
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, OCTOBER 1967

Reviews of Books and Papers in the Computer Field
DONALD L. EPLEY, REVIEWS EDITOR

D. W. FIFE, A. J. NICHOLS, A. I. RuBiN, H. S. STONE
ASSISTANT REVIEWS EDITORS

Please address your comments and suggestions to the Reviews Editor:
Donald L. Epley, Department of Electrical Engineering, University
of Iowa, Iowa City, Iowa 52240

A. SYSTEMS

R67-51 Electronic Digital Systems-R. K. Richards (New York:
Wiley, 1966).

The heart of this book is the extensive chapter on stored program
machines which appears to have been a reasonably successful attempt
to speak meaningfully to every significant nonarithmetic, non-
physical design concept in that area. Other major chapters include:
an excellent history of electronic digital computers (which the author
terms conventional except for its references to the work of Atanasoff
and Berry at Iowa State University in the early 1940's); a straight-
forward presentation of Mealy-Moore sequential circuits; a brief
introduction to automatic programming; and a generally good dis-
cussion of information theoretic, modulation, and error control
aspects of digital data transmission. The remainder of the book is
devoted to hybrid systems, telephone and message switching, reli-
ability analysis, automatic digital system design, analogies to human
thought processes, and miscellaneous digital systems.

Dr. Richards displays wide knowledge in the areas covered and,
for the most part, he has succeeded in his avowed purpose of pre-
senting extracted and organized concepts rather than a myriad of
details. Practical aspects are stressed strongly and sound engineering
appraisals abound-refreshingly so. The book also contains an ex-
cellent set of well categorized chapter bibliographies which helpfully
include authors' affiliations and references to published reviews of
cited articles.

Several areas exist where the author's judgment could legitimately
be questioned (such as the failure to even mention FORTRAN in the
body of the chapter on automatic programming) and, in rare in-
stances, he is directly in error (as when he states that the minimum
form of an incompletely specified sequential machine can always be
found by considering all possible combinations of values for the
don't care entries.') A larger failing is the fact that the method of
presentation depends almost entirely upon the written word, and
illustrations are sadly scarce. Less than 5 percent of the pages contain
a figure or table of any type and, for example, verbal descriptions are
relied upon exclusively when discussing the operation of stepping or
cross-bar switches.

The basic contributions of the book nevertheless remain, and it is
recommended to those with some prior experience in digital systems
who wish to gain a good engineering understanding of the indicated
areas.

CHARLES V. FREIMAN
IBM Corporation
Menlo Park, Calif.

I M. C. Paull and S. H. Unger, 'Minimizing the number of states in incom-

pletely specified sequential switching functions," IRE Trans. Electronic Computers,
vol. EC-8, pp. 356-367, September 1959.

R67-52 Adaptive Systems of Logic Network and Binary Memories
-J. Aleksander (1967 Spring Joint Computer Conf., A FIPS Proc.,
vol. 30. Washington, D.C.: Spartan, 1967).

This paper presents a conception, and suggests physical implemen-
tations, of a completely general logic system having N binary inputs
and M binary outputs, which can be controlled externally by M2Y
control-input wires to realize all 2m2v logic functions. Several applica-
tions are suggested, as a "trainable" logic system, as a function
generator (A, log A, etc.), and as a pattern classifier. This paper is
interesting and clear, although it has many typographical errors.

The author of this paper presents his system as an alternative to
adaptive threshold nets in equivalent applications. It is useful to
compare the performance of the proposed system with the perfor-
mance of certain forms of threshold networks with regard to speed,
amounts of equipment required, and ability to extrapolate or to
"generalize. "

The author shows first that the system can be broken down to
M separate modules; each module provides one of the required M
binary outputs. In training a single module, one method tries all
possible logic functions and requires up to 22N operations. A better
search method is presented which only requires up to 2N operations.
The author points out that when using a 10-MHz clock, a module
with 6 inputs would require about 1.6 X 1012 seconds or about 50 000
years to search using the first method, but this would be reduced to
6.4 microseconds using the second method. Although the author's
example is a dramatic one, it must be realized that even the second
method for "adapting" or setting the logic module is very slow when
the number of inputs is increased. For example, when there are
100 inputs, up to 2100 operations are required to train the module.
With a 10-MHz clock, this would take about 1.3(20)23 seconds or
about 4(10)12 years.

The training time of the proposed system increases exponentially
with the number of inputs. On the other hand, the training time of
threshold elements and of simple parallel threshold networks in-
creases approximately linearly with the number of inputs.1 2 A "rule
of thumb" found from much experimentation and experience is that
the number of iterations required to train a threshold element is of
the order of five to ten times the number of inputs when the number
of training patterns is large (close to but less than the "statistical
capacity"2). Accordingly, a digital threshold element with 100 inputs
capable of 1000 iterations or adaptations per second could adapt to a
desired logic function (or perhaps only come close to such a function
if the function is nonseparable) in about one second. If a simple

1 B. Widrow, "Generalization and information storage in networks of Adaline
'neurons'," in Self-Organizing Systems 1962, M. C. Yovits, G. T. Jacobi, and G. D.
Goldstein, Eds., Washington, D. C.: Spartan, 1962.

2 K. Steinbuch and B. Widrow, 'A critical comparison of two kinds of adaptive
classification networks," IEEE Trans. Electronic Computers, (Short Notes) vol.
EC-14, pp. 737-740, October 1965.

710



REVIEWS OF BOOKS AND PAPERS IN TIHE COMPUTER FIELD

parallel net of the "Madaline""2 type is used, more complicated
piecewise hyperplanar separating boundaries are realizable. The train-
ing time increases approximately in proportion to the number of
hyperplanes, as has been established experimentally. A ten-threshold-
element digital system with 100 binary inputs would adapt in about
10 seconds.

The amount of equipment required in the realization of threshold
networks is proportional to the number of outputs and to the number
of inputs. On the other hand, the amount of equipment needed to
implement the proposed systems increases in proportion to the num-
ber of outputs, but increases exponentially to the number of inputs.
One scheme proposed by the author would require a single output
OR element and 2150° 1.3(10)30 AND elements for one 100-input
module. In addition, 2100 input control circuits would be required.
Although threshold elements are more difficult to build than con-
ventional logic elements, the amount of equipment required by
threshold elements is far less when there are many input circuits and
when the desired logic function need not be realized perfectly pre-
cisely (as is the case in statistical pattern classification systems). The
training time of threshold-element systems is relatively far less when
there are many inputs.

The author describes several realizations of his system using solid-
state logic elements. In Widrow,' it has been shown how almost the
same system can be realized using a conventional magnetic-core
memory. An N input M output system would require a core stock
containing M planes, each being 2N/2X2Ni2. For example, a 16 input
system would have an 8-bit X address and an 8-bit Y address. Each
memory plane would therefore be 256 X256. It is again apparent that
a large amount of equipment would be needed even when the number
of inputs is moderate. Each binary input vector would correspond to
an address. The responses required on the M output lines would be
stored in the corresponding memory register. The core-memory reali-
zation has the advantage over the author's realizations in that it
provides the means for storing the desired logic function in addition
to simply providing for externally adjustable logic. The author's
realizations have the advantages of being faster in responding. The
core memory requires a fraction of a memory cycle to respond to an
input vector.

It is interesting to compare the performance of the author's
system with that of threshold nets from the point of view of generali-
zation. By generalization, the following is meant. A number of entries
of the truth table are given, called training samples, from which the
remaining entries in the truth table must be inferred. The problem
is not unlike that of interpolating a function when given only a finite
number of samples of that function. In order to do this, something
about the function must be known, such as the function is band-
limited, or the function is polynomial of a certain degree. The number
of samples must be adequate to represent the function. To interpolate
the remainder of the responses of a truth table given a set of samples,
something must be known about the truth table. For example, it
might be known that the truth table is linearly separable, or separable
with a finite number of hyperplanes, or separable with a quadratic
boundary, etc. With such knowledge, a suitably restricted form of
adaptive logic structure could interpolate the entire truth table by
adapting to fit an adequate number of training samples. A perfectly
general adaptive logic system has no inherent ability to generalize.
Being perfectly general, it could fit every sample of every truth
table. Therefore, every sample of a desired truth table must be given,
and no generalization is possible.

Although the author's system is perfectly general and, therefore,
not inherently capable of generalization, the author shows how it can
be used to generalize. By restricting the interrelations among the
control input signals, the author shows how a hyperplanar separating
boundary can be realized and how the controls can be changed to
cause rotation of this hyperplane. That nonlinear boundaries can be
realized by other control functions is stated, and that it is possible
to translate and change the shapes of such boundaries is clear. How-

ever, the way in which the properties of separating surfaces are re-
lated to the control functions and the way in which control functions
are chosen to satisfy real problems are not discussed. Just as things
become very interesting, the paper ends.

To summarize, the general scheme proposed in this paper could
be used when the number of inputs is small and the logic-function
requirements are very general. On the other hand, threshold logic
elements could be used (either analog or digital units) when the
nature of the application requires such functions, especially when
the number of inputs is large. Examples of such applications are given
in Koford and Groner3 (statistical examples) and in Smith4'0 (deter-
ministic examples). When the number of inputs is large and the logic-
function requirements are very general, no satisfactory solution is
in sight.

BERNARD WIDROW
Stanford University

Stanford, Calif.

0 J. S. Koford and G. F. Groner. 'The use of an adaptive threshold element to
design a linear optimal pattern classifier," IEEE Trans. Information Theory, vol.
IT-12, pp. 42-50, January 1966.

4 F. W. Smith, 'Design of quasi-optimal minimum-time controllers," IEEE
Trans. Automatic Control, vol. AC-I 1, pp. 71-77. January 1966.

O F. W. Smith. 'A trainable nonlinear function generator," IEEE Trans. Auto-
matic Control. vol. AC-11, pp. 212-218, April 1966.

B. LANGUAGES

R67-53 SMIMULA-An ALGOL-Based Simulation Language-Ole-
Juhan Dahl and Kristen Nygaard (Commun. ACM, vol. 9, pp. 671-
678, September 1966).

The authors of this article are primarily interested in describing
a new language for programming discrete event simulations. In ac-
tuality, the language described has much wider use than simulation,
and may have effects that are felt outside the simulation community.
SIMULA is not revolutionary in concept; it contains few innovations.
Its strength stems from the fact that its authors have relied heavily
on the work of their predecessors and have selected technically sound
ideas for creating an advanced programming language. In essence,
SIMULA is a successor to ALGOL, containing all of its constructs to-
gether with facilities for list processing and parallel sequencing of
control.

List processing is a natural extension of high-level algorithmic
languages, and is especially natural to accommodate the dynamic
data structures characteristic of simulations. SIMULA borrows its
facilities from SLIP,1 particularly making use of ring-organized lists
and reference counters to implement storage reclamation. The flexi-
bility and power obtained from SLIP-like data structures give SIMULA
a definite advantage over SOL,2 another ALGOL-based simulation
language with a much less flexible data structure. Because of its list-
processing facilities, SIMULA is an attractive language to use for non-
simulation programs.

The SIMULA programming system makes use of its list-processing
capabilities to control the parallel execution of stimulated processes.
Parallelism is described through the equivalent of the "fork" con-
struct, which conceptually causes control to transfer to a remote
process as well as proceed in sequence. Actual processing is purely
sequential and is determined by scanning a master-timing list, called
the sequencing set, that contains a schedule of events. Parallel control
statements are implemented as list-processes on the sequencing set.
It is well to note here that sequential execution is a property of the

I J. Weizenbaum, 'Symmetric list processor," Commsn. ACM, vol. 6, pp.
524-544, September 1963.

2 D. E. Knuth and J. L. McNeley, 'SOL-A symbolic language for general purpose
systems simulation," IEEE Trans. Electronic Computers, vol. EC-13, pp. 401-408.
August 1964.

711


