
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-3, NO. 5, SEPTEMBER 1973

REFERENCES
[1] J. G. Cleveland, R. H. Ramsey, and P. Walters, "Storm water

pollution from urban land activity," in Combined Sewer Overflow
Abatement Technology, Water Pollution Control Research Series
11024-06/70, Federal Water Quality Administration, U.S. Dep.
Interior, 1970.

[2] American Public Works Association, "Assessment of combined
sewer problems," in Combined Sewer Overflow Abatement Tech-
nology, Water Pollution Control Research Series 11024-06/70,
Federal Water Quality Administration, U.S. Dep. Interior, 1970.

[3] Cornell, Howland, Hayes, and Merrifield, "Rotary vibratory fine
screening of combined sewer overflows," in Combined Sewer Over-
flow Abatement Technology, Water Pollution Control Research
Series 11024-06/70, Federal Water Quality Administration, U.S.
Dep. Interior, 1970.

[4] Rex Chain Belt, Inc., "The use of screening/dissolved-air flotation
for treating combined sewer overflows," in Combined Sewer Over-

flow Abatement Technology, Water Pollution Control Research
Series 11024-06/70, Federal Water Quality Adminstration, U.S.
Dep. Interior, 1970.

[5] "Dispatching system for control of combined sewer losses," Water
Pollution Control Research Series 11020 FAQ 03/71, Water Quality
Office, Environmental Protection Agency, 1971.

[6] W. Bell and C. B. Winn, "Minimization of pollution from combined
storm-sewer systems," presented at the Int. Syst. Symp., Purdue
Univ., Lafayette, Ind., Oct. 1972.

[7] W. Bell, G. Johnson, and C. B. Winn, "Simulation and control of
flow in combined sewers," presented at the 6th Annu. Simulation
Symp., Tampa, Fla., June 1973.

[8] B. D. 0. Anderson and J. B. Moore, Linear Optimal Control.
Englewood Cliffs, N.J.: Prentice-Hall, 1971.

[9] K. Hitz and B. D. 0. Anderson, "An iterative method of computing
the limiting solution of the matrix Riccati equations," Proc. IEEE,
to be published.

Punish/Reward: Learning with a Critic in
Adaptive Threshold Systems

BERNARD WIDROW, NARENDRA K. GUPTA, AND SIDHARTHA MAITRA

Abstract-An adaptive threshold element is able to "learn" a strategy
of play for the game blackjack (twenty-one) with a performance close to
that of the Thorp optimal strategy although the adaptive system has no
prior knowledge of the game and of the objective of play. After each
winning game the decisions of the adaptive system are "rewarded."
After each losing game the decisions are "punished." Reward is ac-
complished by adapting while accepting the actual decision as the desired
response. Punishment is accomplished by adapting while taking the
desired response to be the opposite of that of the actual decision. This
learning scheme is unlike "learning with a teacher" and unlike "un-
supervised learning." It involves "bootstrap adaptation" or "learning
with a critic." The critic rewards decisions which are members of
successful chains of decisions and punishes other decisions. A general
analytical model for learning with a critic is formulated and analyzed.
The model represents bootstrap learning per se. Although the hypotheses
on which the model is based do not perfectly fit blackjack learning, it is
applied heuristically to predict adaptation rates with good experimental
success. New applications are being explored for bootstrap learning in
adaptive controls and multilayered adaptive systems.

INTRODUCTION

ADAPTIVE LINEAR threshold logic elements have
jl~ been studied closely over the past decade or so.
Examples of such work are contained in [1]-[9]. Analyses
of the dynamic and steady-state behavior of such units can
be found in [10]-[14]. Applications of such elements in
both supervised and unsupervised training situations abound
in the literature. Training algorithms for "learning with a
teacher" [l]-[16] and also for "unsupervised learning"
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[17]-[26] exist and have been analyzed. A mixture of the
two has also been proposed [27].
The purpose of this paper is to describe a different type

of learning process involving adaptive linear threshold logic
elements. By means of this process, called learning with a
critic or selective bootstrap adaptation, an adaptive logic
element learns what is required of it solely through the
receipt of favorable or unfavorable reactions resulting from
the application of an overall performance criterion to the
outcome of a series of decisions made by the element.

Until recently, adaptive threshold elements have been
used primarily as trainable pattern-classifying systems.
When these elements are being trained, a desired response
(representing the pattern class) is specified for each input
pattern vector (input signal vector). This kind of process is
called "learning with a teacher." More recent work in the
field has developed adaptation algorithms which permit
"unsupervised learning," sometimes called "learning with-
out a teacher," or "decision-directed learning" [28], [29].
The adaptive process reported here cannot be considered a
learning-with-a-teacher process; neither can it be described
as an unsupervised-learnirtg process. We are concerned here
with an adaptive process wherein the desired response
cannot be supplied for each input pattern, but the outcome
of a series of decisions can be judged.

Applications for such adaptive procedures arise in certain
sequential-decision processes, in the automatic synthesis of
optimal strategies for gaming and control, and in con-
vergent adaptation schemes for multilayered and more
generally connected networks of adaptive threshold
elements.
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Fig. 1. Automatically adapted threshold logic element (Adaline).

CONVENTIONAL ADAPTATION PROCESSES FOR THRESHOLD
ELEMENTS

In order to understand the process of learning with a

critic, we begin by briefly describing the process of learning
with a teacher. Fig. I shows a functional diagram and
schematic symbol for an adaptive linear threshold logic
element (sometimes called "Adaline") [1]. The diagram
indicates the terminology used and the input-output re-

lationships. The zeroth input-signal component is always
+1. Thus the zeroth weight w0 controls the threshold
partitioning level. Before adaptation, an error E (defined as

the difference between the output y and the desired response

d) exists for each input pattern. Thejth input pattern would
have an error of

A dj_yj = dj_XTW1 (1)

where Xj is the jth input pattern vector and Wj is the jth
weight vector. It is assumed here that the weight vector is
adapted with each new input vector Xj.

If the inputs Xi and dj are statistically stationary, then
the mean-square error (mse) is a quadratic function of the
weights and there exists an optimal Wiener weight vector
which minimizes it [30]-[32]. Learning or updating of the
weights can be done by a gradient-descent technique. The
least-mean-square (LMS) algorithm developed by Widrow
and Hoff [1], [4], [10], [32] uses the error as an estimate
of the gradient. This leads to the weight iteration rule

J+1 i (n + 1)I i 2

where n + 1 is the total number of weights and oc is a

coefficient determining the fraction of the error £j corrected
with each adaptation. The parameter ac controls the stability
of the adaptive process and the rate of convergence. The
adaptive process has been shown [33] to be stable (con-
vergent) if a is within the range 2 > a > 0. Choosing a in

this range ensures that Iejl is reduced by the jth adaptation.
The "learning curve" plot of mse versus the number of

adaptation cycles is a noisy exponential whose time constant
can be shown to be [31], [32]

(n + 1) adaptations. (3)
2x

Formula (3) is exact when all eigenvalues of the input
correlation matrix R E[XJXjT] are identical. A general
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Fig. 2. Bootstrap adaptations. (a) Positive. (b) Negative.

formula for a time constant (there are as many time con-
stants as there are distinct eigenvalues) is derived in [32].
Even when the eigenvalues differ substantially and the
learning curve is not simply a single exponential plus noise
but is a sum of exponentials plus noise, experience has
shown that in most cases the learning curve can be well
approximated by a single exponential having the time
constant given by (3).

SELECTIVE BOOTSTRAP ADAPTATION: LEARNING BY
"REWARD AND PUNISHMENT"

Learning with a teacher is a straightforward matter, as
described in the preceding section. The question is, what
should be done when an adaptive element is connected to
an environment that provides a stream of input patterns,
but in which the desired response for each input pattern is
not known?
One possibility is to connect the quantized output qj of

the threshold element to the desired-response input as
shown in Fig. 2(a). Under this plan, when a new pattern is
applied the adaptive element assumes that its own binary
output decision is the correct desired output. It adapts its
weights accordingly, applying the LMS algorithm or some
other adaptation algorithm, always moving the output yj
closer to its own signum (+ 1 or -1, as the case may be).'
The tendency here is to maintain the binary responses that
already exist (i.e., q responses established by the initial
weight settings), although some analog responses (y values)
close to the zero threshold may reverse during this process.
Essentially, the adaptive element has the attitude "don't
bother me with the facts, my mind is made up." Let this
procedure be called positive bootstrap adaptation or learning
by reward. Positive bootstrap adaptation is the basis of
decision-directed learning and of learning without a teacher
in adaptive threshold element systems.
An alternative means of supplying the desired response

from the output signal is shown in Fig. 2(b). Here the out-

put signal goes through an inverter which forms its com-

plement. The inverted output is then taken as the desired
output. Let this form of adaptation be called negative
bootstrap adaptation or learning by plnishment. Now, when-
ever a new input pattern is applied, adaptation takes place

1 sgn yA {+l' Yj > °
-,yJ <o0.
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Fig. 3. Selective bootstrap adaptation.

to change the output yJ closer to the complement of its
own signum. A sustained application of negative bootstrap
adaptation will eventually cause all weight values to ap-
proach zero, which will neutralize the effects of initial
weight conditions. A threshold element adapting in this
fashion would have the attitude "everything I do is wrong."
A combination of positive and negative bootstrap adapta-

tion is illustrated in Fig. 3. In this configuration, two kinds
of input information are again required to produce an
adaptation: the input pattern Xj and a bootstrap control
signal bj. When bh is positive (switch up in Fig. 3), positive
bootstrapping (rewarding) takes place; when bi is negative
(switch down), negative bootstrapping (punishing) is per-
formed. Let this process be called selective bootstrap
adaptation or learning by reward and punishment.
The kind of information supplied as bi in Fig. 3 will be

quite different in practice from that supplied as dj in Fig. 1.
If an external evaluator (the "critic") indicates that the
present decision is a member of an aggregate of decisions
whose consequences have produced relatively successful
results, then b1 is made positive; otherwise bi is made
negative. Thus selective bootstrap adaptation (henceforth
simply referred to as bootstrap adaptation) involves learning
with a critic, as opposed to learning with a teacher. The
critic is qualitative. The teacher is specific.

APPLICATION OF BOOTSTRAP ADAPTATION TO SIMULATED
BLACKJACK PLAY

In order to make the idea of selective bootstrap adapta-
tion clearer and to stimulate ideas for its application, an
example will be presented relating to the playing of the game
blackjack or twenty-one [34], [35]. It has been found that
using selective bootstrap adaptation, a single threshold
element is able to learn to play this game very well without
knowing the rules or the objectives of the game. All that is
needed is the knowledge, at the end of each game, ofwhether
the game was won or lost.

Blackjack is a card game in which the player, after seeing
one of the dealer's cards, draws a series of cards. At any
stage, the player has the choice of drawing or not drawing
("hit" or "stick"). If the sum of values of cards in his hand
crosses 21, he "busts" (loses). Otherwise, after the player
sticks, the dealer draws a series of cards, playing a fixed
"house" strategy. He has no choice. If the dealer crosses 21,
he busts. Otherwise, whoever comes out nearer to 21 wins.
For an experimental study, the mechanical dealer was
simulated on a computer which "dealt" using a random-
number generator. The computer did all score keeping and
periodically typed out the performance of the "player," an

CODED "STATES" FOR
VARIABLE No.

DEALER'S CODED "STATES" FOR
VAR.{ CARD VARIABLE No. 2

BINARY HIT

PLAYERSor D -OUTPUTSorVARi CARDtJ. q. ~STICK
No. u

VAR.f HOW ACE djNo.311S COUNTED "

BOOTSTRAP ;ISWITCH UP REWARD; GAME WAS WON
CONTROLS

INPUT lSWITCH DOWN PUNISH;GAME WAS LOST

Fig. 4. Bootstrap adaptation applied to game of blackjack.

VARIABLE No. VARIABLE No. 2 VARIABLE No. 3
DEALER'S PLAYER
CARD CARD COUJNTING

SHOWING CODE WORD SUM CODE WORD OF
10 J 1 2 ACE
9 10 20 O
8 1O 19 1 1 1 0 0 I-COUNTED
7 0 0 0 8 I 0 0 0 AS II
6 L 0000 17 0000
5 1 1 1 1 00000- 16 1 1 1 1 1 00000
4 111000000 15 I 1o1000000
3 0000000 4 0000000 O=COUNTED
2 1 00000000 1 3 1 1 00000000- AS I
A 000000000 2 000000000

BELOWI2 0000000000

TYPICAL PATTERN 10 00 10 00 00 00I 0

DEALER HAS 5 PLAYER CARD LAST BIT INDICATES
SHOWING SUM IS 13 PLAYER IS COUNTING

AN ACE AS II

Fig. 5. Blackjack game states encoded as patterns for input to
threshold logic element "player."

adaptive threshold element, which it also simulated. As a
matter of incidental interest, we should point out that the
game of blackjack was simplified by removing all special
features such as "splitting pairs," "doubling down," and
"insurance." "Blackjacks" were counted. The "card deck"
was reshuffled after each draw.

Fig. 4 shows how the simulated adaptive threshold
element was able to perform the function of player in the
blackjack game. The decisions made by the player are
based on the dealer's card showing and on the sum of the
face values of the cards in the player's hand. These data,
together with an indication of how the ace is counted,
constituted the inputs to the threshold element. These
inputs were encoded as shown in Fig. 5. Notice that the
different input states were encoded with binary words which
are algebraically linearly independent.
The adaptive player begins making decisions with a given

set of initial weights. During a given game, several hit or
stick decisions are made with the weights fixed. For each
state of the game, i.e., for each input vector, the decision
made by the player is recorded by the computer. At the end
of the game, the computer notes whether the player has won
or lost. Then adaptation is effected by replaying the game.
If the player has won, either by luck or by good strategy, all
of the decisions that were made in the game are rewarded
during the replay by adapting keeping the "bj switch" up.
If the player has lost, then these decisions are punished by
adapting with the "ba switch" down (see Fig. 4). The
resulting weights are then used in the next game, after which
the cycle of bootstrap adaptation is repeated. The ex-
perience accumulated over many games is stored in the
weights. The weights in turn completely govern the strategy
of play.

457



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, SEPTEMBER 1973

HIT STICK

3 14 16 7I 1819 202
PLAYER SUM

(b)
Fig. 6. Optimal blackjack strategy (Thorp's "basic strategy").

(a) Player counts all aces as 1. (b) Player counts ace as 11.

With suitable state-variable encoding, a single fixed-
weight threshold element can realize the optimal "basic
blackjack strategy" of Thorp. This fact was first noted by
Smith2 in 1963. When the value of the dealer's face card is
encoded in a linearly independent binary code [36], and
when the sum of the cards dealt to the player is also encoded
in this way, the binary patterns representing the states of
the game, together with the associated binary decisions (hit
or stick) corresponding to the Thorp optimal strategy,
constitute a linearly separable set [4], [37], yet they repre-

sent a nonlinear discriminant function. Thus, through the
encoding procedure, a nonlinear function is made perfectly
realizable by a single linear threshold logic element. The
strategy needed to play the game of blackjack is related to
that required for the "bang-bang" (contactor) control of a

variety of dynamic systems [38]. In both cases, binary
decisions must be made based on the values of several analog
or multilevel state variables.
The optimal strategy (minimum probability of loss) for

the simplified game of Thorp is presented in Fig. 6. It
should be noted that when playing this game with the
optimal strategy, the player will lose at a certain small
average rate. The adaptive player must learn to minimize
its losses.
The learning process just described has several unique

features. Learning was not directed by a teacher along each
step of the way. The effects of individual decisions could not
be independently evaluated. They all had a statistical effect
on the final outcome based on a composite of the quality of
the responses to a series of patterns (states) of the game

which were for all practical purposes selected at random.
In addition, because of the element of chance drawing of
"cards," games were sometimes won when playing with
poor strategies and games were sometimes lost when playing
with excellent strategies. The net result is that adaptation
on a given pattern vector did not always proceed in the

2 F. W. Smith, while a graduate student in the Department of
Electrical Engineering at Stanford University, proposed in 1963 that
the game of blackjack be used in a test application of bootstrap
learning principles. He was inspired by an article in Time Magazine,
issue of January 25, 1963, relating to Thorp's work on optimal black-
jack play. The Time article showed the optimal switching line in
"4state space," very similar to that shown in Fig. 6. Smith was doing
a Ph.D. dissertation on the realization of nonlinear separating bound-
aries with linear threshold elements whose inputs were suitably
encoded.

proper direction. Consequently. bootstrap learning takes
place at a slower rate than conventional learning with a
teacher.

ANALYTICAL MODEL OF BOOTSTRAP ADAPTATION

The purpose of the following analysis is to predict the
rate of learning of the bootstrap process using a model
based on a set of hypotheses. The hypotheses hold in a
general way for a wide variety of bootstrap learning ap-
plications, including the game of blackjack, but do not
exactly correspond to the latter application in all details.
The purpose of the model is to represent bootstrapping
per se, with the particular objective of studying the theoret-
ically achievable learning rate and the method by which the
best rate can be realized.

In order to arrive at a definition of terms, we begin by
considering a coin-toss situation in which the coin is un-
symmetrically weighted or biased. After 1000 or so tosses,
we notice that 60 percent of the tosses come out "heads"
and 40 percent come out "tails." Now imagine building a
system to predict the outcomes of tosses withl this coin.
The optimal system (one having the minimum statistical
expectation of error) would always make a fixed prediction:
heads. Although all the decisions made by the optimal
coin-toss predictor are by definition optimal (i.e., best over
the long range), some of these decisions will turn out to be
"'right," and some will be "wrong."

Consider next another coin-toss predictor whose per-
formance is less than optimal. Some of its decisions will
agree with those of the optimal predictor, and the rest will
disagree. Thus some of its decisions will be optimal, while
the rest will be antioptimal; some will be right, the rest will
be wrong. A given decision could be optimal or antioptimal,
and right or wrong. The notions of right/wrong, optimal/
antioptimal are useful in the mathematical study of boot-
strap adaptation.
We next develop an idealized mathematical model for

bootstrap learning. It is based on a set of hypotheses which
were motivated by practical experience. A block diagram
of the model is shown in Fig. 7. It contains an adaptive
system that learns by bootstrap, a "perfect-knowledge"
system whose decisions are always right, an optimal system
whose decisions are always optimal, and a critic that
evaluates the decisions of the adaptive system relative to the
perfect-knowledge system.

In the model of Fig. 7, input-signal vectors are assumed to
be applied to the adaptive system, to the perfect-knowledge
system, and to the optimal system. The perfect-knowledge
system gets additional "super-knowledge" inputs, unavail-
able to the other two systems, in order that it may always
be able to make right decisions. Super-knowledge is, for
example, perfect knowledge of which cards will be drawn
from a deck, of which way coin tosses will go, etc.

In physical situations, the adaptive system will exist, will
make decisions, and will learn from them. The perfect-
knowledge system will not exist directly; otherwise there
would be no need for the learning system. The outputs of
the perfect-knowledge system are generally available in an
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THE CRITIC

Fig. 7. Bootstrap adaptation model.

ex post facto sense-after the fact, after a set of decisions
have been made. The performance of the adaptive system
relative to the perfect-knowledge system is appraised by the
critic for adaptive purposes after the chain of decisions has
been made.

In the model, the function of the critic is hypothesized as
follows. If the number of right decisions made by the adap-
tive system in the given chain is greater than that averaged
over many recent chains, then these decisions are rewarded.
Otherwise they are punished.
The optimal system shown in the block diagram of

Fig. 7 has no direct effect on the adaptive process and is
generally unavailable to it. Its performance upper bounds
that of the adaptive system. In the next section it is argued
from a heuristic point of view that the adapting weight
vector approaches (albeit more slowly) the same weight
that would have resulted if learning with the optimal
system as a teacher were possible.

ANALYSIS OF SELECTIVE BOOTSTRAP ADAPTATION

In a sequence of decisions made by the adaptive threshold
element of Fig. 7, it is likely that some will be optimal and
right (O,R), some will be optimal and wrong (O,W), some
will be antioptimal and right (A,R), and some will be anti-
optimal and wrong (A,W). These four are the only pos-
sibilities. Arrayed in a group of length D, these decisions
might occur as follows:

(0,R),(A,W),(A,W),(O,R),(O,W),(A.,R),(O,R), -,(A,W).
Let the probability of (O,R) be pl, the probability of

(O,W) be P2, the probability of (A,R) be p3, and the
probability of (A,W) be p4.
A sketch of the joint probability density for a single

decision as a function of the number of right and the
number of optimal decisions is shown in Fig. 8(a). This
function is

P(g,h) = p1,(l - g, 1 -- h) + P26(1 - g, 1 + h)

+ P33(l + h,l - ) +p43(1 + h, I + g) (4)

(a) (b)
Fig. 8. Probability density function of number of right and number

of optimal decisions. (a) One decision. (b) D decisions.

where h is the axis of right/wrong decisions and g is the
axis of optimal/antioptimal decisions. Note that 6 is a
two-dimensional Dirac function defined to have a unit
volume.
The joint probability density PD(g,h) (Fig. 8(b)) is a

function of the number of right and the number of optimal
decisions in a chain of D decisions. The value of the g
parameter is the sum of the number of optimal decisions
minus the number of antioptimal decisions; the value of the
h parameter is the sum of the number of right decisions
minus the number of wrong decisions. Assume that the
decisions in the sequence are statistically independent. It
then follows that the joint probability-density function for
a chain of D decisions is a D-fold convolution of the density
function for a single decision:

PD(g,h) = P(g,h) * P(g,h) * ... * P(g,h). (5)

In order to derive an expression for the learning rate of
the bootstrap process, it is necessary to obtain the prob-
ability p+ of an individual adaptation being in the optimal
direction. The probability of adapting in the antioptimal
direction is p = (1 - p+). If the bootstrap adaptation
process is to be useful it is important that a critical param-
eter (p+ - p) be greater than zero. To calculate (p+ - p_),
a certain type of moment will have to be evaluated for the
discrete joint probability density PD(g,h). In order to sim-
plify this moment calculation, it will be assumed that D is
sufficiently large so that PD(g,h) could be replaced for
purposes of moment calculation by a two-dimensional
Gaussian density function. The justification for this is the
central limit theorem. The parameters of a Gaussian ap-
proximation function PD(g,h) will have the same mean
values, the same variances, and the same correlation
coefficient as PD(g,h).
The first step is to find the means, the variances, and the

covariance of the density function P(g,h) of the single
decision (Fig. 8(a)). Tht means are

g PI + P2 - P3 - P4

h Pt + P3 P2 ?P4.

(6)

(7)

The variance along the g axis is

2A - ()2- P + P2 + P3 +P4(P )

= 4(P1 + P2)(P3 + P4)- (8)
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Fig. 9. Regions of positive and negative bootstrapping.

The variance along the h axis is

,2 A 4(Pi + P3)(P2 +- P4).

The covariance is

agii2 A gh-(g)(h)
Pt + P4 - P2 -p3 - ()(h)

4PtP4 - 4P2P3-
The correlation coefficient is

p A 5q

(aq2 X S,2)1 2

PI P4 P2 P3

\,(PI + P2)(P3 + P4)(PI + P3 )(P2 t- P4)

These parameters can now be easily calculated for the
probability density PD(g,h7). The means of this density
function are

Dg and Dh. (12)
The variances are

Duq2 and Dgh12. (13)

The correlation coefficient is the same as in (I I).
The Gaussian approximation function PD(g,h) will have

parameters as determined by (11)-(13) and can be written

PD( #,11)=2-exp 22JTDug07, I - p2 2(1 p2)

(I(g - -D)2

+
(h D2 .

Do7, 2

2p(g gD)(lh - iD)
DaTqTi

(14)

A contour map of PD(g,h) is shown in Fig. 9.
According to the previously stated rules of adaptation.

positive bootstrapping will be effected when measured per-
formance is better than average, i.e., when the number of
right decisions in the chain of D decisions exceeds the long-
term average number of right decisions. It is assumed that,
on the average, each decision in a chain of D decisions has

equal expected effect upon measured performance.

Events where positive bootstrap adaptation takes place
(h > Dh) are therefore indicated by the shaded area in
Fig. 9. The unshaded area represents all other events, where
negative bootstrap adaptation takes place (Ih < Dh).

Consider all chains of events where performance is better
than average. Let the probability of such chains be
.141h > DA). Then the probability of chains with below-
average performance is }8(h < D) - I -= I(h > DDE).
Since the joint Gaussian density P-(g,h) is symmetrical.

A(1 > Dli) _DJ (Dh g ) tdg dl- T,
- ?P(h < Dhi)= 1 (15)

Consider only chains with above-average right/wrong per-
formance. Among these chains, all of which will (by the
rules) experience positive bootstrap adaptation, the ex-

(9) pected number of optimal decisions minus the expected
number of antioptimal decisions is given by

E[g I li > Dh] - (> D 9 fig PD(Y,1l) (1l.

(16)

For chains with below-average right/wrong performance,
all of which will (by the rules) experience negative boot-
strapping when adapted, the expected number of anti-
optimal decisions minus the expected number of optimal
decisions is

E qIh< Dhl]' .'A(h << D=i)

. - )g fP()(gJh) t(li. (17)

With positive bootstrapping (h > Dli), adaptation in the
optimal direction takes place when the threshold-element
decisions are optimal; the expected number of optimal
adaptations minus the expected numiiber of antioptimal
adaptations is given by (16), With negative bootstrapping
(hi < Dh), adaptation in the optimal direction takes place
when the threshold-element decisions are antioptimnal; the
expected number of optimal adaptations minlus the ex-
pected nunmber of antioptimal adaptations is accordingly
given by (17). The average (over all adaptations) number of
optimal adaptations minus the average number of anti-
optimal adaptations is therefore

(p -- p )D

- E[y h/1 > Dhj?(lh > Dli)

+ E[-q Ih < Di ]^(l1i < Dli)

- qg lF,)(g.h) dh/? - g (lJ ?D(g,h) dh

{g D(g d PD(g,h) dli) (18)
ffDh r.
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Changing variables h' = h - Dh and g' = g - Dg, we
have

(p+ -p_)D = f (g' + Dg) PD(9g,h') dh'
-0 o~~~

- PD(g',h') dh' dg' (19)
-00

where

- t ~~1 -1
PD(g',h') =__ exp

227!DagUh /i - p2 2(1 - p2)

(g'2 2pg'h' h(2g Da~ph+ 2 (20)
NDag2 Dffgah Dah2J

Equation (19) can be written

1 00 P

(P+ - P_) = J PD(g9h')(g' + Dg) dg' dh'
D co_

i D(g',h')(g' + Dg) dg' dit'.
(21t)

Now
00

J PD(g,h')(g' + Dg) dg'

exp [-(h'2I2Doah2)]
2_ tDcT(hl1

0, (g' + Dg) exp ( (g( (P2h)Dkrh)2) dg'

- exp [-(h2/2Dah2)] o(gPh' Dg]. (22)
I- [~~ph + 1g(2

.\ 2mTD ah ah

Using this in (21), we have

[l27rD 2 -L /27rD 2]

l2rrD (23)
N/27rD

The expressions for ag and p, (8) and (11), may be
substituted in (23) to give

Let the probability of error of the optimal system (Fig. 7)
be designated Pmin. This limiting performance can only be
reached by the adaptive system when the optimal system is
a linear threshold function.
The decisions of the adaptive threshold system will in

general not always agree with the optimal decisions, i.e.,
those that would be made by the optimal system. It will be
assumed, however, that when there is agreement, the prob-
ability that these optimal decisions are wrong is the same
as that of any optimal decision. Accordingly, the probability
of an optimal decision made by the adaptive threshold
element being wrong is

(29)
The probability of an optimal decision made by the adaptive
element being right is therefore

P(R I 0) = (1 - Pmin). (30)

When the adaptive system disagrees with the optimal
system, its decisions are antioptimal. Assume that the prob-
ability that these antioptimal decisions are right is the same
as that of any antioptimal decision being right. Completely
antioptimal decisions would result from the inversion or
complementation of the output signals of the optimal
system. Accordingly, the probability of an adaptive-system
decision being right, given that the decision is antioptimal, is

P(R A) = P(W 0) = Pmin- (31)
Also,

P(W I A) = P(R O) = (I - Pmin). (32)

All that remains to be found before Pi'P2,P3,P4 can be
determined is P(O) and P(A). At any stage of adaptation,
let the error probability of the adaptive threshold system
be defined as Padapt, A normalized measure of the excess
error probability, similar in concept to "misadjustment"
[32] for adaptive linear systems, is the ratio of the excess
error probability to the minimum error probability obtain-
able by the optimal system:

excess
error = 0 _ Padapt Pmin
probability Pmmn
normalized

(33)

) 4(P P4=- P2P3) (24)

-V2rD(p1 + P3)(P2 + P4)

The next step is to find the probabilities P1,P2,P3,P4
for the individual adaptive-system decision. These prob-
abilities can be related to the "physics" of the process by
using the following expressions:

Pi = P(O,R) = P(R O)P(O)
P2 = P(O,W) = P(W O)P(O)
p3= P(A,R) = P(R A)P(A)
p4 = P(A,W) = P(W A)P(A).

This can also be written

Padapt = Pmin(1 + 0) (34)

The error probability Padapt, i.e., the probability that the
adaptive system is wrong, can also be written

Padapt = P(W °)P(O) + P(W A)P(A)
= Pmin[l - P(A)] + (1 -Pmin)P(A)

(25) - (1 - 2Pmin)P(A) + Pmin.

(26) Using (33) and (35),

(27)

(28)
P(A) = 1 P(0) = PminV

(1 2Pmin)

(35)
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Tlhe probabilities P1iP2.P3,P4 may llow be found by
substituting (29)-(32) and (36) into (25)--(28). The quantity
(p, -- p ) may thern be founrd by suibstitutinig the expres-
sions for P1,P2,P3'P4 inito (24). I he result is

(pP . --- p..)

4 tI vPmin [I (2 t f)Pmjnj 37

2-7TD (l 2Pmin)V(l i/'4l - (l 1 tf)Pmin]
For practical cases having small Pn,in and i/J, (37) simplifies to

(38)(P p~)~4t--IPmin( 4 ,' 2. I)
V 27Tf)

APPLICATIONS OF BOOTSTRAP LEARNING MODEL

In the previous sections of this paper, a mathematical
model of the bootstrap punish-reward learning process has
been proposed and analyzed. The key result, the derivation
of(p+ - p ), is given by (37) and (38). It is expected that
this derivation will be very useful in understanding the
behavior of bootstrap learning, although the set of hy-
potheses on which the atnalytical imiodel is based muay not
always precisely agree with the physical situation in a given
application.

EFFECTS OF (p, - P ) IJPON RATF OF ADAPTATION

With reference to the adaptive model illustrated in Fig. 7,
we conjecture that the adaptive threshold system will self-
adapt toward forming a best least-squares fit to the optimal
system as long as (p - p ) > 0. Reasoning heuristically,
consider a situation whetein (p- p )-p 0.2. On the
average, in tmiaking 10 adaptations, 6 will be in the optinmal
direction and 4 will be in the antioptimal direction. The net
result is a preponderance of 2 adaptations out of 10 in the
optimal direction. 71he rate of learrning in this case would be
0.2 as fast as when learning directly with a teacher. The
factor l/(p - p.) is the ratio otf the time constant of
bootstrap learning to the tirrie constant of learning with a
teacher. It hias been found by experiment that use of this
factor allows one to make reasonably close estimates of
learning-curve time constants for bootstrap learniing.
To obtain a theoretical learning curve for bootstrap

adaptation, we apply the l/(p+ p ) factor to (3). Vhus
the time constanit for the LMS bootstrap process is

Tmse - n+l adaptations.
bootstrap 20i( p p-p-- )

Two different kinds of learning curves are of interest, one

being a plot of mse versus number of iterations, the other
being a plot of error probability versus number of iterations.
It has been pointed out in [1] that error probability and
mse are approximately proportional over a wide range of
conditions. Therefore, error-probability learning curves

have similar time constants to those of mse learning curves.

Formula (39) will be used in deriving an approximate
error-probability learning curve for bootstrap adaptation.

(39)

VThe general differential equation for a simple exponential
process is

_t
dt rT

(40)

where the parameter T is the time constant. Since z is a
function of (p, -- p ) and thereby is a fiunction of i/i. this
differential equationi becomes, using (38) and (39),

(/+ 8avPmi__ 2_, 0

dt (n 4- 1)\y27TD
Integrating yields

(n + 1) s/27rD
, -. ( +__ .

8YlPm in ( t
(41)

-- to)
where to is a constant of integration, depending upon
starting conditions, and t is the numnber of adaptations.
The learning curve for bootstrap adaptation is thus seen

to be a rectangular hyperbola, as against an exponential for
learning with a teacher. The asymptotic behavior of a
hyperbola near optimal performance leads to poorer con-
vergence than that of an exponienitial.

IMPROVING CONVERGENCE BY STRONG REWARD/WEAK
PUNISI-IMEN r

The bootstrap learning process is quite efficient in the
early stages, but deteriorates radically near optimal per-
formance. At this stage most of the decisions of the adaptive
system are optimal and deserve mor-e rewarding than
punishing, Different adaptation coefficients, c + (reward)
and x (punish.), are indicated,
When x , -- -- x, the average movement in adapting

in the optimal direction is proportional to a(p - p ).
The effect upon the Icarning time constant is given by (39).
When i+ o, the average movement in the optimal
direction is, using (23), proportional to

(14()hUg
/2aTD2

( P;hag +±
a. _.7D

a+(g t (_+ --_ g (42)
1271.) (0 + t-- x )

where Yave A (¾ +-t )/2. Henice, the time constant is

Tmse
bootstrar

(n + 1)

2a |4/lPmin +(++ _
£ -) (I2ave D

I/~2frD 2fXave

P mn _

1 2PI-i

(43)

This leads to the approximate differential equation
dV + [8VPmin- ~ aveV
dt (n .+ 1) V2irD

+ (¾ - ) (l 2Pmin ) =- 0 (44)

46)2
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Solving (44), we have

= Cl exp [-C,(t - to)]
1 - C2 exp [CI(t - to)]

where C1 and C2 are given by

C, a+ - oc_

(n + 1)

1&XavelPmin 2PmiC2 = V( i-D + mm )/(fl+ 1).
,/27rD) 1 - 2Pmin

From the foregoing we see that as learning proceeds the
denominator of the expression for / in (45) approaches 1,
and the value of the numerator therefore governs the rate
of learning. The learning process near optimality is now
exponential. Thus bootstrap learning can be improved while
adapting near op-timality by rewarding more strongly than
punishing, i.e., by making the coefficient a+ several times
greater than a_.

APPLICATION TO BLACKJACK LEARNING CURVE

The idealized bootstrap adaptation model applies to the
blackjack example in the following way. The optimal system
implements the Thorp optimal strategy. This is the system
that the learning system attempts to emulate. It learns with
the critic, which indicates at the end of each game the par-
ticular success or failure of the chain of decisions. The
adaptive system has won (performance better than average,
reward it) or lost (performance poorer than average,
punish it). At the end of each decision chain (at the end of
each game), perfect knowledge (the game was won or lost)
is imparted ex post facto by the critic. The number of
decisions D per game is close to four on the average.
The minimum error probability Pmin of the optimal system

may be estimated in the following manner. The Thorp
optimal strategy for the simplified game wins 49.5 percent
of the games. In the majority of games played, three right
decisions are macle first. The fourth and last decision is the
critical one, and this decision is right roughly half the time
(corresponding to the winning games). Therefore, Pmin is
estimated to be 1/8.
The quantity i/ appearing in (38) can be determined for

blackjack by subtracting the minimum rate of loss of the
optimal system (50.5 percent) from the rate of loss of the
learning system arnd dividing this difference by the minimum
rate of loss.

Substituting Pmin = 1/8 and D = 4 in (41), for + =
O_= a, we have

9.3 (46a)
CX(t - to)

Furthermore, for a+ 0 oc_, from (45), we have

= C1 exp [-C1(t - to)] (46b)
1 - C2 exp [-C@ -(t]-to) (

where
a+ - a_

21

cave +_X+- -)C2=-
9.3 15.75

In both equations, t is expressed in number of games and
to is an undetermined constant of integration that must be
found for each experiment. Its value depends upon initial
conditions.

Equations (46a) and (46b) should be regarded as only
approximate because the model does not perfectly fit the
blackjack game for the following reasons.

1) The decisions (in chains of length D) are not in-
dependent: once a stick decision is made, subsequent
decisions are automatically decided.

2) Input vectors are not uncorrelated. The sum of the
player's cards is cumulative and therefore is first-order
Markov.

3) The average number of cards drawn per game being
approximately four, D is a small number. The Gaussian
approximation (application of central limit theorem) used
in deriving (37) is therefore quite crude.

4) A small percentage of blackjack games cannot be won
by the player, even with perfect knowledge of the dealer's
deck. It is thus possible to lose making right (perfect-
knowledge) decisions. In such cases, the concept of right/
wrong is not applicable.

Despite these discrepancies, it has been shown by ex-
tensive experimentation that observed blackjack learning
curves agree remarkably well with theoretical learning
curves based on the idealized model.

EXPERIMENTAL AND THEORETICAL RESULTS

A series of computer-simulated experiments was carried
out to check the applicability of the theoretical model and
the assumptions made in deriving (46a) and (46b). Typical
experimental and theoretical learning curves are shown in
Figs. 10-12. Percent games won versus number of games
played are plotted. In each case, the undetermined constant
to in the equations was chosen to achieve best fit between
experimental and theoretical curves.
When + = a-, (41) gives the theoretical learning curve

in terms of . Expressed in terms of winning rate, the de-
rived hyperbola is superposed on the experimental curve in
Fig. 10. The fit is quite good. For this experiment, a+ =
oc_ = a = 0.4.
The dotted experimental curve of Fig. 10 was derived in

the following manner. An ensemble of 1000 learning ex-
periments was performed, each run starting with the same
initial weight vector. During each run, 10 games were
played, with bootstrap adaptation after each game, and the
average percentage of games won was computed. A new
average was computed over the next 10 games, and so on,
until 1000 games were played. The weight vector was then
reset to the initial condition and a new experiment was
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begun. Each point of the dotted curve is an average percent-
age of games won, derived from 1000 ensemble members,
10 games per ensemble member per point.
Each experimental point of Fig. 10 represents a time and

ensemble average derived over 10 000 games of play. The
averaging provides a performance evaluation with a stan-
dard deviation of error in mean of approximately i percent.
It should be noted that the adaptive system was able to do
a substantial amount of learning within several hundred
games, having no knowledge of the rules and objectives of

play. The nonexponential nature of the learning process is
evident from this experiment. Asymptotic convergence is a
very slow process. The asymptotic level of performance is
somewhat lower than that of the Thorp optimal system.
Finite speed of adaptation causes misadjustment [32] due
to adaptation noise in the weight vector, precluding optimal
performance.
By adapting more slowly, performance closer to the Thorp

optimal is attainable. When a is reduced by a factor of 10,
the results, which are shown in Fig. 11, are very similar to
those of Fig. 10, except that the time scale is compressed
tenfold and the asymptotic performance approaches much

8 9 10 more closely that of the Thorp optimal system (it should be

[ckjack (~= about 10 times closer, but this is difficult to determine
experimentally).
The dotted curve of Fig. 11 was obtained by averaging

over blocks of 100 games per ensemble member and then
averaging over the ensemble of 100 experiments. Each

STRATEGY point represents a time and ensemble average over 10 000
games.

Experiments were performed with unequal c+ and a_ to
obtain exponential rather than hyperbolic asymptotic be-
havior. A typical experiment is shown in Fig. 12. The
theoretical curve was obtained using (46b). Each experi-
mental point was obtained from averaging over 1000 games,
rather than over 10 000 games, as was done in the previous
experiments. There was no ensemble averaging. In this case,
x+ = 0.08 and a- = 0.04. The general speed of adaptation

160 lies between those in the previous experiments. The asymp-

Ajack (a totic approach is much surer and more nearly exponential.
kJack (C+ - Sometimes the performance exceeds Thorp optimal, but

this only happens, on the average, over a finite number of
games.

CURRENT AND FUTURE RESEARCH

Preliminary studies have been made with some success

toward the development of adaptation algorithms for multi-
layered networks of adaptive threshold elements using the
selective bootstrap principle. If performance observed at a

set of output terminals is better than average, every element
in the net.is rewarded. If output-terminal performance is
poorer than average, then all elements are punished. By
this procedure, desired-response training signals are sup-
plied to adaptive elements at intermediate stages. It is
expected that (39) and (43) will be usable in predicting the
rate of adaptation for such networks. Instead of decisions
being made in a chain over time, they are made simu-
taneously, in a chain over "space."
The ultimate purpose of this research is to develop

efficient adaptation algorithms for adaptive threshold-
element networks of arbitrary configuration which are

capable of realizing decision functions that are not
necessarily linearly separable.

Applications of these principles to adaptive on-off con-

trol are also being pursued. Adaptive controllers have
undergone useful learning when better-than-average per-
formance is rewarded and poorer-than-average performance
is punished. A second-order "broom-balancing" system has
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been controlled by a linear threshold controller which is
connected to the state variables and which learns by boot-
strap adaptation. The research is being extended to fourth
order systems and preliminary results are most encouraging.
This work and the applications to multilayered adaptive
nets will be reported in the future.
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