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Reliable, Trainable Networks for
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ELECTRONIC NETWORKS and systems which can per-
form their intended functions despite defective com-
ponents, subassemblies, or interconnections within
them provide an interesting possibility for enhanc-
ing system reliability.
this paper, a number of proposed techniques for
achieving this goal will be reviewed briefly, after
which. more’ detailed consideration will be given to
networks of adaptive, or “‘trainable,” linear elements
called Adalines. Such networks have exhibited
great tolerance to internal imperfections, and possess
many desirable properties as data-processors which
can improve with experience.

~ The advent and growth of microsystem electronics,
for which decreased size and increased density of
components are major goals, have added both en-
couragement and impetus to the search for system
organizations which are tolerant of defects. The

" encouragement comes from the potentially small

78

space, weight, and cost involved in providing the
additional, redundant components which these re-
liable system organizations require. The impetus is
provided by the difficulty in replacing defective
parts and by the problems of initial yield in a micro-
system in which a large number of components, inte-
grally mounted together, have probably been fabri-
cated en masse. Hence, it is contended that interest
in microelectronics is highly compatible with the sys-
tem studies described here. '
Certainly any system that can function despite
internal imperfections will have more parts than a
minimal system since the job of the imperfect parts
must be borne by other, redundant parts which are
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still functioning. Some techniques of exploiting re-
dundant parts are far more efficient than others,
when measured by the amount of redundancy which
must be added to provide a given degree of im-
munity to overall failure. Redundant systems might
be classified as active or passive;! the first term ap-
plies to systems in which reserve parts are switched

/in to replace defective ones (the spare tire is a non-

automatic example), whereas in passive redundancy
the parts are so connected that, when one part fails,
its function is automatically assumed by other parts
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(dual tires on the rear end of a bus, for example).

In the next two sections of this paper, we shall
compare certain forms of passive redundancy, and
consider one, based on an adaptive vote-taker,
which might be considered semiactive, in that defec-
tive, or failed, elements are gradually deleted from
a system that was originally purely passive.

The final three sections of the paper are concerned
with the properties and realization of adaptive net-
works comprising interconnected adaptive, linear
threshold ¢lements called Adalines. An Adaline has
a number of binary inputs (1 or —1) and a single
binary output that is positive when, and only when,
the weighted sum of the binary inputs exceeds a
threshold level. The weighing factors and the

threshold level are changeable analog quantities, *

thereby permitting adaptation to take place. These
networks have many desirable properties as statis-
tical, trainable pattern Cclassifiers, including the
ability to provide a best binary “‘decision,” based on
past training experience, to a previously unseen
problem. Various types of generalization, such as
trained-in insensitivity to noise in patterns and to
pattern rotation, size, and displacement, are dis-
cussed in Section 3. The use of a single Adaline as
a trainable pattern classifier in a control system is
considered in Section 4. In Section 5, two com-
ponents that provide the required variable weight
with permanent memory are described, and the
application of one of them to an adaptive element is
outlined.

(1) Reliabitity Via Redundancy

Various schemes which have been proposed for
improving the reliability and life of data-processors,
by means of redundant information or structure, are:

(1) Error-detecting codes.

systems and systems adapfive ‘from the ground up.

"“A new type of logic, adaptive logic, is being devised which promiseslfo play ¢
significant role in the future development of computers. Not designed in detail
in the usual way, it can, instead, learn to function by being trained by the
designer, or it can spontaneously learn from its environment. In a sense, such
systems are inherently reliable. They can adapt to their own internal failures.

Systems containing adaptive vote-takers are bridges between conventional fixed-logic
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(2) Comparison of parallel or sequentially dupli-
cated outputs.

(3) Stand-by duplicate equipment.

(4) Error-correcting codes.

(5) Redundant switching networks.

(6) Majority vote among an odd number of
parallel outputs.

(7) Adaptive majority vote among parallel out-
puts.

The first two items of this list do not of themselves
provide for reliability, but merely indicate when
trouble has arisen; after such an indication has been
given, additional steps, such as switching to stand-by
duplicate equipment or repairing the source of the
trouble, must be taken. On the other hand, the last
four items do permit continuous operation, in that
defective parts within a system do not hamper opera-
tion (unless there are too many of them). Not in-
cluded in this list is the well-known marginal check-
ing routine for computers, in which a known, diag-
nostic program is processed while the computer is
stressed (usually by reducing the supply voltage to
the machine). This technique does not involve

(Continued on page 116)

Fig. 1. A redundant relay network.
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Fig. 2. Fixed-majority and adaptive vote-
takers.

redundancy, but it does take time.

Additional discussion is given in the
remainder of this section on error-
detecting and error-correcting codes, and
on the Shannon-Moore redundant relay
networks, in order to exemplify the
ideas involved here. The use of fixed
majority voters, as proposed by ¥on
Neumann,* and of adaptive majority
voters, as described by Pierce,! is con-
sidered in Section 2.

Error-detecting codes in digital com-
puters require that additional binary
bits be added to each word, or block of
information, that is stored or processed
in such a way that errors (usually a
change in one or more bits within a
word) give rise to patterns which are
unacceptable to the computer. The
parity check is the simplest and most
widely used of the single-error detecting
codes. In a parity check, a single bit
(1 or 0), usually at the beginning or
end of a word, is set so that the total
number of 1’s in the word, including the
parity bit, is an even number. The

computer is then organized to recognize.

only words with an éven number of 1’s;
if it encounters a word with an odd num-
ber of 1’s, it stops and indicates that an
error has been made. (Obviously, the
role of the even and odd numbers could
be interchanged.) A single error (the
loss or addition of a 1) within a word will
be detected by the computer, although
any even number of such errors would
go unnoticed.

" Error-correcting codes represent an
extension of the idea introduced in the
preceding paragraph. One way of view-
ing the parity check is to realize that
every acceptable word differs from every

(Continved from page 79)

other by changes in at least two bits.
If additional bits are used, it is possible
to arrange them so that all acceptable
words are mutually different by at least
three bits. A single error then causes
no confusion because it is certain that
the desired word can be found by tem-
porarily changing the bits, one at a time,
in the unacceptable word until an ac-
ceptable word is found. Thus, we have
single-error correction. Indeed, two
errors can be thus detected, so that by
a relatively minor addition of informa-
tion one provides for single-error correc-
tion and double-error detection.
Through efficient use of the additional
bits in an error-correcting code, it is
possible to have relatively simple de-
coding that tells immediately (rather
than by sequential trial and error) if a
word is correct, and, if not, which bit is
in error.?  Table I shows the number of
additional bits required for various (non-
corrected): word lengths in order to
provide for this single-error correction.

Redundant switching networks were
introduced by Shannon-and Moore3 as a
means of assembling reliable switching
networks out of relatively less reliable
relay contacts. Their ideas are illus-
trated here in the simple relay-contact
network shown in Fig. 1. By connect-

ing contact pairs, all nominally opened

or closed together, in series, the desired
state is ensured despite the fact that one
pair of contacts may weld together
permanently. Similarly, by connecting
pairs, or series chains, in parallel, we
ensure operation despite the permanent
opening (via dust or corrosion) of one
pair of contacts. The idea can be
extended to larger series—parallel, or
lattice connection of redundant contact
pairs, which can be optimized by sta-
tistical knowledge of the manner in
which failures occur. Although the
Moore-Shannon proposal was phrased
in terms of relay contacts, it is apparent
that the same ideas can be applied to
networks of other switching devices,
such as diodes and transistors. How-
ever, for transistor switching, the re-
quired input-drive power and additional
cost of this form of redundancy at
the component level have, thus far,
precluded its extensive use.

Principles and comparisons of majority
vote and adaptive majority vote among
parallel redundant outputs are sum-
marized in Section 2. The adaptive
networks considered in the remainder of
the paper have demonstrated a remark-
able tolerance to defective internal
components (with somewhat reduced
performance capability), even though
they are not organized with this property
as the most important consideration.
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Table 1. Information Redundancy
Needed for Single-Error Correction
Code

Word Length Additional
(Binary Bits) Bits

1
2to4
5to 11
12 to 26

27 to 57

S o W

(2) Majority Vote and
Adaptive Majority Vote

The reliability of digital systems can
be made arbitrarily high by the use of
redundant circuits. A combination of
adaptive circuits with redundant cir-
cuits allows the same high reliability
with a drastic reduction in the amount
of redundancy. The vote-taking
scheme of von Neumann* can be modi-
fied by the use of an adaptive vote-taker
which weights more heavily the votes of
the subsystems which it learns are the
more reliable.

A single logical operator is shown in
Fig. 2a. Any imperfection in this logic
block L will cause error in its output.
In the system of Fig. 2b, three logic
blocks and a majority-rule element are
utilized to perform the function of the
simple logic block L of Fig. 2a; here,
however, an error in one logie block out
of the three will not cause an error in
the final output. If errorsin the blocks
L are random and unrelated to each
other, the majority-rule vote-taker is
the best choice. Should one of the logic
blocks become defective, equal vote
weight would no longer remain the best
policy. In Fig. 2c, vote weights are
adjusted by an adaptive process to
minimize error probability. The vote
weight for a defective logical element is
automatically brought to zero, and the
defective element is thus deleted from
thesystem. The nature of theadaptive
process will be explained later in thi
paper.

In Fig. 3a, a series of NV functionally
independent logic blocks is shown.
Error in any one of these blocks will, in
general, cause error in the output signal,
whereas only error in an entire section
will cause output error in the system of
Fig. 3b. The series of vote-takers
that couple each section to the next has
been called a restoring organ by von
Neumann. The signals on the output
lines of the restoring organs are gen-
erally more reliable than those on the
input lines. Notice that the system of
Fig. 3b tolerates errors not only in the
L-blocks, but also in the vote-takers,
which may be fixed majority-rule types
or adaptive types.



The reliability of various system con-
figurations containing adaptive vote-
takers has been analyzed extensively
by Pierce.® The effects of redundancy
and adaptation upon error rate and life-
time extension are suggested in the
following examples.

Let the systems of Fig. 3 have 32
interdependent logic sections, and let
the redundancy factor of Fig. 3b be
three times, as shown. Assume that
the vote-takers themselves are perfect
(their unreliabilities could be lumped
into that of their succeeding logic
blocks). Table 2 is a comparison of
error rates. Let each logic block make
one error in 10° calculations.

Assume that the probability of com-
ponent survival drops exponentially with
time (Table 3). Let there be 32 inter-
dependent logic sections, and let the
redundancy factor be 3. The mean
lifetime of a single logic block is nor-
malized to 1.

With increased redundancy and with
adaptation, it is possible to construct a
large complex system_having a greater
mean lifetime than the mean-lifetime
of its component parts.

(3) Adaptive Pattern-Recognizing
and Logic Systems

It was seen that adaptive decision
elements, also called vote-takers, are
like automatic repairmen constantly on
duty in their respective locales, always
ready to delete parts that become
defective. This type of self-repair
makes possible optimal use of the re-
maining functioning components, and
is especially applicable to systems of
fixed logical structure. A new type of
logic, adaptive logic, is being devised
which promises to play a significant
role in the future development of com-
puters. Not designed in detail in the
usual way, it can, instead, learn to
function by being trained by the
designer, or it can spontaneously learn
from its environment. In a sense, such
systems are inherently reliable. They
can adapt to their own internal failures.
Systems containing adaptive vote-takers
are bridges between conventional fixed-
logic svstems and systems adaptive
“from the ground up.”

A self-contained, automatically
adapted . logical element called the
Adaline neuron has been developed for
pattern-recognition systems and as a
basic element for adaptive logical
circuits.® This element would serve
directly as an adaptive vote-taker.
(Such an application is discussed in de-
tailbelow.) A block diagram of Adaline
is shown in Fig. 4. (Note the similarity
to the decision element of Fig. 2¢.) It
represents a flexible threshold-logic
circuit having inputlines, a single output
line, and an input line, called the desired
output, whichis actuated during training
onlv,

The binary input signals to Adaline
have values of +1 or —1, rather than
the usual values of 1 or0. Within the
neuron, a linear combination is formed
of the input signals, each of which is
multiplied by a certain weighting factor.
The weights are the gains ai, as, . . . @n,
which can have both positive and nega-
tive values. The output signal is +1
if the weighted sum is greater than a
certain threshold, and —1 otherwise.
The threshold level is determined by
the setting of ao, whose input is per-
manently connected to a 41 source.
Varying a, varies a constant added to
the linear combination of input signals.

For fixed-gain settings, each of the 2"
possible input combinations could cause
either a +1 or a —1 output. Thus, all
possible inputs are classified into two
categories. The input-output relation-
ship is determined by choice of the
gains ao, @1, . . . Gn. In the adaptive
neuron, these gains are set during the
training procedure.

In general, there are 22” different in-
put-output relationships, or truth func-
tions, by which the # binary input vari-
ables can be mapped into a single binary
output variable. Only a subset of these
relationships, the linearly separated
truth functions, can be realized’ by a
single neuron of the form shown in
Fig. 4. Although this realizable subset
is not all-inclusive, it is a very useful
subset, and it is ‘‘searchable,”” in that
optimum gain settings for a given truth
function can usually be found by a
convergent iterative process.

Application of this neuron in adaptive
pattern classifiers was first made by
Mattson.®! He has shown that com-
plete generality in choice of switching
function could be achieved by combining
these neurons. He devised an itera-
tive digital computer routine for finding
the best set of a’s for the classification of
noisy geometric patterns. An iterative
procedure having similar objectives has
been devised by Widrow and Hoff.

"Restoring Organ"
(b)

Redundant network with vote-taker.

Fig. 3.
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This procedure is simple to implement,
and can be analyzed by statistical
methods that have been developed for
the analysis of adaptive sampled-data
system.®

An Adaptive Pattern Classifier

An adaptive pattern-classification ma-
chine (Fig. 5) has been constructed for
the purpose of studying and illustrating
adaptive behavior and artificial learning.
It represents a single manually adapted
Adaline neuron.

During a training phase, simple geo-
metric patterns are fed to the machine
by setting the toggle switches in the 4 X
4 input switch array. All gains, in-
cluding the threshold level, are to be
changed by the same absolute magni-
tude so that the analog error (the differ-
ence between the desired meter reading
and the actual meter reading) is brought
tozero. Thisisaccomplished by chang-
ing each gain in the direction that will
diminish the error by 1/17. The 17
gains may be changed in any sequence,
and, after all changes are made, the
error for the present input pattern is
zero. The weights associated with
switches up (41 input signals) are in-
cremented by rotation in the same direc-
tion as the desired meter needle rotation;
the weights connected to switches in the
down position are incremented opposite
to the desired direction of rotation of the
meter needle. The next pattern and its
desired output are then presented, and
the error is read. The same adjust-
ment routine is followed and the error

rought to zero. If the first pattern
were reapplied at this point, the error
would be small but not necessarily zero.
More patterns are inserted in like
manner. Convergence is indicated by
small errors (before adaptation), with
small fluctuations about stable weights.
Note that adaptation is indicated even
if the quantized neuron output is cor-

rect. If, for example, the desired re-
- —— oy LN‘——)—O
o~
vT — L3 —-----l Ly
. ]
I
VT )= Laf—---- Lyfo{VT
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VT Ly -1 Ly
]

—_———— )

“Restoring Organ"
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Table 2

| Nonredundant system (Fig. | Redundant sf}stem, fixed | Redundant system, adap-

3a) majority-rulé vote-takers

(Fig. 3b)

tive vote-takers (Fig. 3b)

32 errors per 10° calcula-| 11 errors per 10° calcula- | 2 errors per 10° calcula-

tions tions

tions

Table 3
Nonredundant system (Fig. | Redundant system, fixed | Redundant system, adap-
3a) majority-rule vote-takers tive vote-takers (Fig. 3b)
(Fig. 3b)
g s 1 - 1 o e _ 16
Lifetime = 35 Lifetime = 35 Lifetime = 35

sponse is -1, the neuron is adapted to
bring the analog response closer to the
desired response, even if the analog re-
sponse is more positive than 1.

The results of a typical adaptation on
six noiseless patterns-is given in Fig. 6.
During adaptation, the patterns were
selected in a random sequence and classi-
fied into three categories. Each T was
to be mapped to +30 on the meter dial,
each G to 0, and each Fto —30. Asa
measure of performance, after each
adaptation, all six patterns were read in
(without adaptation) and six errors were
read. The sum of their squares de-
noted by Ze? was computed and plotted.
Fig. 6 shows the learning curve for the
case in which all gains were initially
zero. The theoretical time constant is
17 patterns, equal to the number of
weights adapted.®

How many patterns or stimuli can
the single adaptive neuron be trained
to react to correctly at a time? Thisis
a statistical question. If, within a large
group of patterns, those which are to
give the + response are similar to each
other and dissimilar to those which are
to give the — response, the neuron has
little trouble in adapting to make the

desired distinctions. If, however, two
patterns that differ by one bit are to give
opposite responses, the critical weight
must have a large value and be of
appropriate sign. If two other similar
patterns are to be inserted to give op-
posite responses, and the same weight
is the critical one—but here the neces-
sary sign requirement for this weight is
opposite to the previous requirement—
clearly the set of only four patterns will
not be linearly separable. A series of
experiments was devised by Koford
where patterns containing unbiased
random bits and random desired re-
sponses were -applied to Adalines with
varying number of inputs. It was found
that the average number of random patterns
that can be absorbed by an Adaline is equal
to twice the number of weights. This is
one basic measure of memory capacity.

Madaline, a Parallel Network of
Adalines

Storage capacity in excess of that of
a single Adaline can be readily achieved
by use of parallel multineuron networks.
Several neurons can be used to assist
each other in solving problems by auto-
matic load-sharing.

n Output
+
Input + 15 —001 o
signals ’
+1, -1

— . Adopflation
procedure

M I desired output

(octivated during tfraining only)

Fig. 4. An auvtomatically adapted threshold element.
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The configuration in Fig. 7 shows five

. Adalines having parallel-connected in-

puts. Their five outputs are connected
to a-majority-rule element whose output
is the system output. One procedure
for training this network is the follow-
ing. A pattern is inserted, and if the
response of the majority element is the
desired response, no adaptation takes
place. Butif the desired responseis +1
and three of the five Adalines read —1
for the given input pattern, one of the
latter three must be adapted to the +1
state. The one that is adapted is the
one whose confidence level (the sum
before quantization) is closest to zero—
i.e., the one whose analog response is
closest to the desired response. If more
of the Adalines were originally in the — 1
state, enough of them would be adapted
to the -1 state to make the majority
decision 4+1. The ones adapted would
have had confidence levels closest to
zero. This adaptation procedure is
symmetric with respect to adaptation
when the desired response is —1.
Differences in initial conditions and the
results of subsequent adaptation cause
the various neurons to take ‘‘responsi-
bility”” for certain parts of the training
problem. ‘The basic principle of load-
sharing is summarized thus: Assign re-
sponsibility to the neuron or mneurons
that can most easily assume it.

In Fig. 7, the ““job assigner,” a purely
mechanical process, assigns responsibil-
ity during the training process by trans-
ferring the desired-response adapt com-
mands to the selected Adalines. The
job assigner utilizes confidence level in-
formation.

The adaptive system of Fig. 7 was
suggested by common sense, was tested
by simulation, and was found to work
very elegantly. It was subsequently
proved by Ridgway! in his doctoral
thesis that if a set of weights exists that
will solve the training problem, then this
system will converge on a solution.
The essence of the proof lies in showing
that the probability of a given neuron’s
taking responsibility for adaptation to a
given input stimulus-desired response is
greatest if that neuron had taken such
responsibility during the previous adapt
cycle when the stimulus was most re-
cently inserted. The division of respon-
sibility stabilizes at the same time that
the responses of the individual neurons
stabilize to their share of the ‘load.”
‘When the training problem is not per-
fectly separable by this system, it can
be shown that the adaptation process
tends to minimize error probability.

In a sense, the Madaline (multiple
Adalines) structure of Fig. 7 is two-
layer—the first layer is of adaptive
logic elements, the second of fixed logic.
There are a variety of fixed-logic schemes
that could be used on the second layer.
Convergent adaptation procedures have



Fig. 5. An elementary learning machine.

been devised by M. E. Hoff, Jr. (to
be described in his doctoral thesis) which
can be used with all possible fixed-logic
second layers. A simple fixed-logic ele-
ment is an OR element. If any of the
Adalines produce the -1 output, the
OR element gives a system output of +4-1.
During training, if the desired output
for a given input pattern is +1, only
the one neuron whose confidence level is
closest to zero need be adapted if any
adaptation is to be done—i.e., if all
neurons give —1 outputs. If the de-
sired output is — 1, all neurons must give
—1 outputs, and any giving 41 out-
puts must be adapted. Ridgway has
also proved that this system is con-
vergent.

The memory capacities of Madaline
structures utilizing both the majority
element and the OR element have been
measured by Koford. Although the
logic functions that can be realized with
these output elements are different, both
types of element yield structures with
the same statistical storage capacity.
The average number of patterns that can
be adapted to by a Madaline equals the
capacity per Adaline multiplied by the
number of Adalines. The memory
capacity is, therefore, equal to twice the
number of weights.

Generalization Experiments With
Adalines and Simple Networks of
Adalines

With suitable pattern-response ex-
amples and the proper training pro-
cedures, generalizations can be trained
into Adalines. - The kinds of generaliza-
tions to be considered here are concerned
with the training of Adalines to react
to patterns and to be statistically in-
sensitive to noise and rotation. Ada-
lines can be forced to react consistently
on a training set of patterns for all
possible rotations, for example, and
then they will react consistently to all
rotations of new patterns never seen
before and quite unrelated to the train-
ing set.

Generalization With Respect to Noise

In Fig. 8, a set of patterns is shown

which was used in an experiment on
generalization for insensitivity to noise.
A single 3 X 3 Adaline was first trained
on 100 noisy X, T, C, J patterns. This
problem was solvable with a minimum
error rate of 12 percent. The weights
were returned to zero and ten patterns
of the hundred were selected at random
and trained into the Adaline. Then the
response of the Adaline was tested on the
full group of 100 patterns. On the
average, a set of such experiments
involving training with very small sam-
ple size produced an error rate of 23
percent. The theoretical error rate®
for training with a number of patterns
equal to the number of weights of the
neuron is twice the minimum error rate
or 24 percent, which checks nicely with
the experimental result. If the number
of training patterns wasincreased to 20,
error rate would have been 18 percent.
The number of patterns required to
train an Adaline to discriminate noisy
pattern equals several times the number
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Fig. 6. Measurement of rate of adaptation.
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Fig. 7. Configuration of Madaline.

of bits per pattern,roughly the statistical
capacity of the neuron.

Generalization With Respect to Rota-
tion of Patterns

Insensitivity to rotation by 90° is a
characteristic that can be perfectly
‘“‘trained-into’”’ an Adaline. An experi-
ment was devised (Fig. 9) using the 4 X
4 Adaline of Fig. 5. C(’s rotated in all
four positions were trained-in to give-
the 41 response, while 7”’s were trained-
in to give the —1 response in all four
rotations. The initial weights were set
to zero and, during training, the mini-
mum mean-square error adaptation pro-
cedure with an adaptive time constant of
32 patterns was utilized. The process
converged with the desired responses
trained-in precisely, and the set of
weights shown in Fig. 9 resulted.
Without further training, new patterns
totally unrelated to the training patterns
were inserted, and it was observed that
not only were the decisions made by the
Adaline perfectly consistent for each
pattern over the four rotations, but that
the four meter readings (confidence
levels or analog outputs) for each pattern
were identical. The reason for this
is simple. Rotation of the weights by
90° yields an identical set of weights.
Let the a-matrix represent the set of
weights (excluding the threshold weight,
which remains the same for all rota-
tions).. The superscript R represents
rotation.

] = [a)? = [1a*]" = [ [17]"]"

Other training patterns and other
numbers of training patterns were used
in this experiment and in each case, after
convergence, the same symmetry ex-
pressedin Eq.(1)resulted automatically.
Adaptation with a time constant long
compared to the number of training
patterns allows the neuron to retain re-
sponses to all the training patterns
essentially equally.  Minimization of
mean-square error forces the response
voltage to each training pattern in all
voltage to be precisely +1 or —1. This
forces the symmetry of Eq. (1).

How many specific responses on the
average can be trained-in and yet have
the neuron trained to be insensitive
to 90° rotation for all patterns? The
4 X 4 neuron has a capacity of 32
patterns. Eight basic patterns on the
average can be trained-in since each
basic pattern must be inserted in all
four rotations. Another point of view
on this question was suggested by Hoff.
The four encircled weights and the
threshold shown in Fig. 9, once chosen,
set the rest of the weights when the con-
straint of Eq. (1) is followed. There
are four ‘‘degrees of freedom’ plus the
threshold freedom. The number of
basic patterns that can be discriminated,
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Fig. 8. Training with noisy patterns.

therefore, corresponds to the capacity

‘of a four-input neuron, which is eight

patterns.

Other Generalization Experiments

In- addition to the aforementioned
training experiments for insensitivity
to noise and rotation, a number of other
tests have been made of the ability of
Adalines to generalize on certain proper-
ties, including

(a) Insensitivity to vertical or hori-
zontal translation.

(b) Insensitivity to pattern size.

(c) Direct sensitivity to rotation.

(d) Direct sensitivity to translation.

The last two experiments were at-
tempts to teach the Adalines to dis-
tinguish (reverse the sign of the output)
between 90° rotations or one-step trans-
lations of any input pattern. In gen-
eral, the results are equivalent to those
reported previously for generalization
with respect to noise and rotation.
In many of these experiments, the rela-
tionships among the weights that result
are simplé and could have been deter-
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mined beforehand. However, it should

- be realized that, by using a single
training routine, a wide variety of learn-
ing and generalization processes can be
induced merely by designing appropriate
sets of training patterns. All of these
generalization experiments were done
on the Adalines, such as that shown in
Fig. 5, with initial weight settings of
zero. In general, more training pat-
terns would be required where it is im-
practical to set all weights to zero
initially. The total number of pat-
terns required per Adaline would be at
least equal to the number of weights.
The objective is to make the responses
to patterns not specifically trained-in
todepend only on the training experience
and not on the initial conditions.

Adaline as an Adaptive Yote-Taker

Vote-taking is actually a form of
pattern recognition. The array of out-
put signals arising at each calculation
cycle from a set of voters comprises a
spatial pattern which the vote-taker
must classify (which the adaptive vote-
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taker must learn to classify) and for
which it must deliver an output de-
cision. The Adaline neuron, utilizing
the above-described adaptation pro-
cedure, has been applied directly to the
job of adaptive vote-taker. Its per-
formance closely approximates the ideal
(whose structure is based on sureness in-
formation measurements), and is simple
to implement physically. The train-
ing of the adaptive vote-taker is a
continuous process. The “correct”
decision is injected at the ‘‘desired out-
put” point (Fig. 4). The changes in
weight values per computation cycle
are made to be ‘exceedingly small.
In a practical situation, the time con-
stant of the adaptation process would
be of the order of magnitude of the
average interval between component
failures.

The “‘correct” decision signal could
be supplied externally to permit adapt-
ing on check programs. An alternative
method would derive this signal from
the output decision of vote-taker it-
self. In Fig. 4, the ‘desired output
point would be connected to the neuron
output in a ‘“bootstrap’’ feedback ar-
rangement. This alternative is the
more attractive since it does not re-
quire that external signals be supplied
to vote-takers dispersed throughout a
system, and since adaptation is possible
during normal productive system opera-
tion. The bootstrap arrangement in-
troduces a stability problem, however.
Long chains of random errors could
cause the vote-taker to so adapt as to
produce incorrect results comnsistently.
This can be prevented by setting the
vote weights initially to produce correct
results, and by making the adaptation
process a very slow one. In system
design, the chief problem is to choose
a time constant of adaptation long
enough to prevent instability and, at the
same time, short enough to weed out
components as they become defec-
tive.

(4) A Pattern-Recognizing
Control System

The adaptive networks described in
this paper evolved from elementary
adaptive control systems. As adap-
tive pattern-recognizing systems, they
may now be used in control systems
that can be taught a variety of fairly
sophisticated control functions. An
example is illustrated in Fig. 10.

The objective of this arrangement is
to have the man first learn to control
the cart so as to balance the unstable
pendulum mounted on it, and then have
him teach the adaptive system to do the
same thing. As he balances the pen-
dulum, the adaptive network observes
both the behavior of the pendulum and
the man’s reactions, and is adapted
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Fig. 10. A magnetic adaptive component.

so as to minimize the error between its
output and his reactions. After train-
ing, the adaptive network can take over
the control of the cart (and thus the
pendulum) and control the system.

In a first version, sensors were used to
provide information regarding the mo-
tion of the pendulum and cart (four-
state variables are required). Each of
the four-state variables was quantized
into a four-bit code, and the resulting
16 binary signals were fed to a single
Adaline. After the Adaline was trained
its output was used to control the ac-
celeration of the cart (bang-bang con-
trol). The single Adaline could almost
invariably balance the pendulum while

2nd-HARMONIGC PHASE-DETECTOR OUTPUT

1

centering the cart over some reference
point.

At the present time, a more sophisti-
cated version of the trainable balancer
is being made. In this version, the
adaptive network will observe the
illuminated pendulum with a 7 X 7
retina of photocells, and will balance
the pendulum, after training, from the
sequences of patterns observed by. its
artificial ‘‘eyeball.”  This is a far
more sophisticated control problem be-
cause the input to the adaptive network
has not been optimally coded, as it was
by the aforementioned four sensors.
Hence, this experiment will require a
multielement Madaline. When opera-
tive, this system should be very instruc-
tive in testing the effectiveness of the
learning process by comparing the
switching functions resulting from
adaptation with those that are theoret-
ically optimum for several different per-
formance criteria. The effects of mem-
ory capacity and generalization upon
performance will be measured.

It is expected that pattern-recogniz-
ing -control systems will be extremely
flexible, and will make possible economi-
cal and reliable automation and control
of highly complex processes—includ-
ing processes whose complexities defy
mathematical description and analysis.

(5) Construction of Practical
Adaptive Networks

The structure of the Adaline neuron
and the adaptation procedures used with
it have been sufficiently simple to make
possible the development of a simple
and reliable automatically adapted
version of Adaline. The principal tech-
nological challenge here has been to
provide the weights (the a;’s of Fig.
4) associated with each input to Ada-
line. The function required is a con-
tinuously variable gain with permanent
memory, such as might be provided
(impractically) with a motor-driven

TIME

Fig. 11. Training a two-core adaptive component with pulses of direct current.

Fig. 12. A trainable balancing system.
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Adaline.

Fig. 14. A partially fabricated sheet of
memistors.

potentiometer. Because of the need
for permanence of memory, purely elec-
tronic memory techniques are excluded.
However, two components, one based
on electrochemical plating and one on
analog magnetic memory, have been
developed and applied.

The magnetic structure shown in Fig.
11 employs two tape-wound cores, with
two windings linking both cores. A
100-ke carrier is applied to the drive
winding, which links both cores in the
same direction. The sense winding is
wound in opposite directions on the two
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cores, thereby providing a balanced
structure. Because the structure is
balanced, no 100-kc signal appears in
the sense winding. However, a second
harmonic, at 200 ke, is developed which
is proportional to the average flux stored
in the cores. The stored flux can be
changed by applying a d.c. adaptation
signal to the sense winding. Because
the d.c. adaptation signal and the 100-
ke carrier areapplied together, the stored
flux can be varied smoothly, in small
increments. The smoothness and lin-
earity of the training characteristic are
illustrated in Fig. 12, which show that
the amplitude of the second harmonic
(actually the output of a second-
harmonic phase detector) can be in-
cremented in either direction by the
application of short, d.c. adaptation
pulses, and that the output remains fixed
when the adaptation signal is removed.

The second component is a new elec-
trochemical circuit element called the
memistor (a resistor with memory),
devised by Widrow and Hoff for the
realization of automatically adapted
Adalines. The meniistor provides a
single variable-gain element. Each
neuron, therefore, employs a number of
memistors equal to the number of input
lines, plus one for the threshold.

A memistor consists of a conductive
substrate with insulated connecting
leads, and a metallic anode—all in an
electrolytic plating bath. The con-
ductance of the element is reversibly
controlled by electroplating. Like the
transistor, the memistor is a three-
terminal- element. The conductance
between two of the terminals is con-
trolled by the time integral of the current
in the third terminal, rather than by its
instantaneous value, asin the transistor.
Highly reproducible elements have been
made which are continuously variable
(thousands of possible analog storage
levels), and which typically vary in
resistance from 50 to 2 ohms, and cover
this range in about 15 sec with several
tenths of a milliampere of plating cur-
rent. Adaptationisaccomplished by di-
rect current; sensing the neuron logical
structure is accomplished nondestruc-
tively by passing alternating currents
through the array of memistor cells.

A circuit for a memistor Adaliné is
shown in Fig. 13. Notice the schematic
symbol for the three-terminal memistor.
This circuit presumes that the neuron
input signals are applied by means of
switches, and that the overall direction
and extent of adaptation are controlled
manually. The direction in which each
memistor should be adapted (plated or
stripped) is determined by the algebraic
product of the error signal multiplied by
the particular input signal. This prod-
uct, and hence the direction of adapta-
tion, is affected by the joint action of the
adaptation control switch and a gang of
each pattern switch (Fig. 13).
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In the circuit of Fig. 13, the effect
of positive and negative gain values is
obtained by balancing the memistor
against a fixed resistor in a bridge ar-
rangement. The sensing of the gain is
done by applying an a.c. voltage to the
memistor, and another a.c. voltage with
a 180-deg phase difference to the fixed
resistor. The currents are proportional
to the conductance and are summed.
An individual gain is zero when the
memistor conductance equals that of its
reference, and an ideal value of reference
conductance is the average of the con-
ductance extremes of the -memistor.
None of the element values or memistor
characteristics are critical because of the
inherent feedback in the adaptation
process.

Fig. 14 presents a photograph of the
latest development in memistors, of ‘a
type now commercially available. Ona

single sheet of glass, 21 elements are

printed. The actual substrates can be
seen in the cell cylinders. Caps and
anodes are yet to be installed, and the
entire unitis then encapsulatedin epoxy.
Each cell has a volume of about two
drops. Similar cells that were made
more than eleven months ago are still
working as they did when first con-
structed, and have been taken through
hundreds of thousands of plating-strip-
ing cycles with no effect upon electrical
characteristics. These cells are essen-
tially insensitive to temperature, shock,
and vibration. They have been stored
with no deterioration over a temperature
range from —200°C to 4+100°C.

Fig. 15 shows a photograph of Mada-
line I. This machine, constructed at
Stanford University, is the largest mem-
istorized machine built to date. Ithas
six Adalines that can be independently
adapted, and a total of 102 memistors.
The inputs are in parallel, and the
present input array is 4 X 4.

This machine was constructed rapidly
during a six-week period. The memis-
tors were not tested before installation
in the machine, and some were defective
at manufacture. A number of wiring
errors were made; some weights were
adapting to diverge rather than con-
verge. There were a number of short
circuits, open circuits, cold solder joints,
etc. This machine worked well when
first turned on, and has functioned with
very little attention for the past eight
months. It took two weeks of experi-
mentation before. - suspicions were

aroused and. the weights were checked.’

Twenty-five percent of them were not
adapting. Vet the machine was able
to adapt around its own internal flaws
and to be trained to make very complex
pattern discriminations. These errors
were corrected, and the machine’s
capacity increased accordingly.
Madaline I has just been put under
the control of an IBM 1620 com-

September 1962

Fig. 15. Madaline I

puter. The computer stores the pat-
terns and desired responses, and con-
trols the training of the neurons. It
tabulates the number of patterns seen
and adaptations made, and error prob-
ability as the learning process progresses.
After the current task of expanding
Madaline I to six 49-input Adalines is
completed, it, together with “the 1620
computer, will be three times faster
than the digital simulation of the same
structure on the 1620 alone. A still
larger Madaline is being planned which
will contain 1,500 adaptive weights.
When connected to the 1620 computer,
it will be faster at neuron simulation
than an IBM 7090. On this scale, a
neuron simulation facility consisting of
a small computer and memistorized
neurons is ten times cheaper than an all-
digital simulation facility.

The fundamental objective in con-
necting adaptive neurons to a computer
is to develop a new type of computer,
one as different from the digital as the
digital is from the analog. This new
type of machine might be called the
adaptive computer. Thebasic‘ ‘flip-flop”
for it is Adaline. The adaptive com-
puter is taught rather than programed
to solve problems. The job of the
“programer’” is to establish -suitable
training examples. This machine will
be taught by men (so that it will solve
the problems of men) in the environment
and with the language of men, not with
a machine language. The learning ex-
perience derived from human teachers

- will provide reasonable initial condi-

tions, upon which the machine could
subsequently improve from its. own
systematic experimentation and ex-
perience-gathering.
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