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Abstract--Template matching is a fundamental technique of pattern recognition. Although this technique is 
very general, its applicability has been limited because of the difficulty often encountered when fitting templates 
to natural data. Natural patterns are often distorted, misshapen, stretched in size, fuzzy, rotated, translated, 
observed at an unusual perspective, etc. Flexible templates (rubber masks) have been devised which, when fitted 
to natural data, can be used for measurement, data reduction, data smoothing, and classification of highly 
irregular waveforms and image shapes. These problems had been largely unsolved by existing template matching 
methods. 

Specific applications to the analysis of human chromosome images, chromatographic recordings, electro- 
cardiogram waveforms, and electroencephalogram waveforms are illustrated. The rubber-mask technique will 
probably be usable in a wide variety of scientific applications. 

Flexible templates Rubber masks Irregular pattern measurement Data reduction 
Chromosome images Chromatographic waveforms Electrocardiogram waveforms 
Electroencephalogram waveforms 

1. INTRODUCTION 

MUCH work has been done during the past twenty years in the field of pattern recognition, 
both theoretical and practical. Several of the schemes that have evolved with matched 
filters, linear threshold classifiers, and nearest neighbor rules are optimal in some sense ;¢ 1-5~ 
but most are ad hoc and have been developed to solve specific problems. On the practical 
side, the work in optical character recognition has been the most successful. ¢6-s~ 

It is hard to typify work in the field because of the profusion of pattern-recognition 
schemes. However, it is possible to divide the field into two broad schools : one that classifies 
by comparing feature observations with pattern property lists; and another that uses the 
pattern information directly and classifies by means of some form of template matching. 
Other schools may mix these approaches, but the two basic approaches remain. 

Pattern features are often found to be invariant to translation, rotation, scale, etc. 
It is desirable to select such features as a basis for classification. However, there is no general 
method for choosing or designating features. A feature-detection system, unless very 
specially tailored to the particular problem, could miss important attributes. Nevertheless, 
feature detection will retain a permanent place in the methodology of pattern recognition. 

The emphasis of this paper will be on template matching. The advantage of template 
matching comes from being able to use patterns directly without the need for devising, 
detecting, or measuring special features. The pattern image itself contains all the required 
information. We are concerned, however, with pattern matching in the presence of rotation, 
translation, scale change, differing shadow and lighting effects, gross shape distortion, and 
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random noise which makes the pattern fuzzy. Because of the recurrence of such distortions 
in most data patterns, template matching generally does not work very well. 

It is the purpose of this paper to show how template matching can in many cases be 
used in pattern measurement and analysis, even when patterns are highly irregular in shape. 
Computer-implemented or computer-simulated flexible templates are proposed. We call 
these "rubber masks". 

The human eye can determine that two non-exactly-matching signatures were made 
by the same hand. The eye/brain can determine that a face being viewed has been seen 
before, only not with the same perspective or with the same light and shadows. The eye/brain 
is remarkably able to ignore pattern variations that for the most part should be ignored. 
The ability of the eye/brain system to match patterns in the presence of distortion would 
be useful for incorporation into practical automatic pattern-recognition systems. It is 
possible that such an ability may be realized in a general way through the use of the flexible 
masking techniques to be described in this paper. 

The flexible template, the rubber mask, is in effect an unusual form of adaptive multi- 
dimensional matched filter. The basic template could be formed from a mathematical 
pattern model or from natural pattern data. Rubber masks have been parameterized and 
adapted as illustrated here with a series of applications to the analysis of chromosomal 
images, liquid and gas chromatograph output records, electroencephalogram (EEG) 
waveforms, and electrocardiogram (EKG) waveforms. 

2. CHROMOSOME ANALYSIS AND CLASSIFICATION 

Chromosome patterns are generally observed under a light microscope that magnifies 
image size about 2000 times. The chromosomes of a single human cell vary considerably 
in size. The length of the smallest corresponds to only about ten wavelengths of light in 
the center of the visible band. Consequently, microscopic images of chromosomes are 
generally fuzzy, pushing the ultimate resolving limits of light microscopy. 

Human chromosome preparations are often made from blood cells or from cells grown 
in culture. A hypotonic solution is used to swell the cells which are then fixed in acetic 
alcohol. Cells suspended in the fixative are then dropped from a height onto a glass micro- 
scope slide in order to spread the chromosomes. At this point, various stains may be 
chosen and applied to the cells. Cells caught at "metaphase," i.e. when they are dividing, 
exhibit their chromosome complement separated in a "spread." Only a small fraction of 
the cells are at metaphase at a given time. Thus one observes on a glass slide a few stained 
chromosome spreads amid a sea of stained non-dividing cells. A human chromosome 
spread (in this case an abnormal one with extra chromosomes) is pictured in Fig. 1. 

At metaphase each chromosome has a twin, normally an identical counterpart. The 
cytogeneticist first associates the pairs, then karyotypes the chromosomes, i.e. classifies 
them into groups and orders the individuals within the groups. This is a time-consuming 
and not always error-free process. The problem is difficult, not only because the patterns 
are fuzzy, but also because the chromosomes sometimes touch one another, or even overlap 
one another. Furthermore, the "arms" of the chromosomes are often twisted and misshapen 
due to impact resulting from the samples being dropped onto the glass slide during 
chromosome preparation. 

Chromosomes are karyotyped by their arm lengths and by their shapes. Existing auto- 
matic recognition techniques have classified chromosomes on the basis of measurements 



FIG. I. A human chromosome metaphase spread. 
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FIG. 8. Liquid chromatograph in the laboratory. 
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such as centromeric index (ratio of arm lengths to total body iength), ratios of body 
lengths from one chromosome to another, chromosome areas, etc. Unfortunately, these 
parameters cannot generally be measured accurately. It is possible to measure the length 
of a table top quite accurately and consistently, but it is not easy to measure the length of a 
chromosome arm which may be twisted and fuzzy. Thus it is almost impossible to determine 
where the arm begins and where it ends (see Fig. 1). 

The rubber mask technique is being developed for the purpose of accurately measuring 
chromosome geometrical properties. Computer implementation is essential, requiring 
digitized input patterns. Examples of digitized chromosome images are presented in Fig. 2. 
Two levels of gray scale were established by reference to an adjustable black/white intensity 
threshold. Altering the threshold level would have some effect on this form of pattern; 
it might even be desirable to take several digitizations of the original image with different 
threshold settings. In any event, the sample patterns in Fig. 2 are typical of those that have 
been subjected to analysis by rubber masking. 

The rubber-mask technique is applied by comparing the shapes of digitized data- 
sample patterns with those of stored standard patterns. The stored stereotype (idealized 
pattern) is progressively distorted until the data pattern is fitted to the desired degree of 
accuracy. The successive distortions, or iterations, to which the stereotype is subjected 
constitute, in effect, the evolution of a stretched template (rubber mask). By means of a 
system of coordinates and parameters, the shape finally assumed by the rubber mask can 
be numerically described. 
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FIG. 2. Two-level digitization of chromosome images. 



| 78 BERNARD WIDROW 

lUlln unnn nu u 
1 l 3 4 S 6 7 B , 10 I t  12 x 

lJl l l  U l n n x  , ,  n 
,#| 14 15 16 17 1ll 19 20 ,el 22 y 

(o1 "DENVER STANDARDS" 

/" i" "!ii 

(b) A DIGITIZED "DENVER 
STANDARD" 

DUADRANT 2 
L 

'i 
) 

! 

i D 
° -  

DUADRANT 3 

QUADRANT I 
_..4 

D / X 

g 

QUADRANT 4 

¢c! MODIFIED "DENVER STANDARD" 

FIG, 3. Human chromosome stereotypes. 

A rubber-mask chromosome analysis has been made using various versions of the 
"Denver Standard" chromosomes as stereotypes. These are shown in Fig. 3a. These 
standard shapes, arranged in a karyotype, were established at a meeting of cytogeneticists 
organized by T. T. Puck in Denver in 1960/9~ They were designed to be chromosome-like 
in shape and to have ratios of upper arm length to lower arm length and arm length to total 
length which are average for normal human chromosomes. One of these standards (No. 3) 
was chosen as a stereotype for the present study (illustrated in Figs, 4 and 7) and is shown 
magnified and in digitized form in Fig. 3b. The form was modified somewhat by adding 
girth at the center (centromere) in order to create a shape somewhat closer to that of an 
actual human chromosome. The modified standard chromosome is shown in Fig. 3c. 
Note the addition of a coordinate system and of dotted lines which are median lines through 
the chromosome arms. These are essential in keeping track of the distortion process 
necessary to fit the template to the data sample. 

An illustration of template fitting is shown in Fig. 4. The stereotype (the modified 
Denver Standard No. 3) is shown in Fig. 4a. The digitized sample of a human chromosome 
to be fitted is shown in Fig. 4e. Distorted versions of the stereotype at different iterative 
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FIG. 4. Stretching a chromosome stereotype to fit natural data. 

stages are shown in Figs. 4b-d. Corresponding sets of distortion parameters are listed in 
Fig. 4f. Through succeeding iterations, the distorted stereotype (stretched template) is seen 
to experience an evolution of its shape toward that of the chromosome to be fitted. 

An explanation of the distortion parameters that have been used in this study, namely 
LENGTH, WIDTH, ANGLE, and CURVE, is presented in Fig. 5. These parameters are 
adjusted individually and independently in each of the four quadrants of the stereotype as 
defined in Fig. 3c. Each arm can be lengthened or shortened, thickened or thinned, offset 
at an angle along its median line, or curved with a second degree function along its median 
line ; or it can be distorted with a combination of these effects. 

LENGTH y, = Y + Y .  LENGTH where LENGTH = % 
I O 0  ' 

increose in length 

WIDTH WIDTH 
x ' = x + ( x * b ) . ~ , w h e r e  W I D T H = %  

increose in width 

ANGLE x' = x + y • ANGLE • k I 

where k t is o constant chosen so that on ANGLE value of I 0 0  will bend the arm so 

thOr the distance from its tip to the y-axis is doubled. 

CURVE x' : x + y2 . CURVE • k z 

where k 2 is o constant chosen so that o CURVE value of moo will bend the arm so 

that the distance from its tic) to the y-axis is doubled. 

FIG. 5. Chromosome distortion parameters. 
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FIG. 6. Skeletal illustration of chromosome distortion parameters. 

The distortion undergone by the stereotype is indicated in skeletal form in Fig. 6. 
The undistorted stereotype is represented by the "H-pattern" in Fig. 6a. The vertical lines 
are the median lines through the stereotype arms (refer to Fig. 3c). Figure 6b illustrates the 
effect of ANGLE only applied to the median lines, while Fig. 6c shows the effect of CURVE 
only, Figure 6d is a skeletal view of the distorted stereotype incorporating the summed 
effects of ANGLE and CURVE. Although the effects of LENGTH and WIDTH are not 
included in this figure, the general shape of the distorted stereotype is quite evident. 

A blow-up of the distorted stereotype superposed upon a blow-up of the sample pattern 
of a human chromosome is shown in Fig. 7. This figure illustrates many aspects of the rubber- 
mask idea. The "rubberized" template (distorted stereotype) is equivalent to a smoothed 
version of the actual data, the digitized human chromosome. The "fit" is optimized with 
the aid of the computer, which counts the number of units of area in the portions of the 
patterns which are not congruent. The distorted stereotype (rubber mask) is changed by 
an iterative process until this error count is minimized. 

The fitted stereotype (solid outline) could conceivably be used in many circumstances 
in place of the actual digitized human chromosome (dotted outline). Such use would 
comprise a form of data reduction. The data image would be represented approximately 
by the combination of the known undistorted stereotype and by a small number of 
numerical distortion parameters. 

Another application for the fitted stereotype could result in feature measurement. 
Arm lengths, widths, areas, and centromeric index of the human chromosome could 19e 
estimated in terms of the lengths and widths and areas of the distorted stereotype by 
including the length and width factors derived from the fitting process. (The parameters 
ANGLE and CURVE are merely used in the fitting process and have no value in measuring 
and classifying chromosomes.) 

By placing narrow limits on the variability of the LENGTH and WIDTH parameters, 
the chromosomes of the spread (Fig. 1) could be karyotyped by associating each data 
chromosome with the individual modified Denver Standard chromosome that it best 
fitted. This would require the use of 24 different stereotypes. A more practical approach 
might be to select a representative stereotype for each of the chromosome groups, com- 
prising Nos. 1-5, 6-12, 13-20, 21-22, X, and Y. A data chromosome would then be grouped 
by determining to which representative stereotype it could best be fitted. Its position or 
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FIG. 7. Rubber mask at iteration # 3 (solid) compared with natural chromosome (dotted). 

rank within the group would then be determined by the LENGTH and WIDTH para- 
meters. 

The template-fitting experiments illustrated here have been done semiautomatically 
using an interactive computer terminal. The position and orientation of the axes of the 
rubber mask relative to those of the data chromosome have been chosen and modified 
by man/machine interaction. The same is true of the four individual parameters in each 
quadrant. The number of adjustable parameters is sixteen, plus two for X-Y placing of the 
mask axes, plus one more for axis rotation, giving a total of nineteen adjustables. 

A scheme for fully automatic adjustment is currently under development. A method of 
initially guessing the centromeric position is being tested which finds four points on the 
data chromosome located where the arms join in indentations. Diagonal lines through 
these points cross at a point which seems to be a reasonable initial estimate of the centro- 
mere position. The initial angular orientation for the rubber mask is determined by 
rotating the data pattern so that when squeezed in a software-implemented "vise," 
a minimal "'jaw opening" is obtained. The axes of the rubber mask are initially 
aligned parallel to the simulated vise jaws. The initial centromere is chosen as above. 
An iterative process then commences to vary all nineteen parameters in search of a 
best fit. 
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Gradient methods are being developed to reduce computation time. Preliminary 
results show that, using the initial conditions of centromere and angle described above, 
global optima are attained after small numbers of iterative computational cycles. 

Recent research into new staining techniques has resulted in chromosome "banding 
patterns". (1°'11) Under suitable preparation of samples, dark and light bands appear 
across the chromosome arms. These bands can be photographed or viewed under the 
microscope. The widths, sPacings, and numbers of bands are characteristic of the individual 
chromosomes in the karyotype. Now, difficult-to-resolve chromosomes are easily separated, 
greatly simplifying the karyotyping problem. 

Work is just beginning on the application of the rubber-masking principle to the 
problem of measuring geometric properties of banding patterns. Stereotypes of human- 
chromosome banding patterns have appeared in the literature "2) and this is of great 
assistance to the development of rubber masks for banding patterns. The banding stain 
preparations are at present in relatively early stages of development and difficulty is 
encountered with high variability in the banding patterns. However improvements in 
preparation techniques are continually appearing in the literature and the usefulness of 
the banding technique in accurate karyotyping and in the detection of chromosomal 
abnormalities is being demonstrated in the laboratory. 

Two-dimensional rubber masks are illustrated in Figs. 4 and 7. Three-dimensional 
rubber masks for chromosome banding patterns are being developed adding optical 
density as another dimension. Actual banding patterns have very wide variations in 
optical density," 3) and fitting to these variations may turn out to be very advantageous. 

The goal of this work is to be able to measure automatically a number of useful geo- 
metrical and banding-pattern parameters on individual human chromosomes. If this can 
be done cheaply enough, the process could be applied in making measurements on the 
chromosomes of hundreds of cells from the same patient sample. Averaging could provide 
unprecedented accuracy, effectively placing a new research instrument into the hands of 
the cytogeneticist to study normal and abnormal measurements. Accuracies of the order 
of a few per cent is the long-term goal. 

The work on chromosome measurement and analysis reported in this section is being 
developed in collaboration with Dr. Leonard Hayflick of the Stanford University Depart- 
ment of Medical Microbiology. His research interest is in reproducibly growing human 
cells in nutrient solution in sufficient quantity to make them available to workers all over 
the world who require standardized sample cells for their experiments. Chromosomal 
measurement is useful for quality control of the experimental tissue. 

3. CHROMATOGRAM ANALYSIS 

Figure 7 illustrates a technique for measuring highly irregular shapes, i.e. the digitized 
shapes of human chromosomes. The same principle could be applied in the analysis of 
chromatograms outputted by liquid or gas chromatographic systems. 

Liquid chromatography is gaining increased importance in the clinical determination 
of amino-acid content of biological samples, typically taken from blood serum or urine. 
Certain forms of physical disorders, birth defects, mental disorders, etc., can be diagnosed 
or predicted from the analysis of amino-acid chromatograms. These are graphical outputs, 
generally recorded on a strip chart, exhibiting a series of peaks. Each amino acid corre- 
sponds to an individual peak. The amount of amino acid corresponding to a given peak is 
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proportional to the area under the peak. For analysis of amino acids in blood or urine in 
clinical application, the chromatograph equipment does not have the resolution to separate 
all of the peaks for quantitative measurement. Some of the peaks tend to overlap and 
linearly add in output amplitude. The problem is to find the areas under the individual 
peaks in spite of overlap and possible baseline drift. Similar problems in peak picking and 
area analysis also exist for measuring amino acids by gas chromatography. In both 
chromatographic techniques, it is desirable to locate the individual peaks accurately in 
time in order to properly identify the associated amino acid. 

Figure 8 shows the amino-acid analyzer, a liquid chromatographic instrument that 
has been the source of data for this research. Dr. Klara Efron, a pediatrician at the Stanford 
University Medical Center, has worked with an Electrical Engineering Department student 
team in preparing the chromatograms for analysis using rubber-mask techniques. The 
analytical results are checked by testing against known mixtures of amino acids that have 
been prepared by Dr. Efron. Each sample, whether it is from a human patient or whether it is 
a known artificial sample, takes 6 hr to run on the amino-acid analyzer. Thus at the present 
time, chromatography is a slow and expensive process. 

Attempts to speed the process and/or to cut cost generally lead to increased peak 
overlap (poorer spectrographic resolution). The purpose of the rubber-mask experimenta- 
tion has therefore been to develop a means, by data processing, to resolve peaks in spite 
of heavy overlapping and to find their respective areas with great accuracy. 

8C 

6C 
I 

4o 

 oli 
" 

140 160 180 200 
TIME,'I (rain) 

~ENLARGED 
I 

220 

IN NEXT FIGURE 

240 260 

Fio. 9. Portion of chromatogram from amino acid analyzer. 

In Fig. 9, a portion of a chromatogram of a typical sample is shown. Eleven peaks are 
present in this portion. A five-peak section of the same data is shown on an expanded scale 
in Fig. 10. The approach taken is to evolve a rubber mask (stretchable template) and 
fit it to the data. The rubber mask consists of a sum of adjustable gaussian peaks. The 
peaks are not fitted one at a time, but all together in the same process. Each peak has 
three parameters : position in time to, amplitude A, and narrowness 1/2a 2, where a is the 
standard deviation. Thus the fit illustrated in Fig. 10 involves these three parameters 
tailored for each of the five peaks, plus an additive constant for baseline adjustment. 
The fit shown is very close and is typical of the results obtained with the rubber-mask 
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FIG. 10. Portion of chromatogram with fitted template. 

process. The formula for the fitted rubber mask of F i g .  10 is 

R = c o n s t a n t  + 75e  - ( ° °  1 ) , -  217)2 + 29e - (o .oo39 ) ( t -  230) 2 Jr 188e- (0.0029)1t- 238) 2 

+ 21e - (O .O 11)(t- 251)2 + 47e - (O .O12) ( t -  253)2" 

The suggestion of using a gaussian shape to represent such peaks comes from the 
chemical literature. (14-16) Diffusion processes take place in the chromatograph equipment, 
and the gaussian shape is the theoretical solution of the appropriate diffusion equation. 

Current research problems involve the development of automatic fitting algorithms 
using steepest descent. Present methods are man/machine interactive. The problem of 
segmentation is being studied: (a) How many peaks should be included in each fitting 
process? (b) What happens when one hypothesizes a given number of peaks in a given 
portion of output record, whereas the actual number is different? (c) Will multiple- 
hypothesis testing be required, i.e. trial of various numbers of gaussian peaks? (d) How 
shall suitable initial parameters for the fitting process be determined? These questions are 
fairly typical of all the applications of rubber masks and are being studied in particular 
practical cases• 

The chromatogram may be regarded as a string of impulses, one for each amino acid 
present, having corresponding time positions and amplitudes, convolved with the gaussian 
pulse shape by the diffusion process in the chromatograph equipment. The impulse string 
has thus gone through a linear filter having a two-sided gaussian impulse response. Decon- 
volution could be done with an inverse filter, which in this case would be the reciprocal of 
another gaussian shape in the frequency domain. This inverse shape goes to infinity in 
both directions, and must therefore be cut off by low-pass filtering. In the time domain, 
this introduces "ringing," causing false peaks. The net results ofdeconvolution are generally 
not good, and by no meanscomparable to the resolving ability of the rubber-mask method. 

Illustrated by the example in this section is a problem which is common to many 
scientific instruments, such as gas chromatographs, mass spectrometers, air pollution 



The "'rubber-mask'" technique--l. Pattern measurement and analysis 185 

monitoring instruments, and other chemical and electronic resolving equipments. The 
problem is that of resolving overlapping spectral peaks. A good solution to this problem 
thus has wide practical applicability. 

The rubber-mask technique has been used here in data smoothing, measurement, and 
analysis. Rubber masking can also be used in data reduction. For example, the entire 
data waveform shown in Fig. 10 could be well represented by the small number of gaussian 
parameters illustrated there. 

4. ANALYSIS OF K-COMPLEXES IN EEG WAVEFORMS 

Rubber-mask principles have been utilized in the analysis and classification of complex 
waveforms that occur in human electroencephalogram (EEG) recordings made during 
sleep. The signals are obtained from electrodes externally applied to the patient's scalp. 
This work is being done in collaboration with Dr. Vincent Zarcone, a psychiatrist in the 
Stanford University School of Medicine who is doing research on sleep and dreams, and 
with Dr. William Dement, director of the Sleep Research Laboratory, Stanford University. 

The "K-wave" or "K-complex ''~7-19~ is of particular interest to sleep researchers. 
It is an electrical phenomenon having a characteristic shape which appears superposed 
upon the EEG background activity. Certain stages of non-dream sleep can be identified 
by measurement of the frequency of incidence of these waves. Detection of the K-wave 
in practice is uncertain because of the interference due to the background EEG activity. 
Also. timing and amplitude vary from K-wave to K-wave of the same patient. The result 
is that typically, two expert sleep-record readers might agree on the designation of K-waves 
only 60-80 per cent of the time. 

In Fig. 11, the topmost EEG recordings are raw data exhibiting possible K-waves. These 
non-contiguous portions of a single EEG record were pre-selected by an automatic process 
as containing "candidate" K-waves. The pre-screening process, based on previous work 
done at the University of Florida, ~2°-22~ utilizes a set of criteria such as the following: 
the signal should swing in the negative direction and exceed an amplitude threshold; 
then within a certain time interval, should swing in the positive direction and fall within 
a set of range of positive amplitudes ; then should swing back toward zero within a certain 
time range. If such a criterion is met, then the EEG is considered to contain a candidate 
K-wave. (Note: tradition in electroencephalography is to plot negative signals upward.) 

Since there appears to be no precise definition of a K-wave, it can only be defined by 
showing examples of K-waves judged "good." In order to establish a stereotype of a 
"'good" K-wave, a mask for a given patient is formed by taking portions of the EEG sleep 
record that occur early in the morning, about 4-5 a.m., when there is generally a substantial 
quieting in the EEG. About five to ten good examples of K-waves are selected by an 
experienced investigator. These are averaged to make the mask according to the following 
procedure: Two K-waves are selected initially; the first is kept fixed while the second is 
best aligned as to baseline (dc level) and position along the time axis, and then stretched 
(first in amplitude, then in time, within about + 15 per cent) to achieve best least-squares 
fit. After several iteration cycles, if the fit is satisfactory, the two K-waves are averaged. 
Then a third K-wave is taken and best-fitted to the average; it too is averaged in, and so 
forth until a useful stereotype is formed, as shown at the bottom of each column in Fig. 11. 

We are concerned with evaluating candidate K-waves selected from the sleep record. 
Comparison between each candidate K-wave and the stereotype is done by summing the 
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FIG. 11. Candidate K-waves from human EEG sleep recordings compared with K-wave template. 

squares of sample-value differences and normalizing with respect to the sum of the squares 
of the sample values of the stereotype. All processing is digital. The canditate waveform 
is translated left-right in time and up--down in baseline level (dc level) to get a best align- 
ment relative to the stereotype giving a minimum sum of squares of error. 

In each column of Fig. 11, all of the waveforms have been compared against the stereo- 
type when best-aligned with it, and the corresponding per cent sum-squared errors are 
indicated in the figure. As stated above, the topmost waveforms are two separate raw 
EEG events from the same patient, containing candidate waveforms. These raw data 
waveforms compared to the stereotype with 44 per cent and 50 per cent errors respectively. 
The next-to-the-top waveforms are similar to the raw-data waveforms but are filtered or 
smoothed versions. Smoothing is done by digital filtering using a non-recursive moving- 
average (tapped delay line) filter having symmetrical weights. No phase shift or phase 
dispersion is introduced by such a filter; only high-frequency components are altered. 
The raw data and the smoothed waveforms are in exact time registration. The improvement 
in fit from noise smoothing was significant. Reducing high-frequency noise generally cuts 
the sum of the squares of the errors at best fit by up to 50 per cent. In the cases shown, 
the smoothed data waveforms compared to the stereotype with errors of 36 per cent and 
30 per cent respectively. 

The next-to-the-bottom waveforms in Fig. 11 have been smoothed, best-aligned, and 
best-stretched (within + 15 per cent limits in amplitude and time), and now the errors are 
down to 36 per cent and 18 per cent respectively. If one looks back at the raw data, the 
upper left-hand waveform could be rated as a 36 per cent error K-wave candidate, while 
the upper right-hand waveform could be rated as an 18 per cent error candidate, based on 
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the final best-fitted comparison. The fitting procedure allows candidate K-waves to be 
ranked in terms of how closely their "intrinsic shapes" match that of the stereotype. 

There is considerable interest among the Stanford Sleep Research group in the use of 
such a ranking system. With a moderate amount of experience, this type of ranking seems 
to agree quite well with that obtained from skilled human scoring of the original sleep 
EEG record. 

It should be noted that in this work, the stereotype remains fixed once it is formed. 
The data itself is stretched (rubberized) rather than the stereotype. 

In the examples previously presented, sums of gaussian shapes (for chromatographs), 
or geometrically uniform artificial stereotypes (for chromosomes) were used as basic 
templates for the rubber mask process. In this EEG study, natural data selected by an 
experienced eye have been used entirely in the formation of stereotypes. The resulting 
stereotypes have no mathematical formula, geometric symmetry or regularity of any sort. 

5. ELECTROCARDIOGRAPHIC WAVEFORM ANALYSIS 

The work reported here on EKG waveform analysis has made extensive use of data 
obtained from Dr. J. vonder  Groeben of the Stanford University Medical School. From 
more than a thousand patients having normal heart function (as well as can be determined 
by clinical workup and EKG analysis), he and his associates have recorded six simultaneous 
EKG channels plus a seventh channel whose signal came from a strain gauge stretched 
across the chest to measure respiration. 

The application of rubber-mask techniques to the analysis of EKG waveforms has 
focused on the QRS complex, defined as the main pulse of the electrocardiagram that 
occurs when the heart muscle "fires." 

An EKG "lead" in medical terminology means an output signal of a differential 
amplifier whose inputs come from a pair of electrodes affixed to the patient. The use of 
six simultaneous anatomically affixed leads gives six different spatial projections of the 
complicated electrical phenomena developed during cardiac functioning323-25~ The 
cardiac electrical activity is sometimes described in terms of a point electric dipole, the 
amplitude and direction of whose moment vector change with time during the heart beat. 
This description is a very rough, first order point of view, however. A more general and 
more adequate model consists in assuming that the electrical activity is generated by a 
large number of point dipoles located at different places within the heart muscle. The 
amplitudes and directions of these dipoles are assumed to be individual and to change 
with time during the beat. The actual situation is in fact more complicated, since such 
parameters as the size, shape, position and orientation of the heart undergo substantial 
mechanical changes during the heart beat. Respiration also has a marked effect on these 
parameters, further complicating the observed electrical phenomena. 

If the heart behaved electrically like a single point dipole whose position remained 
stationary in space and whose amplitude and orientation changed during the beat, three 
linearly-independent lead signals, orthogonal or non-orthogonal, would be sufficient to 
precisely derive or synthesize any other projection (signal from any other lead) during the 
QRS. It has been found experimentally that a sixth lead can be almost perfectly synthesized 
by a linear combination of five other leads. Furthermore, it has been found that the QRS 
of a fifth lead can generally be quite closely synthesized by a linear combination of QRS's 
of only four other leads. 
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Fro. 12. Electrode placements for six-lead data. 

For the EKG data used here, the placements of the six electrode leads, and typical 
QRS waveforms from these leads, are illustrated in Fig. 12. This lead system used by 
Dr. vonder Groeben is similar to one proposed by FRANK. t24-26~ It has been found possible 
to linearly combine these six leads to derive three synthetic leads which are essentially 
spatially orthogonal for an "average" person. Large numbers of normals, i.e. individuals 
having normal heartbeats, have been studied by Dr. yon der Groeben using the synthesized 
orthogonal three-lead Frank system. In this synthetic three-space, bounds for normals 
during the QRS have been established. These bounds apply to magnitude in mV and to 
two angles in a polar coordinate system. Within a normal group for the same sex and 
age bracket, the QRS magnitudes in 3-space could easily vary over a 3 to 1 (or greater) 
range. The polar angles show a correspondingly wide range. QRS magnitude data for 
healthy males age 20 and younger is shown in Fig. 13. (27"2s) 

These findings raise certain questions. The variations from patient to patient are 
evidently very high, which is unfortunate. Such variations greatly complicate the problems 
of automatic EKG analysis. The question is, does high variability really exist from heart 
to heart, or is much of the evident variability in the QRS measurements caused by variations 
in chest shape, heart shape, location and orientation of the heart within the chest cavity, 
respiration, etc.? How consistent is the human heart as a pulse generator? How consistent 
is it from pulse to pulse, comparing pulses from the same patient, and how consistent is 
it from patient to patient within a normal group? 

In order to analyse or classify human EKG waveforms, it is ultimately necessary to 
be able to compare one EKG with another. The rubber-mask idea was generalized to do 
this, including changes in coordinate projections along with the usual time and amplitude 
stretching and baseline adjustments. 

As a first step, a QRS pulse from a normal patient has been compared with other QRS 
pulses from subsequent beats of the same patient. Beat-to-beat comparisons for a typical 
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FIG. 13. Bounds of  QRS magnitude for healthy males age 20 and younger observed by von der 
Groeben. 

normal patient ("John") are shown in Fig. 14. Taking a best (in the least-squares sense) 
relative alignment in time and in baseline (dc level), a QRS from a fully-inhaled beat is 
compared with a QRS from a subsequent fully-inhaled beat in Fig. 14a. The mean-square 
error (m.s.e.) at best fit was 6.85 per cent for the beats shown. For most normals, this 
figure will vary from about 1 to 10 per cent, and wilt usually be of the order of a few per 
cent. In Fig. 14b, a QRS pulse taken at .[bll inspiration is compared with a QRS at .lull 
expiration. Here, the per cent mean-square error is much higher : for the pulses shown the 
m.s.e, is 11.0 per cent. Usually, the error will run from 5 to 15 per cent, generally being about 
10 per cent. It is clear from these experiments that the effects of breathing upon the shape 
of the QRS is highly significant, particularly when the EKG is analysed by computer rather 
than by "'eyeball." 

ORS JOHN Vs SELF ~ 'JOHN ORS LEAD I 
ALIGNED FOR BEST FIT I \ FULLY INHALED CURVE) 

~ (ORIG NAL BEAT, SOLID 

/ '  ~, ~OHN, ORS LEAD I 
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/ ~ (SUBSEQUENT BEAT, 
/ 685%mse. \ BROKEN CURVE) 

o} IN FIT \ 

JOHN, ORS LEAD I 
JOHN ORS LEAD I // \ ~ ,  -FULLY INHALED 
FULLY EXHALED /// \,~ (ORIGINAL BEAT, SOLID CURVE) 

(SUBSEQUENT BEAT, "// \ \  
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/ \ / \ 

QRS LEAD I, JOHN vs SELF, ALIGNED FOR BEST FIT 

FIG. 14. Beat-to-beat comparison for John, QRS, Lead I. 
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FIG. 15. Synthesis o f  QRS by coordinate projection. 

In a recent conversation between the author and Dr. Otto H. Schmitt of the University 
of Minnesota, it was found that both the Stanford group and a group led by Dr. Schmitt 
were observing substantial beat-to-beat QRS variation due to respiration, and both 
groups were taking steps to remove the effects of respiration from the EKG analysis 
process. Dr. Schmitt has developed a simple, practical means for training the patient 
within a few minutes to breathe in synchronism with the R-wave (the peak of the QRS). 
By electronically counting R-waves, every fourth, or every fifth R-wave could be selected 
to light a lamp, indicating to the patient when to breathe. The patient soon develops a 
comfortable breathing rhythm synchronized with the EKG. Heart beats are then associ- 
ated with one another in terms of time count from the R-waves which signal breathing 
commands. Dr. Schmitt indicated that this procedure gives excellent beat-to-beat con- 
sistency, since beats can be chosen at corresponding phases of the respiratory cycle. 

The procedure described in the present paper stretches EKG waveforms in amplitude 
and time and by coordinate transformation in order to remove the effects of respiration. 
The latter evidently causes mechanical variations in the coordinate projections of the 
EKG leads. 

A method to provide compensation for such variations is illustrated in Fig. 15. There, 
lead 1 is shown being synthesized as a linear combination of the remaining five leads. 
The weights of the linear combination (indicated by circles with arrows through them) 
can be adapted to achieve a best least-squares fit. This figure illustrates a general method 
of synthesizing desired waveforms by coordinate projection. 

By adapting the synthetic projection to create a best least-squares fit between two 
QRS's, it appears that one is able to compensate for waveform distortions introduced 
not only by anatomical effects of respiration, but also by imperfect electrode placement, 



The "'rubber-mask" technique--l. Pattern measurement and analysis 191 

JOHN, 6-LEAD 
ORS JOHN Vs SYNTHETIC SELF ~- \ SYNTHETIC ORS, 
ALIGNED FOR BEST FIT / k\, INHALED 

'L, 

JOHN, ORS LEAD I,~ ~ /  ',, 

622 % m se "\ 
IN FIT ~ 

FIG. 16. Synthetic QRS John (inhaled) vs John Lead 1 (exhaled). 

by variations between individuals with respect to chest shape, heart shape, location and 
orientation of the heart within the chest cavity, etc. 

Synthetic QRS's based on linear combinations of six leads have been adapted to and 
compared with single-lead QRS's from the same individual. A typical result is presented in 
Fig. 16. For the comparison shown, best time alignment, best baseline alignment, and 
best weights were chosen to minimize mean-square error. Synthesizing from data of an 
original fully-inhaled beat, a fit is made to lead 1 of a subsequent fully-exhaled beat, resulting 
in 6.22 per cent mean-square error. Figure 16 compares directly with Fig. 14b, where lead 1 
of the fully-inhaled beat is compared with lead 1 of the subsequent fully-exhaled beat, 
resulting in 11.0 per cent error. Synthetic projection has reduced the error, removing that 
due to respiration, and it has brought the error into the range which is typical of beat-to- 
beat comparison when maintaining approximately the same phase of respiration. The 
latter situation is represented in Fig. 14a, where the mean-square error is 6.85 per cent, 

The next question to be considered is, why do EKG's look so different from person 
to person? Are the differences caused by intrinsic heart irregularity, or by imperfect 
placement of electrode leads, or by respiration, or by the impossibility of perfectly placing 
the electrodes in the presence of wide anatomic differences from patient to patient? 
To investigate these questions, we use rubber mask principles in making quantitative 
comparisons of EKG waveforms from patient to patient. Typical results are shown in 
Fig. ! 7. 

In Fig. 17a, single beat lead-1 QRS's are taken from two patients (Johl~ and Mike, 
same age group) and aligned with respect to each other as best possible in time and baseline 
(dc level). An 88 per cent mean-square error existed. Errors of this type generally run from 
50 to 150 per cent. 

The m.s.e, in QRS matching between the two patients was reduced substantially by 
comparing a synthetic projection from six leads of one patient (John) with lead 1 of the 
other patient (Mike). The result is shown in Fig. 17b. The mean-square error was 32.3 per 
cent. 

Even closer matching was obtained by incorporating a small amount of time-stretching, 
limiting this always to within ___ 10 per cent. The time durations of the salient EKG 
phenomena are frequently used by cardiologists in the detection of disease. So the time 
base has not been stretched unduly. The effect of best time stretching along with best 
alignment and best projection is demonstrated in Fig. 17c. Here, the mean-square error was 
9.9 per cent. It is significant to note that the mean-square error was reduced about ninefold 
in this example by projecting and stretching. 
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FIG. 17. Mike Lead 1 vs natural and synthetic QRS John (best projection/best projection and time 
stretch). 

A tentative conclusion from this experiment and from many others like it is that there 
is far greater similarity in the intrinsic cardiac electrical activity than appears in comparing 
the EKG of one patient with that of another based on corresponding anatomical leads in 
accord with current clinical practice. 

By the use of the rubber-mask principle as applied here to the QRS waveform, it is 
conceivable that a new set of 4- 2tx bounds for normals could be derived that would be an 
order of magnitude tighter than those illustrated in Fig. 13. 

Eliminating or reducing gross variations from QRS to QRS in the above described 
manner, the technique may place in evidence subtle local deviations in waveshape which 
may prove to be invaluable in diagnosis. 

6. CONCLUSION 

This paper has presented a set of examples in which the principle of rubber masks has 
been used in pattern measurement and analysis. Specific applications to the analysis of 
human chromosome images, chromatographic recordings, electrocardiogram waveforms, 
and electroencephalogram waveforms have been illustrated. 

Previous methods of pattern analysis and recognition have in a very broad sense 
involved (a) template matching and (b) feature detection and classification. The rubber 
mask approach is based on template matching and it has many of the advantages of 
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template matching. It does not require the measurement of special features, the design 
and choice of which tend to be very problem oriented and not very general. It makes 
direct use of incoming and stored pattern data. The rubber mask incorporates a promising 
method for overcoming the difficulties associated with template matching, since flexible 
templates can in many cases be tolerant to the imperfections and distortions that occur 
in natural pattern data. 

One drawback of the rubber mask approach derives from the large computational 
requirements of the iterative stretching and fitting process. Further work is needed to 
simplify the algorithms in order for these techniques to enjoy wide applicability. 
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