weights develop a  sinusoidal steady  state at the differ- 
''When the primary and  reference  frequencies are held  at  a  constant 

ence  frequency. In other words, they converge on a dynamic rather 
than  a  static solution. This is an  unusual  form of  adaptive  behavior. 
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In these  experiments the filtering of a reference cosine wave 
of a given frequency caused cancellation of primary input 
components at adjacent frequencies. This result indicates 
that, under some circumstances, primary input  components 
may  be partially cancelled and distorted even though  the 
reference input is uncorrelated with them.  In practice this 
kind of cancellation is of concern only when the adaptive 
process is rapid;  that is, when it is effected with large  values 
of p .  When the adaptive process is slow, the weights  converge 
to values that are nearly stable,  and  though signal  cancella- 
tion as described in this  section  occurs  it is generally not 
significant. 

Additional  experiments have recently been conducted with 
reference inputs  containing more than  one sinusoid. The 
formation of multiple  notches  has been achieved by using an 
adaptive filter  with  multiple weights (typically  an adaptive 
transversal filter). Two weights are required for each sinusoid 
to achieve the necessary filter gain and phase. Uncorrelated 
broad-band noise superposed on the reference input  creates 
a need for  additional weights. A full analysis of the  multiple 
notch problem can be found  in [ 2 1 1 .  

VII. THE ADAPTIVE NOISE CANCELLER AS A 
HIGH-PASS FILTER 

The use of a bias  weight in an  adaptive filter to cancel low- 
frequency  drift in  the primary input is a special  case  of notch 
filtering with the  notch  at zero frequency.  The.  method of 
incorporating  the bias  weight is shown in Appendix A. 
Because there is no need to  match  the phase of the signal, only 
one weight is needed. The reference input is set to  a constant 
value of one. 

The  transfer  function  from  the primary input to the noise 
canceller output is derived as follows. Applying equations 
(A.3) and  (A. 15) of Appendix A yields 

y j  = wj * 1 = wj ( 7 0 )  

W j + l  = wj + 2P(€jXj) 

or 

Yj+ 1 = Y j  + 2c~(dj  - Y j )  

= ( l -  2C()Yj+2pdj .   (72)  

Taking the 2 transform of ( 7 2 )  yields the  steady-state  solution: 

Y ( z )  = *’ D ( z ) .  
2 -  (1 - 2p)  

(73) 

The  transfer  function is then obtained by substituting E ( z )  = 
D ( z )  - Y ( z )  in (73): 

D ( z )  - E ( z )  = 2 p  D ( z )  
z -  (1 - 2p)  

which reduces to 

E ( z )  z -  1 
D ( z )   z -  (1 - 2p)  

H ( z )  = - = 

(74) 

Equation  (75) shows that  the bias-weight filter is a high-pass 
filter with a zero  on  the  unit circle at zero frequency  and a 
pole on  the real axis at a distance 2 p  to the  left of the zero. 
Note that  this corresponds to a single-frequency notch filter, 
described by  (64),  for  the case where wo = 0 and C = 1. The 
half-power frequency of the  notch is at f l l n  radls. 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -  ADAPTIVE NOISE  CANCELLER 

PRIMARY INPUT 

PREAMPLIFIER 

Fig. 10. Cancelling 60-Hz interference in electrocardiography. 

The single-weight  noise  canceller acting as a high-pass filter 
is capable of  removing not only a constant bias but also  slowly 
varying drift in the primary input. Moreover, though it is not 
demonstrated in this  paper,  experience  has  shown  that bias or 
drift removal  can be accomplished simultaneously  with can- 
cellation of periodic or  stochastic interference. 

VIII. APPLICATIONS 
The principles of adaptive noise  cancelling, including a 

description of the concept and theoretical analyses of per- 
formance  with various kinds of signal and noise, have been 
presented in the preceding pages. This section describes a 
variety of practical applications of the technique. These 
applications include the cancelling  of  several kinds of inter- 
ference in electrocardiography, of  noise  in speech signals, of 
antenna sidelobe interference, and of periodic or broad-band 
interference  for which there is no external reference source. 
Experimental results are presented that  demonstrate  the per- 
formance of adaptive noise  cancelling in  these  applications  and 
that show  its  potential value  whenever suitable inputs are 
available. 

A .  Cancelling 60-Hz Interference in Electrocardiography 
In a recent paper [ 221,  the  authors  point  out  that a major 

problem in the recording of electrocardiograms (ECG‘s) is 
“the appearance of unwanted 6GHz  interference in the  out- 
put.’’ They analyze the various  causes  of such power-line 
interference, including magnetic induction, displacement cur- 
rents in leads or  in  the  body of the  patient, and  equipment 
interconnections and imperfections. They also describe a 
number of techniques that are useful for minimizing it and 
that can be effected in the recording process itself, such as 
proper grounding and ,the use of twisted pairs. Another 
method capable of reducing 6GHz ECG interference is adap 
tive noise cancelling,  which can be used separately or in  con- 
junction with more  conventional approaches. 

Fig. 10 shows the  application of adaptive noise  cancelling 
in electrocardiography. The primary input is taken from  the 
ECG preamplifier; the  6GHz reference input is taken  from 
a wall outlet.  The adaptive filter contains  two variable  weights, 
one applied to  the reference input directly and the  other  to 
a version of it shifted in phase by 90’. The  two weighted 
versions of the reference are summed to form the filter’s 
output, which is subtracted  from  the primary input. Selected 
combinations of the values of the weights allow the  reference 
waveform to be changed in magnitude  and phase in  any way 
required for cancellation. The  two variable  weights, or  two 
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( 4  
Fe. 1 1 .  Result of electrocardiographic noise cancelling  experiment. 

(a) Nary input. (b) Reference input. (c) Noise  canceller output. 

“degrees of freedom,”  are required to cancel the single pure 
sinusoid. 
A typical result of a  group of experiments  performed with a 

real-time computer system is shown in Fig. 1 1. Sample size 
was 10  bits  and sampling rate  1000 Hz.  Fig. l l (a)  shows 
the  primary  input, an electrocardiographic waveform with an 
excessive amount of 60-Hz interference,  and Fig. 1 l(b) shows 
the  reference  input  from  the wall outlet. Fig. 1  l(c) is the 
noise canceller output. Note the absence of interference and 
the clarity of detail  once the adaptive process has converged. 

B. Cancelling the  Donor ECG  in  Heart-Transplonl 
Electroaardiography 

The  electrical  depolarization of the ventricles of the  human 
heart is triggered by  a  group of specialized muscle  cells known 
as the atrioventricular (AV) node. Though capable of inde  
pendent,  asynchronous  operation,  this  node is normally con- 
trolled  by a similar complex,  the sinoatrial (SA) node, whose 
depolarization  initiates an electrical impulse transmitted  by 
conduction  through  the  atrial  heart muscle to  the AV node. 
The SA node is connected  through  the vagus and  sympathetic 
nerves to the central nervous system, which by  controlling 
the rate of depolarization  controls  the  frequency of the heart- 
beat  [231,  [241. 

The cardiac transplantation  technique developed by  Shum- 
way  of the  Stanford University Medical Center involves the 
suturing of the  “new”  or  donor  heart to a  portion of the 
atrium of the patient’s “old”  heart [25]. Scar tissue forms 
at the  suture line and  electrically  isolates the small remnant 
of the old heart,  containing  only  the SA node,  from  the  new 
heart,  containing  both SA and AV nodes. The SA node of the 
old heart remains connected to  the vagus and  sympathetic 
nerves, and the old heart  continues to beat  at  a  rate  controlled 
by the central nervous system. The SA node of the new 
heart, which is not  connected to  the central  nervous system 

DONOR ATRIUM 

SINOATRIAL NODES 

Fig. 12. Deriving  and  processing ECG signals of a  heart-transplant 
patient. 

because the severed vagus nerve cannot be surgically r e  
attached, generates a  spontaneous pulse that causes the new 
heart to beat  at  a  separate self-pacing rate. 

It is of interest to cardiac  transplant research, and to cardiac 
research in general, to be able to determine  the firing rate of 
the old heart  and,  indeed, to be able to see the waveforms of 
its electrical output. These waveforms, which cannot be 
obtained by ordinary  electrocardiographic means because of 
interference  from  the  beating of the new heart, are readily 
obtained with adaptive noise cancelling. 

Fig. 12 shows the  method of applying adaptive noise cancel- 
ling  in heart-transplant  electrocardiography.  The  reference 
input is provided by a pair of ordinary chest leads. These 
leads receive a signal that comes essentially from  the new 
heart, the source of interference.  The primary input is prc- 
vided by a catheter consisting of a small coaxial cable 
threaded  through  the  left  brachial vein and the vena  cava to a 
position in the  atrium of the old heart.  The tip of the cath- 
eter,  a few millimeters long, is an exposed portion of the 
center  conductor  that  acts as an antenna and is capable of 
receiving cardiac electrical signals. When it is in the most 
favorable position, the .desired  signal from  the old heart and 
the interference  from the new heart are received in about 
equal  proportion. 

Fig. 13  shows  typical  reference  and primary inputs and the 
corresponding noise canceller output.  The  reference  input 
contains  the  strong QRS waves that, in a  normal  electrocardie 
gram, indicate the firing of the ventricles. The  primary  input 
contains pulses that are  synchronous  with  the QRS waves of 
the  reference  input  and  indicate  the  beating of the new heart. 
The  other waves seen  in this input are due to  the old heart, 
which is beating  at  a  separate  rate. When the  reference  input 
is adaptively  filtered  and  subtracted  from  the  primary  input, 
one  obtains  the waveform shown in  Fig. 13(c), which is that 
of the old heart  together with very  weak residual pulses 
originating in the new heart.  Note that  the pulses of the  two 
hearts are easily separated, even when they  occur  at  the same 
instant.  Note also that  the electrical waveform  of the new 
heart is steady  and precise, while that of the old heart varies 
significantly from  beat to beat. 
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( 4  
Fig. 13. ECG waveforms of heart-transplant patient. (a) Reference  in- 

put (new heart). (b) Rimary input (new  and old heart). (c) Noise 
canceller output (old heart). 

For  this  experiment  the noise canceller was implemented 
in  software  with an adaptive transversal filter  containing 48 
weights. Sampling  rate was 500 Hz. 

C. Cancelling  the  Maternal  ECG in Fetal  Electrocardiography 
Abdominal  electrocardiograms  make it possible to determine 

fetal heart  rate  and to detect  multiple fetuses and are often 
used during  labor  and  delivery [26]-[28]. Background  noise 
due to muscle activity and  fetal  motion,  however,  often  has 
an  amplitude  equal to or greater than  that of the feta1 heart- 
beat [ 291 -[ 3  1 ] .  A still more  serious  problem is the mother's 
heartbeat, which has  an  amplitude  two to  ten times  greater 
than  that of the  fetal  heartbeat and often  interferes  with  its 
recording  [321. 

In the spring of 1972,  a  group of experiments was  per- 
formed to  demonstrate  the  usefulness  of  adaptive  noise can- 
celling  in fetal  electrocardiography.  The  objective was to 
derive as clear a  fetal ECG as possible, so that  not  only could 
the heart rate be observed but also the  actual waveform of 
the electrical output. The  work was performed  by Marie- 
France  Ravat,  Dominique Biard, Denys  Caraux,  and Michel 
Cotton,  at  the time students  at  Stanford  Uni~ersity.'~ 

Four  ordinary  chest  leads were  used to record the mother's 
heartbeat  and  provide  multiple  reference  inputs to  the can- 
celler.14 A single abdominal  lead was  used to record the 
combined  maternal  and  fetal  heartbeats that served as the pri- 
mary input. Fig. 14  shows the cardiac electric field vectors 
of mother and fetus  and  the positions in which the leads were 
placed.  Each lead terminated in a pair  of electrodes. The 
chest  and  abdominal  inputs were prefiltered, digitized, and 
recorded  on tape. A  multichannel  adaptive  noise canceller, 

been  made by Walden and Bimbaum [ 331 without  the use of  an  adap 
13A similar attempt to cancel the maternal heartbeat had previously 

tive processor. Some  reduction of the maternal  interference was 
achieved by  the careful  placement of leads  and adjustment  of  amplifer 
gain. It  appears that substantially better results can be  obtained  with 
adaptive processing. 

"More than  one reference input was used to make the interference 
filtering task easier. The  number  of reference inputs required essen- 
tially to eliminate the maternal ECG is still uader investigation. 
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(a) (b) 
Fig. 14. Cancelling maternal  heartbeat in fetal electrocardiography. 

(a) Cardiac electric field vectors  of mother  and fetus. (b) Placement 
of leads. 
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i* 4 w  I + 
Wg. 15. Multiple-reference noise canceller used in fetal ECG experiment. 

(C) 
Fig. 16. Result of fetal ECG experiment (bandwidth, 3-35 Hz; sam- 

pling rate, 256 Hz). (a) Reference input (chest lead). (b) Primary 
input (abdominal lead). (c) Noise canceller output. 

shown  in Fig. 15 and  described  theoretically in Appendix C, 
was  used. Each  channel  had 32  taps  with  nonuniform (log 
periodic)  spacing  and  a total delay of 129 ms. 

Fig. 16 shows  typical  reference  and  primary  inputs  together 
with the corresponding  noise  canceller output.  The prefilter- 
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,FETUS 

( 4  
Fig. 17. Result of wide-band fetal ECG experiment  (bandwidth, 0.3-75 
Hz; sampling  rate, 512 Hz). (a)  Reference  input  (chest lead).  (b) F'ri- 
m a y  input  (abdominal lead). (c) N o h  canceller output. 

ing bandwidth was 3 to 35 Hz and the sampling rate  256 
Hz. The  maternal heartbeat, which dominates the primary 
input, is almost completely absent in  the noise canceller out- 
put.  Note that  the voltage  scale of the noise canceller output, 
Fig. 16(c), is approximately two times greater than  that of the 
primary input, Fig. 16(b). 

Fig. 17 shows corresponding results for a prefiltering band- 
width of 0.3 to  75 Hz and a sampling rate of 5 12 Hz. Base- 
line drift and 60-Hz interference are clearly present in the 
primary input, obtained  from the abdominal lead. The inter- 
ference is so strong  that  it is almost impossible to detect  the 
fetal  heartbeat.  The  inputs  obtained  from  the  chest leads 
contained the maternal  heartbeat  and a sufficient 60-Hz 
component  to serve as a reference for  both of these inter- 
ferences. In the noise  canceller output  both interferences 
have been significantly reduced, and the  fetal  heartbeat is 
clearly discernible. 

Additional experiments are currently being conducted with 
the aim of further improving the  fetal ECG by reducing the 
background noise  caused by muscle activity. In these experi- 
ments various  averaging techniques are being investigated 
together with new adaptive processing methods  for signals 
derived from an  array of abdominal leads. 

D. Cancelling Noise in Speech Signals 
Consider the  situation of a pilot communicating by radio 

from the  cockpit of an aircraft where a high level of engine 
noise is present. The noise contains,  among  other things, 
strong periodic components, rich in harmonics, that occupy 
the same frequency  band as speech. These components are 
picked up by the microphone into which the pilot  speaks  and 
severely interfere with the intelhgibility of the radio transmis- 
sion. It would be impractical to process the transmission with 

Fig. 18. Cancelling noise in speech  signals. 

NUMBER OF ADAPTATIONS  (HUNDREDS) 

Fig. 19. Typical  learning  curve  for  speech noise cancelling experiment. 

a conventional filter because the frequency  and  intensity  of 
the noise components vary with engine speed and  load and 
position of the pilot's head. By placing a second microphone 
at a suitable location  in  the  cockpit, however, a sample of the 
ambient noise  field free of the pilot's speech could be o b  
tained. This sample could be filtered and  subtracted  from  the 
transmission, significantly reducing the interference. 

To demonstrate the feasibility of cancelling noise in speech 
signals a group of experiments simulating the  cockpit noise 
problem in simplified form was conducted.  In  these experi- 
ments, as shown in Fig. 18, a person ( A )  spoke  into a micro- 
phone ( B )  in a room where strong acoustic interference (C) 
was present. A second microphone (D) was  placed  in the 
room away from the speaker. The  output of microphones ( B )  
and (0) formed the primary and reference inputs, respectively, 
of a noise canceller ( E ) ,  whose output was monitored by a 
remote listener (F). The canceller included an  adaptive filter 
with 16 hybrid analog weights  whose  values  were  digitally 
controlled by a computer. The  rate of adaptation was 
approximately 5 kHz. A typical learning curve, showing out- 
put power as a function of number of adaptation cycles, is 
shown in Fig. 19.  Convergence  was complete after  about 5000 
adaptations  or  one second of real time. 

In a typical  experiment the  interference was an audiofre 
quency triangular wave containing  many  harmonics  that, 
because of multipath  effects, varied in amplitude, phase, and 
waveform from  point to point in the room. The periodic 
nature of the wave made  it possible to ignore the  difference 
in time delay caused by  the  different transmission paths to the 
two sensors. The noise canceller was able to reduce the  output 
power of this interference, which otherwise made the speech 
unintelligible, by 20 to 25 dB, rendering the  interference 
barely perceptible to the  remote listener. No noticeable 
distortion was introduced into the speech signal. Convergence 
times were on  the  order of seconds, and the processor w a s  
readily able to readapt when the  position of the microphones 
was  changed or when the frequency of the  interference was 
varied  over the range 100  to 2000 Hz. 
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Fig. 20. Array configuration  for  adaptive sidelobe cancelling ex- 

periment. 

E. Cancelling  Antenna  Sidelobe  Interference 
Strong unwanted signals incident on  the sidelobes of an 

antenna array can severely interfere with the  reception of 
weaker signals in the main  beam. The conventional method of 
reducing such  interference, adaptive beamforming [ 61, [ 181, 
[ 191,  [34]-[37], is often complicated  and expensive to im- 
plement. When the number of spatially discrete interference 
sources is small, adaptive noise cancelling can provide a simpler 
and less expensive method of dealing with this problem. 

To demonstrate the level of sidelobe reduction achievable 
with adaptive noise cancelling, a typical  interference cancelling 
problem was simulated on  the computer. As shown in Fig 20, 
an array consisting of a circular pattern of 16 equally spaced 
omnidirectional  elements was chosen. The  outputs of the ele- 
ments were delayed and  summed to form a main beam steered 
at a relative  angle  of 0’. A simulated “white” signal consisting 
of uncorrelated samples of unit  power was assumed to be inci- 
dent on this beam. Simulated interference  with  the same 
bandwidth and with a power of 100 was incident on  the main 
beam at a relative  angle  of 58’. The  array was connected to 
an adaptive noise  canceller  in the manner  shown in  Fig. 5. 
The output of the beamformer served as the canceller’s 
primary input, and the  output of element 4 was arbitrarily 
chosen as the reference input.  The canceller included an  adap 
tive filter with 14 weights; the  adaptation constant in the LMS 
algorithm was set at p = 7 X 1 0-6, 

Fig.  21 shows two series of computed directivity patterns, 
one representing a single frequency of the sampling fre- 
quency  and the  other an average of eight frequencies of from 

to d the sampling frequency. These patterns  indicate  the 
evolution of the main beam and sidelobes as observed by 
stopping the adaptive process after  the specified number of 
iterations.  Note  the deep nulls that develop in the  direction of 
the  interference. At the  start of adaptation all weights  were 
set at  zero, providing a conventional 16-element beam pattern. 

The signal-to-noise ratio at the system output, averaged 
over the eight frequencies, was found  after convergence to  be 
+20 dB. The signal-to-noise ratio at the single array element 
was -20 dB. This result bears out  the  expectation arising from 
(37) that  the signal-to-noise ratio  at  the system output would 
be the reciprocal of the  ratio  at  the reference input, which 
is  derived from a single element. 

A small amount of  signal cancellation occurred, as evidenced 
by  the changes in sensitivity of the main beam in  the steering 
direction. These changes  were not unexpected, since the main- 
lobe  pattern was not  constrained  by  the adaptive process. A 
method of LMS adaptation with constraints  that could have 
been used to  prevent this loss of sensitivity has been developed 
by Frost [ 3 71 . 

Boo -90 ADAPTATIONS @ 

(a) (b) 
Fig. 21.  Results of adaptive sidelobe cancelling experiment. (a)  Single 

frequency (0.5 relative to folding  frequency). (b) Average of eight 
frequencies (0.25 to  0.75 relative to folding  frequency). 
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Fig. 22.  Cancelling  periodic  interference without an external  reference 
source. 

F. Cancelling Periodic  Interference  without  an  External 
Reference  Source 

There are a number of circumstances where a broad-band 
signal is corrupted by periodic interference  and  no  external 
reference input free of the signal is available. Examples 
include the playback of speech or music in the presence of 
tape  hum  or  turntable rumble. It might seem that adaptive 
noise  cancelling could not be applied to reduce or eliminate 
this kind of interference. If, however, a fixed delay A is in- 
serted in a reference input drawn directly from the primary 
input, as shown in  Fig. 22,  the periodic interference can  in 
many cases be readily cancelled.” The delay chosen must be 
of sufficient length to cause the broad-band signal components 
in the reference input  to become decorrelated from  those  in 

input if its total length is greater  than the  total delay of the adaptive 
I s  The  delay A may be inserted  in the primary instead of  the reference 

filter. Othenvise,  the filter will converge to match  it and cancel both 
signal  and  interference. 



1706 PROCEEDINGS OF THE IEEE, DECEMBER 1975 

BROADBAND 

t I 

c I 

- NOISE  CANCELLER OUTPUT 
B R O A D B A N D   I N P U T  _ _ _ _ _ _  

9 2  
t I 

-40 25 50 76 1 0 0  

(b) 
Fig. 23. Result of periodic  interference  cancelling experiment. (a) In- 

put  signal  (correlated Gaussian noise and  sine  wave). (b) Noise can- 
celler output (correlated  Gaussian noise). 

TIME  INDEX 

the  primary  input. The  interference  components, because  of 
their  periodic  nature, will remain  correlated  with  each  other. 

Fig. 23 presents the results of a  computer  simulation per- 
formed to demonstrate  the cancelling  of periodic  interference 
without  an  external reference. Fig. 23(a) shows the prima$ 
input to the canceller. This input is composed of colored 
Gaussian  noise representing  the signal and  a sine wave  repre- 
senting the interference. Fig.  23(b) shows the noise canceller's 
output. Since the problem was simulated, the exact nature of 
the broad-band input was known and is plotted  together  with 
the  output. Note ti&' %lose correspondence in form  and 
registration.  The  correspondence is not perfect  only because 
the filter was  of finite  length and  had a  finite  rate of 
adaptation. 

G. Adaptive  Self-Tuning  Filter 
The previous experiment can also  be  used to demonstrate 

another  important application of the adaptive noise canceller. 
In many  instances where an input s i g n a l  consisting of mixed 
periodic  and  broad-band  components is available, the periodic 
rather  than  the  broad-band  components are of interest. If the 
system output of the noise  canceller  of Fig.  22 is taken  from 
the  adaptive filter, the result is an adaptive self-tuning filter 
capable  of extracting  a  periodic signal from broad-band  noise. 

?ig. 24 shows the adaptive noise  canceller as a self-tuning 
filter. The  output of this  system was simulated on the com- 
puter  with  the  input of sine wave and correlated Gaussian 
noise  used in the previous experiment  and  shown in F i g  23(a). 
The  resulting  approximation of the  input sine wave is shown 
in Fig. 25 together  with the  actual  input sine wave. Note 
once again the close agreement in form  and registration. The 
error is a small-amplitude stochastic process. 

Fig. 26 shows the impulse  response and  transfer  function of 
the adaDtive filter  after convergence. The impulse  response, 

SIGNAL 
PERlbDlC  

I I !--_--------_' 
ADAPTIVE  NOISE 
CANCELLER 

Fig. 24. The  adaptive noise canceller as a  self-tuning filter. 
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Fig. 25. Result of self-tuning  filter experiment. 
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Fig. 26. Adaptive  filter  characteristics in self-tuning  filter experiment. 

tude of transfer function of adaptive  filter  after  convergence. 
(a)  Impulse  response of  adaptive  filter  after  convergence. (b) Magni- 

shown in Fig. 26(a), is somewhat  different  from  but bears a 
close  resemblance to  a sine wave.  If the broad-band input com- 
ponent  had  been  white noise, the  optimal  estimator would 
have  been a  matched  filter,  and the impulse  response would 
have been sinusoidal. 

The  transfer  function,  shown in Fig.  26(b), is the digital 
Fourier  transform of the impulse  response. Its  magnitude  at 

0 
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the frequency of the  interference is nearly one,  the value 
required for  perfect cancellation. The phase shift at this 
frequency is not  zero  but when added to  the phase shift 
caused by  the delay A forms an  integral'multiple of 360'. 

Similar experiments have been conducted with sums of 
sinusoidal signals in broad-band stochastic  interference.  In 
these experiments the adaptive fiiter developed sharp reso- 
nance peaks at the frequencies of all the  spectral line com- 
ponents of the periodic portion of the primary input.  The 
system thus shows considerable promise as an automatic 
signal  seeker. 

Further experiments have shown the ability of the adaptive 
self-tuning filter to be employed as a line enhancer  for the 
detection of extremely low-level sine waves in noise.  An 
introductory  treatment of this application, which promises 
to  be of  great importance, is provided in Appendix D. 

IX. CONCLUSION 
Adaptive noise  cancelling is a method of optimal filtering 

that can be applied whenever a suitable 'reference input is 
available. The principal advantages of the  method are its 
adaptive  capability,  its  low  output noise, and its  low signal 
distortion.  The adaptive capability allows the processing of 
inputs whose properties  are  unknown  and  in  some cases non- 
stationary.  It leads to a stable system that  automatically  turns 
itself off when no improvement in signal-to-noise ratio can be 
achieved. Output noise and signal distortion are generally 
lower than can be achieved with conventional  optimal filter 
configurations. 

The experimental  data presented in  this  paper  demonstrate 
the ability of adaptive noise  cancelling greatly to reduce 
additive periodic or stationary  random  interference  in  both 
periodic and  random signals. In each  instance cancelling was 
accomplished with little signal distortion even though  the fre- 
quencies of the signal and the  interference overlapped. The 
experiments described indicate  the wide  range of applications 
in which adaptive noise  cancelling has potential usefulness. 

"i 

dj 

Fig. 27. The  adaptive  linear  combiner. 

taneously on all input lines at discrete times  indexed by  the 
subscript j .  The  component xoi is a constant, normally set to  
the value +I ,  used only in cases where biases exist among the 
inputs  (A.l)  or  in  the desired response (defined below). The 
weighting coefficients or multiplying factors W O ,  w1, * * , wn 
are  adjustable, as symbolized in Fig. 27  by circles with arrows 
through  them. The weight vector is 

W =  

where wo is the bias weight. 
The  output yi  is equal to the  inner  product of Xi  and W: 

y j  = X ~ W  = WTXj.  64.3) 

The  error is defined as  the  difference between the desired 
response di (an  externally supplied input sometimes called 
the "training signal") and  the  actual response y i :  

(A.2) 

APPENDIX A = dl - XTW = dl - WTXi.  (A.4) 

In most applications some ingenuity is required to  obtain a 
suitable  input  for di .  After all, if the  actual desired response 
were known, why  would one need an adaptive processor? In 
noise  cancelling  systems, however, di is simply the primary 

THE LhiS ADAFTIVE FILTER 
This Appendix provides a brief description of the LMS 

adaptive filter, the basic element of the adaptive noise cancel- 
ling systems described in this paper. For a full description 
the reader should consult the extensive literature on  the sub- 
ject, including the references cited below. input.'' 

A.  Adaptive Linear  Combiner 
The principal component of most adaptive systems is the 

adaptive linear combiner,  shown in Fig. 27.16 The combiner 
weights and  sums a set of input signals to form an output 
signal. The  input signal vector X i  is defined as 

B. The  LMS  Adaptive  Algorithm 
It is the purpose of the adaptive algorithm designated in 

Fig. 27 to adjust the weights of the adaptive linear combiner 
to minimize mean-square error. A general expression for mean- 
square  error as a function of the weight  values, assuming that 
the  input signals ind  the desired response are statistically 

{f stationary  and  that  the weights are fixed, can be derived in 
the following manner. Expanding (A.4) one  obtains 

xi fi (A. 1) E! = d l  - 2diXfW + WTX,XTW. ( A S )  

X n i  E [ € ; ]  = E [ d f ]  - 2E[djXT] W + W T E I X F f l  W. (A.6) 

Taking the expected value of both sides yields 

The  input signal components are assumed to appear simul-  Defining the vector P as the cross correlation  between  the 

'*This  component is linear only  when  the weighting coefficients are "The  actual  desired  response is the primary noise n o ,  which is not 
fixed. Adaptive systems, like  all systems whose characterbtics  change available  apart  from the primary  input s + no.  The converged  weight 
with  the characteristics of their inputs, are by their very nature vector solution is easily shown to  be the same when either no or s+ no 
nonlinear. serves as the desired  response. 
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ments of correlation  functions,  nor  does  it involve matrix 
inversion. Accuracy is limited  by  statistical  sample size, since 
the weight  values found  are based on real-time  measurements 
of input signals. 

The LMS algorithm is an implementation of the  method of 
steepest  descent. According to this method,  the  “next” 
weight vector Wj+, is equal to the “present” weight vector 
Wj plus  a change proportional  to  the negative gradient: 

Wj+l  = wj - pvj. (A.12) 

The parameter p is the  factor  that controls  stability  and  rate of 
convergence. Each iteration  occupies  a  unit  time  period.  The 
true gradient  at  the j th iteration  is  represented  by vi. 

The LMS algorithm  estimates an instantaneous  gradient in 
a  crude  but  efficient  manner  by assuming that €7, the square 
of a single error  sample, is an estimate of the mean-square 
error  and by differentiating E; with  respect to W. The  relation- 
ships  between true and  estimated  gradients are given by  the 
following  expressions: 

This matrix is symmetric, positive definite,  or in rare cases 
positive semidefinite. The mean-square error can thus be ex- 
pressed as 

E[E;] = E[df]  - 2PTW + WTRW. (A.9) 

Note that  the error is a  quadratic  function of the weights that 
can be pictured as a concave hyperparaboloidal  surface,  a 
function  that never  goes negative. Adjusting the weights to 
minimize the  error involves descending along this  surface  with 
the  objective of getting to  the  “bottom of the bowl.” Gra- 
dient  methods  are  commonly used for  this  purpose. 

The  gradient 0 of the error  function is obtained  by  dif- 
ferentiating  (A.9): 

V i  1-1 
= - 2 P  + 2Rw. (A.lO) 

aE[E;l 
awn 

The  optimal weight vector W*, generally called the Wiener 
weight vector, is obtained  by  setting the gradient of the mean- 
square  error  function to zero: 

W* = R-’P.  (A. 1 1) 

This equation is a matrix  form of the Wiener-Hopf equation 

The LMS adaptive  algorithm  [71, [81,  [191,  [201  isaprac- 
tical  method  for  finding  close  approximate  solutions to (A.11) 
in  real time. The  .algorithm  does not require  explicit measure 

i l l ,  D l .  

[- 
[a€; I I 

(A. 13) 

The estimated  gradient  components are related to  the partial 
derivatives of the  instantaneous  error  with  respect to  the 
weight components, which can be obtained  by  differentiating 
(A.5). Thus  the  expression for  the gradient  estimate can be 
simplified to 

A vj = - 2fjXj.  (A. 14) 

Using this  estimate in place of the  true gradient  in  (A.12) 
yields the Widrow-Hoff LMS algorithm: 

wj+1 = wj + 2PEjXj. (A. 15) 

This algorithm is simple and generally easy to implement. 
Although it makes use  of gradients of mean-square error  func- 
tions, it does not require  squaring, averaging, or  differentiation. 

It has been shown [ 181, [ 191 that  the gradient  estimate 
used in the LMS algorithm is unbiased  and that  the expected 
value of the weight vector converges to the Wiener  weight 
vector  (A.11) when the  input vectors are uncorrelated over 
time  (although  they  could,  of  course,  be  correlated  from input 
component  to component).”  Starting  with an arbitrary 
initial weight vector, the algorithm will converge in  the mean 
and will remain  stable as long as the  parameter p is greater 
than 0 but less than  the reciprocal of the largest eigenvalue 
h,, of the  matrix R: 

l/Amm > p> 0. (A. 16) 

Fig. 28  shows  a  typical  individual  learning curve resulting 
from  the use  of the  algorithm. Also shown is an ensemble 

“Adaptation with correlated input vectors has been analyzed by 
Senne [38 J and Daniell [ 39 1 .  Extremely h@ correlation and fast 

something different than the Wiener solution. Practical experience has 
adaptation can cause the weight vector to converge in the mean to 

shown, however, that this effect is generally insignnificant. See also Kim 
and  Davisson [40 J . 
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Fig. 28. Typical  learning  curves for the LMS algorithm. 

average of 48 learning curves. The ensemble average  reveals 
the underlying exponential nature of the individual learning 
curve. The  number of natural modes is equal  to  the  number of 
degrees of freedom (number of  weights). The time  constant 
of the  pth  mode is related to  the  pth eigenvalue Ap of the 
input  correlation  matrix P and to  the parameter p by 

(A. 17)  

Although the learning curve consists of a sum of exponen- 
tials, it can in many cases  be approximated by a single  ex- 
ponential whose time constant is given by (A.17) using the 
average of the eigenvalues of R : 

Accordingly, the time  constant of an  exponential roughly 
approximating the mean-square error learning curve is 

(n + 1) (number of  weights) 
4p  tr R (4p)(total  input power) 

r,, =-- - . (A. 19) 

The total  input power is the sum of the powers incident to all 
of the weights. 

Proof of these assertions and further discussion of the char- 
acteristics and properties of the LMS algorithm are presented 
in 1191, I201,and 1411. 

C. The LMS Adaptive Filter 
The adaptive linear combiner may be implemented in con- 

junction with a tapped delay line to form the LMS adaptive 
filter shown in  Fig. 29, where the bias  weight has been omitted 
for simplicity. Fig. 29(a) shows the details of the filter, in- 
cluding the adaptive process incorporating  the LMS algorithm. 
Because of the  structure of the delay line, the  input signal 
vector is 

"=I - i (A.20) 

( xi-n+l J 
The  components of this vector are delayed versions of the 
input signal xi. Fig. 29(b) is the  representation  adopted to 
symbolize the adaptive tapped-delay-line filter. 
This kind of  filter permits the adjustment of gain and phase 

at many frequencies simultaneously and is useful in adaptive 
broad-band signal processing. Simplified design rules, giving 

Fig. 29. The LMS adaptive  filter,  (a) Block diagram. (b) Symbolic 
representation. 

the  tap spacings and number of taps (weights), are the fol- 
lowing: The tap spacing time  must be at least as short as the 
reciprocal of twice the signal bandwidth (in accord with the 
sampling theorem). The total real-time length of the delay 
line is determined by  the reciprocal of the desired filter fre- 
quency resolution. Thus, the number of weights required is 
generally equal to twice the  ratio of the  total signal bandwidth 
to  the frequency  resolution of the filter. It may  be possible 
to reduce the number required in some cases by using non- 
uniform tap spacing, such as log  periodic. Whether this is done 
or  not,  the means of adaptation remain the same. 

APPENDIX B 
FINITE-LENGTH, CAUSAL 'APPROXIMATION OF THE 

UNCONSTRAINED WIENER NOISE CANCELLER 

In the analyses  of Sections IV and V questions of the physi- 
cal realizability of Wiener filters were not considered. The 
expressions derived  were  ideal,  based on  the assumption of 
an infinitely long,  two-sided (noncausal)  tapped delay line. 
Though such a delay line cannot in reality be implemented, 
fortunately  its  performance, as shown in the following para- 
graphs, can be closely approximated. 

Typical impulse responses  of ideal Wiener filters approach 
amplitudes of zero exponentially over time. Approximate 
realizations are thus possible with finite-length transversal 
filters. The more weights  used in the transversal filter, the 
closer its impulse response will be to  that of the ideal Wiener 
filter. Increasing the number of  weights, however, also slows 
the adaptive process and increases the cost of implementation. 
Performance requirements should thus  be carefully considered 
before a filter is designed for a particular application. 

Noncausal filters, of course, are  not physically realizable in 
real-time systems. In many cases, however, they can  be 
realized approximately in delayed form, providing an ac- 
ceptable delayed real-time  response. In practical circum- 
stances excellent performance  can be obtained with twesided 
filter impulse responses even  when they  are  truncated  in time 
to  the left and  nght. By delaying the truncated response it 
can be made causal and physically  realizable. 

Fig. 30 shows an adaptive noise  cancelling system with a 
delay A inserted in the primary input. This delay causes an 
equal delay to develop in the unconstrained  optimal  filter 
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Fe. 30. Adaptive noise canceller with delay in primary input path. 
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Fa. 31. Results of noise cancelling experiment with delay in primary 
input path. (a)  Optimal solution and adaptive solution found without 
t h e  delay. (b) Optimal solution and  adaptive solution found with 
delay of eight time units. (c) Noise canceller output without delay. 
(d) Noise canceller output  with  delay. 

impulse response, which remains otherwise unchanged. In 
practical, finite-length adaptive transversal filters, on  the  other 
hand,  the  optimal impulse response generally changes shape 
with changes in the value of A, which is chosen to c a w  the 
peak of  the impulse response to center along the  delay line. 

Experience has shown that  the value  of A is not critical 
within  a  certain  optimal  range;  that is, the curve showing mini- 
mum mean-square error as a  function of A generally has a 
very broad  minimum A value typically  equal to about half 
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the  time delay of the adaptive filter  produces  the least mini- 
mum output noise power. 

Fig. 31  shows  the  results of a  computer-simulated noise 
cancelling experiment with an unconstrained  optimal  filter 
response that was noncausal. The primary input consisted 
of a triangular wave and  additive colored noise. The  reference 
input consisted of colored noise correlated  with the  primary 
noise.lg  The  unconstrained Wiener impulse response and the 
causal, finite  time  adaptive  impulse response obtained  without 
a delay in the  primary  input are plotted in Fig. 31(a).  The 
large difference  in  these impulse responses indicates that  the 
noise canceller output will be a  poor  approximation of the 
signal. The  corresponding Wiener  and adaptive impulse 
responses obtained with a  delay of eight time  units (half the 
length of the adaptive filter)  are  shown  in Fig. 31(b). These 
solutions are similar, indicating that  performance of the  adag 
tive filter will be  close to optimal. Typical noise canceller 
outputs  with and  without  delay are shown in Fig. 31(c) and 
Fig. 31(d).  The waveform obtained with the delay is very 
close to  that of the original triangular-wave signal, whereas 
that  obtained with no  delay  still  contains  a great amount of 
noise. 

APPENDIX C 
MULTIPLE-REFERENCE NOISE CANCELLING 

When there is more  than  one noise or  kterference  to be 
cancelled and a  number of linearly independent  reference in- 
puts  containing  mixtures of each can be obtained,  it is usually 
advantageous to use a  multiple-reference noise cancelling sye 
tem.  Such  a system may be considered a  generalization of the 
single-reference noise cancellers analyzed in  this  paper.  In the 
model  shown  in Fig. 32 the $i  represent  mutually  uncorrelated 
sources of either input signal or noise. The  transfer  functions 
gi(z) represent  the  propagation  paths  from  these  sources to 
the  primary  input.  The S&) similarly represent  the propaga- 
tion  paths  to  the  reference  inputs and  allow for cross-coupling. 
This  modei  permits  treatment  not only of multiple noise 
sources  but also of signal components in the  reference  inputs 
and  uncorrelated noises in the  reference  and  primary  inputs. 
In  other words, it is a general representation of an adaptive 
noise canceller. 

The  unconstrained Wiener transfer  function of the  multiple- 
reference canceller is the  matrix equivalent of (1 3)  and is d e  
rived  in the following manner.  The  source  spectral  matrix  of 
I J ~  is defined as 

b 1 d z )  0 
& Z $ Z  

0 
The  spectral  matrix of the k reference  inputs to the  adaptive 

"Except for the delay in the primary input, the simulated noise 
cancelling system was identical with  the  system shown above in Fig. 3. 

versa1 fitter with two zeros and no poles [J€(z) = Zz-'(l - *.-I) * 

The transfei function X ( z )  was a nonminimum phase, lowpass trans- 

(1 - $z)]. The optimal unconstrained adaptive fitter solution, in this 

one pole outside the unit ci~cle in the Z plane. A stable realization of 
case gwen by (1 a), is the reciprocal of H(z). It has one pole inside and 

@ (2) must, therefore, be two sided. 
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Fig. 32. Generalized multiple-reference adaptive noise canceller. 

filters is then 

where 

(C.3)  

1 3,’ (z) . . .  
and ql(z)  is the transfer  function  from  input source 1 to ref- 
erence  input i .  

The cross-spectral vector  between  the  reference  inputs  and 
the primary input is given by 

where 

and $i(z) is the transfer  function  from input source i to  the 
primary input. 

The Wiener optimal weight vector is then 

*(z) = [ S,(z) 1 -’ Sxd(z) 
= [[S(z-’)l  [S$J,(Z)I  [3(z)lTl-’ 

- [S(z-’)l  [S$$(Z)I  {6(z,). (C.6)  

If [S(z)] is square,  at  those  frequencies for which [3(z)l is in- 
vertible ( 5  5 )  simplifies to 

{W*(z))= [S(zlTI-’ {SCZ)) (C.7)  

which is the matrix  equivalent of (1 7). 
These  expressions  can be used to derive steady-state Wiener 

solutions to multiple-source,  multiple-reference noise cancel- 
ling problems  more  general than those of Sections IV and V. 
An example of a  multiple-reference  problem is given in Sec- 
tion VIII. 

ERROR F 

WEIGHT 

TRANSFER 
FUNCTION TRANSFORM 

- FOURIER VALUES 
FILTER FAST 

Fig. 33. The  adaptive line enhancer. 

APPENDIX D 
ADAPTIVE LINE ENHANCER 

A classical detection  problem is that of finding a low-level 
sine wave in noise. The adaptive  self-tuning  filter, whose ca- 
pability of separating  the  periodic  and  stochastic  components 
of a signal was illustrated  above  (where  these  components were 
of comparable level), is able to serve as an “adaptive  line  en- 
hancer”  for the  detection of extremely low-level sine waves in 
noise. The adaptive  line  enhancer  becomes  a  competitor of 
the  fast  Fourier  transform  algorithm as a sensitive detector and 
has capabilities  that may exceed  those of conventional  spectral 
analyzers when the  unknown sine wave has  finite  bandwidth 
or is frequency  modulated. 

The method is illustrated in Fig. 33.  The  input  consists of 
signal plus noise. The  output is the  digital  Fourier  transform 
of the filter’s  impulse  response.  Detection  is  accomplished 
when a  spectral peak is evident above the background  noise. 
The same method,  with  minor  differences,  has  been  proposed 
by  Griffiths for “maximum  entropy  spectral  estimation” 
1421,   [431.  

It should be noted  that  the filter output signal is also avail- 
able. This signal could be  used directly  or as an input  to  a 
spectral  analyzer  or phase-lock loop.  The  method of F i g .  33 
could further be  used for  the simultaneous  detection of mul- 
tiple sine waves. None of these  possibilities  is considered here. 
Only the  detection of single low-level sine waves in noise is 
treated. 

A.  Optimal Transfer Function 
Fig. 34 shows  the  ideal  impulse  response  and  transfer  func- 

tion of the adaptive line enhancer  for  a given input spectrum. 
It is assumed that  the  input noise is white,  with a total power 
of vz , and that  the  input signal has  a power of C 2 / 2  at  fre- 
quency oo. The  ideal impulse response,  equivalent to the 
matched  filter  response, is a sampled sinusoid whose frequency 
is wo.zo The phase shift of this  response  at  frequency wo 
when added to  that of the delay is an  integral  multiple of 
360’. If the peak value of the transfer  function is a ,  the peak 
value of the weights is to  a close approximation 2a/n,  where n 
is the  number of weights. 

The adaptive process minimizes the mean square of the  error. 
The  error  power is the sum of three  components,  the  primary 
input noise power,  the noise power at  the  output of the adap  
tive filter,  and  the  sinusoidal signal power.  Accordingly,  the 
error  power may be expressed as 

error  power = uZ + ( v z /2 )   (2a /n ) ’  n + ( c 2 / 2 )  (1 - a l Z .  (D.I )  

noise ratio in J. R. Zeidler  and D. M. Chabries, ‘‘An analysis of the LMS 
z o T h i r  assertion is proved analytically for arbitrary input signal-to- 

adaptive fiier used as a spectral line enhancer,”  Naval  Undersea Center, 
Tech. Note 1476, Feb. 1975. 
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(C) 
Fig. 34. Ideal  adaptive filter impulse response and  transfer function  of 

adaptive line enhancer for a  given $put spectrum. (a) Input spec- 
trum. @) Transfer function magnitude. (c) Impulse response. 

We have  used the  facts  that  1)  the  output noise power of  a 
digital  filter  with  a  white  input  equals  the input power mul- 
tiplied  by the sum of the  squares of the impulse values of the 
impulse response and 2) the primary  and  filter output sinus- 
oidal  components  combine  coherently  at  the  summing  junc- 
tion.  The signal gain from input  to error is (1 - a) .  

The  optimal value of a that minimizes error  power a* is 
obtained  by  setting  the derivative of (D.l)  to zero: 

(9) (;) 
1 + (9) (;) 

At high signal-to-noise ratios, a* S 1. At low signal-to-noise 
ratios, a* < 1. Low signal-to-noise conditions can be dealt 
with by  using a large number of adaptive  weights,  although 
other  problems could result because of weight-vector noise. 

B. Noise in the  Weight  Vector 
The ability to detect peaks in the  transfer  function  due to 

the  presence of sinusoidal signals is limited by the presence of 
spurious  peaks caused by noise in the weight vector. One thus 
needs to know  the  nature  of  weight-vector noise and its effects 
on  the transfer  function. 

The  gradient  estimate gi used by  the LMS algorithm, given 
by  (A. 14), may be expressed as 

(D.3) vi=-2elxi=vji+ni A 

where Vi is the tIuc gradient and n i  is the zero-mean gradient 
estimation  noise.  At  the minimum point of the quadratic 
mean-squareerror  surface  the  true  gradient is zero.  The gradi- 
ent estimate  at  this  point is thus  equal to the  gradient  estima- 
tion  noise: 

(D.4) 
If one assumes that  the  input signal vector X i  is uncorrelated 
over time:’ then ni  is also uncorrelated over time.  In addi- 
tion, when the weight vector Wi is equal to  the  optimal weight 
vector W*, Wiener filter  theory shows that  the error ~i and  the 
input vector Xi  are  uncorrelated. If one now assumes that ei 
and Xi are Gaussian, then these  terms are statistically  inde- 
pendent  and the covariance of ni is 

vi = ni = - zEixi. A 

COV [nil = ~ [ n ~ n 7 1  = ~E[E;X~X?I = 4 ~ [ e ;  1 
* E[XiX7] = 4E[e;] R (D.5) 

where R is the  input correlation  matrix.  Since at  the mini- 
mum  point  of  the  mean-squareerror  surface E [ E ~ ]  = [min, 
(D.5) can be expressed as 

cov [nil = 4tmin R .  (D.6) 

In the vicinity of the  minimum  point  the  covariance  of the 
gradient noise is closely approximated  by (D.6), and the gradi- 
ent noise is statistically  stationary  and  uncorrelated over time. 

For  the  purpose of the following analysis it  is more conve- 
nient to work  in  “primed  coordinates.” The correlation ma- 
trix R may be expressed in  normal  form as 

R = QAQ-’ (D.7) 

where Q is an orthonormal  modal  matrix, A is a  diagonal ma- 
trix  of eigenvalues, and Q-’ is equal to QT. The gradient noise 
in the primed coordinates  is  then 

n; = Q-’fli (D.8) 

and the covariance of the  gradient noise is 

cov rn;~ = ~ [ n ; n ; ~ l =  E[Q-~R~R;QI = Q - ~ E [ R ~ ~ ? I  Q 
= Q-’ cov [nil Q = 4[,inQ-’ RQ = 4 f ~ , , A .  

(D.9) 

It should be noted that  the  components of nj are  mutually  un- 
correlated  and  proportional to  the respective eigenvalues. 

The  effect of gradient  noise  on  the weight vector can now be 
determined as follows. The LMS algorithm  with  a noisy gradi- 
ent estimate can be  expressed  in  accordance  with  (A.12) as 

A wi+l = wi +p(-vi) = wi + p(-vi +nil. (D.IO) 

Reexpressing (D.lO)  in  terms of Vi, where Vi is def ied as 
Wj - W*, yields 

Vj+l = Vj+p(-2RVj+nj) .  (D.11) 

Projecting into  the primed coordinates  by  premultiplying both 
sides  by Q-’ yields 

v;+ 1 = V i -  2pAVi)+ pR; = ( I -  2pA) V;+ pn;. (D.12) 
Note  once again that, since the  components of )r; are  mutually 
uncorrelated and since  (D.12) is diagonalized, the  components 
of noise in Vi are  mutually  uncorrelated. 

z’ This common assumption is not strictly correct in this case but 
greatly simplifies the analysis and yields results that work well in 
practice. 
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Near the minimum  point of the  error surface, in steady  state 
after adaptive transients have died out,  the mean of Vi  is zero, 
and the covariance of the weight-vector  noise may be obtained 
as follows. Postmultiplying both sides  of (D.  12)  by  their trans- 
poses and taking expected values yields 

E [  Vi+l ViT1 ] = E [ ( I -  2pA) V,!V,!‘(I- ~ / J A ) ]  +p2E[nik ,! ’ ]  

+ p E [ n i V i ‘ ( I -  2pA)I + p E [ ( I -  2pA) V,!R,!’]. (D.13) 

It has been assumed that  the  input vector Xi  is uncorrelated 
over time;  the  gradient noise R, is accordingly uncorrelated 
with the weight vector W i ,  and  therefore  and Vi are  uncor- 
related.  Equation  (D.13) can thus be expressed as 

E [  Vi+l  Vi:,] = ( I  - 2pA)  E[ViViT] ( I -  2pA) 

+ p2E[fr,!niT]. (D.14) 

Furthermore, if Vi is stationary,  the covariance of V i + ,  is 
equal to the covariance of Vi,  which may be expressed as 

C O V [ V , ! ] ~ ( I - ~ ~ A ) C O V [ ~ ~ ] ( I - ~ ~ A ) + ~ ~ C O V [ ~ ~ I .  
(D. 15) 

Since the noise components of V,! are mutually  uncorrelated, 
(D. 15) is diagonal. It can thus be rewritten as 

cov [ V i ]  = ( I -  2pA)? cov [V,!] +p2(4tminA) (D.16) 

01 

( I -  PA) C ~ V  [ V i ]  = A m i n .  (D.17) 

When the value of the adaptive constant p is small (as is con- 
sistent  with a converged solution near the minimum point of 
the  error  surface), it is implied that 

pA<<I .  (D.18) 

Equation  (D.  17)  thus becomes 

cov [ Vi1 = Amin I .  (D.19) 

The covariance of Vi can now be expressed as follows: 

a v  [vi] = E [ V , . V ~ I  = E[Qv;v,!~Q-~ 1 
(D.20) 

where the  components of the weight-vector noise are all  of the 
same variance and  are  mutually  uncorrelated.  This derivation 
of the covariance depends on  the assumptions  made above. It 
has been found by experience, however, that (D.20) closely 
approximates the  exact covariance of the weight-vector noise 
under a considerably wider range  of conditions  than these as- 
sumptions  imply. A derivation of bounds on  the covariance 
based on fewer assumptions  has been made by Kim and Davis- 
son  [401. 

C. Noise in the  Transfer  Function 
The filter weights, comprising the impulse response, undergo 

digital Fourier  transformation to yield the  transfer  function. 
The noise in each of the weights is uncorrelated over time, 
uncorrelated  from weight to weight, and of variance pEmin. 
At the  jth instant  the impulse response has n samples, woi, 
wl i ,  - - , ww,  * - , wn-l i ,  and  their  transform is 

n-1 
Hi(Z) = ww exp (- i2nkl/n) (D.2  1) 

k=O 

where Z is the frequency  index. For a single  value of I, Hi(Z) is 
a linear combination of all the weights, each weighted by a 
phasor of unit  magnitude. Since Hi(Z) is  complex, the power 
of this noise is the sum of its “real” and “imaginary” power 
and equals the sum of the noise power in the weights them- 
selves. Thus  at each frequency I ,  the noise power in Hi( l )  is 

nAmin.  (D.22) 
In  spectral analysis, “ensemble averaging” techniques are 

commonly used. The same approach could be used here, av- 
eraging the weights  over time  before transforming. Although 
the gradient noise is essentially. uncorrelated over j,  the weight- 
vector noise is generally  highly correlated over time. Averag- 
ing with  each adaptive iteratiqn could be done  but is not nec- 
essary; averaging the weight vector at intervals corresponding 
to  about  four adaptive time  constants (47,,) would assure 
noise independence  and would be appropriate  in gathering the 
information  contained in the time history of the weights.  On 
this basis,  averaging N weight vectors would produce, at  the 
Zth frequency, a noise power in H(Z), the averaged transfer 
function,  with  the following value: 

(nlN) A m i n .  (D.23) 

This expression for weight-vector noise can be put  in more 
usable form by relating tmin  to  the physical line enhancing 
process shown in Fig. 33. The noise power at  the  filter  out- 
put will always be  negligible compared to  the  input noise 
power, since the optimized filter transfer  function will be 
small  in magnitude except at  the peaks whose value is u * .  
When  signal power is low compared to noise power, which is 
the case  of interest in the present context,  the  error power is 
essentially equal to  the  input noise power. Thus 

(min = v2 . (D.24) 

The noise power in H(2) at  the Zth frequency is accordingly 

D.  Detectability of Sine Waves by  Adaptive  Line Enhancing 
Detection of a signal is dependent  on  identification of its 

adaptive filter  transfer  function peak (of value a * )  as distinct 
from other peaks due to weight-vector  noise. For  this purpose 
one could compare  the value of a * with the standard deviation 
of the noise in H(Z). A still better procedure is to work  with 
signal and noise power by comparing the squares of these 
quantities.  “Detectability”  for  the adaptive line  enhancer 
(ALE) is accordingly defined as follows: 

(D.26) 

This measure must typically be one  or greater to achieve signal 
detection. Using (D.2)  and  (D.22),  equation  (D.26) can be  re- 
expressed as 

The power of the adaptive filter  input is essentially that of 
the noise, equal to v z .  Since the  filter  input is essentially 
white,  the  input  correlation matrix can be well represented by 

R = v21. (D.28) 

All  eigenvalues are  equal to v 2 .  The  trace of R is equal to n g  . 
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Using (A.19) of Appendix A, one may thus  write 

This is the time constant of the mean-square error learning 
curve. Note that  the line enhancer  does not have a bias  weight 
and that  the number of weights is thus n rather  than n + 1. 
Equation  (D.27) may now be expressed in more useful form 
as follows: 

For high signal-to-noise ratios-that is, for (SNR) ( 4 2 )  >> 1- 
equation (D.30) becomes 

(D.3  1) 

For low signal-to-noise ratios-that is, for (SNR) ( 4 2 )  << 1- 
equation (D.30) shows that 

DALE (NTm,) (SNR)? n .  (D.32) 

Intermediate values must be independently calculated. 
Choice of the  number of weights has an influence on  the 

value of DALE for a given input signal-to-noise ratio. Differ- 
entiating  (D.30)  with respect to  n and setting  the derivative 
to zero yields the following expression for  the optimal value 
of n: 

n* = 2/SNR. (D.33) 

Substituting (D.33) into (D.30) then yields the  optimal 
value” of DALE : 

D ~ E  = (NTms) (SNR/2).  (D.34) 

It is interesting to  note  that, when n is so optimized, 

a*  = 1/2. (D.35) 

E. Detectability of Sine Waves by Spectral Analysis 
Let the power spectrum of a signal  in white Gaussian noise 

K?. derived from  an  L-point digital Fourier  transform.  The 
frequency of the signal is assumed to  be at  the  center of a 
spectral  bin.  Input signal power is assumed to be C2/2 and 
noise power to be v 2 .  Ai  the signal frequency, the  component 
of the power spectrum due  to  the signal  will  have the value 
C2L2/4. Each spectral bin  will  have an  identical average  noise 
power of v2 L . 

For  the signal to be detected  its  spectral peak must be dis- 
tinguishable from noise peaks that  are deviations about  the 
mean noise power. The variance of the noise power about  the 
mean can be reduced by ensemble averaging; that is, by averag- 
ing N power  spectra,  each derived from L data points. With 
Gaussian  noise the variance of the noise power about  its mean 
in any  spectral bin can be shown 23 to  be (2/N) (average  noise 
power)2, which is equivalent to 

(2/N) (VZLl2. (D.36) 

larger or smaller than n* and DALE will remain within approximately 
“The exact value of n is not critical; it may be as much as 8 times 

50 percent of DALE. 
l3  The variance in the estimate of variance from N samples of a zero- 

It is reasonable to compare the average  signal power in the 
selected spectral bin with the  standard deviation of the noise 
power fluctuations  that occur in each spectral  bin; that is, with 
the square root of (D.36). We thus  define  “detectability”  for 
spectral analysis  as 

= (SNR) L (N/8)’12. (D.37) 

The motive for  this  definition is  derived from the early work 
of Woodward [441, Skolnick 1451, Swerling [461, Marcum 
[ 471 , and  others. 

F. Comparison of Adaptive Line Enhancing and 
Spectral Analysis 

Fig. 35  illustrates  the  definitions of the  detectability of a 
sine wave  by adaptive line enhancing and  spectral analysis 
given in (D.30)  and  (D.37). It is  useful to compare Fig. 35(a) 
with Fig. 35(b).  Note  that in the former case the measure of 
detectability is based on  the magnitude of the adaptive filter 
transfer  function, whereas in the  latter  it is  based on  the digital 
power  spectrum. Since the measure of detectability is differ- 
ent  for  the  two  techniques, in a sense one is comparing “apples 
and oranges.” Yet both  DUE and D D ~  are  ratios of signal 
power to  noise power. 

Fig. 36 presents experimental results, obtained by  computer 
simulation, showing the performance of the adaptive line  en- 
hancing and spectral analysis techniques for  three values of 
DALE and D D ~ .  Visual examination  indicates that DALE 
and D D ~  do provide a reasonable basis for comparing the per- 
formance of the  two  techniques. 

Equation (D.34) describes the  detectability of a sine wave by 
the adaptive technique when n is optimized. This equation 
can  be rewritten as 

D ~ E  = (4NTmS)  (SNR/8). (D.38) 

Since weight vectors are taken  for ensemble averaging at 47- 
intervals and N vectors are averaged, 4N7,, represents  the 
total  number of input  data samples. Note that  the  time con- 
stant 7,s is not expressed in seconds but in number of adap- 
tive iterations, which is equivalent to number of input  data 
samples. Thus (D.38) can be rewritten as 

D ~ L E  = (number of data samples) (SNR/8).  (D.39) 

The  detectability  of a sine  wave by  spectral analysis is given 
by (D.37). Since N sample spectra are ensemble-averaged, and 
since each requires L data  points,  the  number of data samples 
required is the  product of N and L. Equation  (D.37) can thus 
be rewritten as 

D D ~  = (number of datasamples) (SNR/[8N] ‘ I 2 ) .  (D.40) 

The  ratio of detectabilities is, therefore, 

(D.41) 

Accordingly, spectral analysis is advantageous as long as the 
number of ensemble members is less than eight. Adaptive line 
enhancing would be advantageous when the  number of ensem- 
ble members required for  spectral analysis is greater than eight. 

For  the comparative experiment represented by Fig. 36, 
input signal-to-noise ratio in each case  was 0.01562. The num- 
ber of data samples used with  spectral analysis was the same as mean process equals (mean fourth - [mean square 1 )IN. 
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TRANSFER FUNCTION 
MAGNITUDE SQUARED 

t 
D~~~ AVERAGE POWER GAIN 

A PEAK  POWER GAIN 

“BEST“ (.‘I2 = 114 

AVERAGE POWER GAIN = (n/Nl ir v2 

POWER  SPECTRAL 
DENSITY D~~~ ’ STANDARD DEVIATION OF NOISE POWER 

MEAN SIGNAL POWER 

t ,7---C2L2/4 = MEAN SIGNAL POWER 

STANDARD DEVIATION = 2 L ( z / N I ~ / ~  

(a) (b) 

Fig. 35. Defmition of detectability D of a sine wave in noise. (a) With adaptive line enhancing. (b) With spectral analysis. 

Fig. 36. 
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(a) (b) 
Experimental comparison of adaptive line enhancing and spectral analysis for three values of detectability D;  input 
noise ratio, 0.01562;number of weights and  transform points, 128. (a) Adaptive line enhancing. (b) Spectral analysis 

signal-to- 

the  number used with  adaptive  line  enhancing  when  the value 
of DUE and D D ~  was 2 but became 16 times  greater  when 
the value of DALE and D D ~  was 32. 

With adaptive line enhancing  one  could  freely  trade N for 
T-. Their product is all that is important. Ensemble av- 
eraging may not even be required, since T,, can be made large 
by  making p small (although  this may cause one to go to 
“double  precision”  arithmetic). With spectral analysis, on  the 
other  hand, ensemble averaging cannot be avoided in  most 
cases. The size of L may be limited  by  cost  considerations, 
computer  speed,  or  in  the case where the signal is an  imperfect 
or modulated  sine wave by signal bandwidth. Large values of 
N are  required  when  input signal-to-noise ratio is low, and 
values in the  thousands are not  uncommon. 

The  reason  that  adaptive  methods may be superior to spec- 
tral methods in certain cases, especially those of low signal- 
to-noise ratio, can be stated as follows. Averaging within  the 
digital  Fourier  transform itself provides coherent signal en- 

hancement. Thus the detectability D D ~  of the signal is 
proportional to L. Since ensemble averaging is incoherent 
(“postdetection averaging”), however, the detectability D D ~  
is proportional only to  the  square  root of N. The adaptive 
process, on  the  other  hand, provides coherent signal  averaging, 
making the detectability DALE proportional to 7-. It is 
equally  coherent in  averaging the weight vector  ensemble, 
making DALE proportional also to N. 

An analytical  comparison of the  computational  requirements 
of the two techniques has not  yet  been  made,  but  it  appears 
that  the  adaptive process will provide a simpler implementa- 
tion  when  spectral analysis involves  large values of L. The 
adaptive process has the advantage of being a smooth, steadily 
flowing process, whereas spectral analysis is performed with 
consecutive  time segments of data. 

The  subject of signal detection by  adaptive  filtering is rela- 
tively new,  and  the analysis presented  here  should be regarded 
as preliminary. The  formulas derived  have  been verified by 
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simulation  and  experiment,  but  the  concepts  they describe 
have not been in existence long enough to provide an adequate 
perspective. It is hoped that  this work can be extended in the 
future. 
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