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Rate of Adaptation in Control Systems

Adaptive control systems are capable of giving near optimum performance in the face of changing
input command and noise characteristics, changing dynamics of the controlled processes, and
changing goal or mission requirements. The principles of feedback control are used by the adapta-
tion mechanism to control the structure of systems. The quality of adaptation is given by the
system ‘‘misadjustment,’’ the ratio of the mean increase in mean square error (from adjustments
based on finite statistical data) divided by the minimum mean square error. A control system can
adapt to a major change in process statistics in about 10 times the impulse response time of the
system itself, with a misadjustment of only 20%. Faster adaptation is possible with pattern-
recognizing adaptive control systems that use longer term experiences. Pattern-recognizing filters
may be composed of adaptive Adaline ““neurons.”” A new electric circuit element called the ‘“mem-
istor’’ (a resistor with mermcory) has been devised to facilitate the realization of the Adaline neuron.
It is a compact rugged electrochemical element whose resistance can be controlled reversibly by
electroplating. The experiences of the neuron are stored in resistance values in a simple and di-

rectly usable form.

DAPTIVE control systems consist essentially of adjust-
able controllers, adaptation mechanisms for setting their
adjustments, and the controlled processes themselves. Adap-
tive or self-optimizing systems automatically modify their
own structures in order to achieve and maintain optimal per-
formance. An adaptive system that continually searches
for an optimum structure within an allowed class of possi-
bilities by an orderly trial-and-error process would give per-
formance superior to that of an optimum fixed system in
many control situations.

Several ways of classifying adaptation schemes have been
proposed in the literature. This author finds it convenient
to think merely in terms of open-loop and closed-loop adapta-
tion. The open-loop adaptation process involves making
measurements of input or environmental characteristics;
applying this information to a formula or a computational
logarithm, and using the results to set the adjustments of
the adaptive system. Closed-loop adaptation, on the other
hand, involves automatic experimentation with these adjust-
ments to optimize a measured system performance. An
example of statistical prediction illustrates the differences
between these methods. 4

A Wiener (1)3 predictor is a linear filter designed to predict
its input signal with minimum mean square error. The form
of this filter depends only on the autocorrelation function of
thisinput signal. An adaptive Wiener filter could be arranged
as shown in Fig. 1la. The correlator measures the input auto-
correlation function. Continually updated measurements
are applied to a computation process (either digital or analog)
that implements the requirements of the Wiener-Hopf equa-
tion and produces the form of the “best” filter. This struc-
tural information is then applied to an adjustable filter (also
analog or digital). The arrangement of Fig. 1a offers many
of the advantages of adaptation. The basic system could be
designed without the designer knowing the exact nature of
the input statistics, and the system will adapt to changing
input statistics and could thus provide highly effective opera-
tion in the nonstationary case.
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A closed-loop adaptation process is shown in Fig. 1b. The
output signal of the adjustable predictor is delayed by an
amount of time equal to the desired prediction time and then
compared with the system input signal. Perfect agreement
implies perfect prediction, and; indeed, the difference is a
prediction error. The mean square of this error can be mini-
mized automatically by an adaptation procedure by a trial-
and-error process. This form of adaptation uses ‘perform-
ance feedback’” to achieve direct, automatic system syn-
thesis, 1.e., the selection of an “optimum” system from a pre-
determined class of possibilities.

The principles of closed-loop adaptation are further illus-
trated in Fig. 2. The input signal is applied to the ‘“worker,”
an adjustable system that deals with real signal inputs to pro-
duce the system output signal. The human operator adjusts
the knobs to optimize the reading of the performance meter.
This is done even though the knobs have interacting effects
on performance, even when the operator- (or “boss’) has no
knowledge of what is inside the worker or what functions
the knobs serve. " The boss performs a purely mechanical
service that could be automated. The combination of
worker and boss are represented in the block diagram of
Fig. 2b. Feedback control is used here to determine and con-
trol the structure of systems. Closed-loop adaptation has
the advantage of being usable where no analytic synthesis
procedure is known or exists, e.g., where error criteria other
than mean-square are used and where systems are quasistati-
cally nonlinear. In the event of a partial system failure, an
adaptation system that continually monitors performance
will optimize this performance by adjusting the intact parts.
System reliability could be greatly enhanced by adaptation

2).

Performance Surface

It is the purpose of this section and the several succeeding
sections to describe in greater detail how the worker-boss
closed-loop adaptation process could be implemented, how
the performance of systems embodying such principles is
evaluated and predicted, and how performance is affected by

" the speed of adaptation.

According to the scheme of Fig. 2, the worker is an ad-
justable system that, in principle, could vary in complexity
from a simple open-loop filter to an entire closed-loop feed-
back system. In the worker itself, the adjustments might
directly control loop gain, individual time constants of tran-
sient components, pole-zero positions in the S plane, or other
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Fig. 1 Closed-loop and open-loop adaptive predictors

characteristics that govern performance. No theory yet
exists which enables a designer in a general way to “optimize”
his choice of the adjustment variables.

The types of workers that have been examined by this
author are sampled-data filters, formed of tapped delay lines.
Adjustment is made directly- to their impulse responses by
making the tap gains or weights be the adjustment variables.
This type of filter can be readily implemented digitally.

Return now to the problem of making an adaptive pre-
dictor. The linear sampled-data system shown in Fig. 3 is
intended to predict the next sample of the input sequence of
samples. The present output sample g(n) is a linear com-
bination .of present and past input samples. The constants
in this combination are ho,hi,h, etc., the predictor impulse-
response samples, or the gains associated with the delay-line
taps. Their choice constitutes the adjustable part of the pre-
dictor design. They may be adjusted in the following man-
ner. Apply a mean square reading meter to e(n), the differ-
ence between the present input and the delayed prediction.
This meter will measure the mean square error in prediction.
Adjust ho,hy,hs, . . ., until the meter reading is minimized.

Suppose that the predictor has only two impulses in its
impulse response, ke and #;. The mean square error for any
setting of he and h; can be readily derived:

€n) = f(n) — hf(n — 1) — hif(n — 2)

() = ¢,/ (0he® + ¢77(0) h? — 2¢,,(1)ho —
2¢,/(Dh + 2¢;,(Dhehy + ¢,,(0) [1]

The discrete autocorrelation function of the input is ¢,,(k).
The mean square error is a parabolic function of the adjust-
ments.

The optimum m-impulse predictor can be derived analyti-
cally by setting the partial derivatives of (e%) with respect to
the adjustment variables to zero. What results is the dis-
crete analog of Wiener’s optimization of continuous filters.
Finding the optimum system experimentally (as in Fig. 2)
is the same as finding the minimum of a paraboloid in m
dimensions. Performance feedback is seen to be equivalent
to the trial-and-error searching of a stochastic performance
surface (which in a wide variety of cases is parabolic) for a
minimum. In the case of a nonstationary statistical input,

this surface is constantly changing in shape, orientation, and .

position. Performance feedback is seen to be a multidimen-
sional “bottom-tracking” servo.
Surface-Searching; Performance Feedback

Iterative or trial-and-error surface-searching processes are
integral parts of closed-loop adaptation systems. It is often
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convenient to represent such processes as feedback systems;
the error of trial and error is analogous to the “error’ of feed-
back control. Many of the relaxation and iterative methods
commonly employed by numerical analysts appear to be
linear feedback systems when represented in this manner.

Stationary points, or maxima and minima, -are character-
ized by zero partial derivatives with respect to the inde-
pendent variables. These partial derivatives generally in-
crease with distance from the stationary point and, more-
over, increase linearly for a quadratic surface. In using many
of the gradient methods (3), the surface is explored by making
changes in the independent variables (starting with an initial
guess) in proportion to measured partial derivatives to obtain
the next guess, and so forth. These methods give rise to
geometric (exponential) decays in the independent variable
as they approach a stationary point for second-degree or
quadratic surfaces. This is illustrated by the one-dimen--
sional model of Fig. 4.

The “surface’” being explored in Fig. 4 is given by Eq. [2].
The first and second derivatives are given by Eqgs. [3 and 4]:

y=al—0b>+c¢ [2]
dy/dx = 2a(z — b) 3]
d2y/dz? = 2a (4]

Let the proportionality constant between change in guess
and derivative be —k. This constant could be chosen so
that the error in x decreases by one half with each iteration
cycle, as illustrated in Fig. 4a. A sampled-data feedback
model of the iterative process is shown in Fig. 4b (4,5). The
initial numerical guess is injected once at the beginning of the

_process, whereas the numerical reference or stationary value

b is injected synchronously during each cycle. The nu-
merical sequence at the point z(n) begins with the initial
guess and proceeds as a sampled transient that relaxes geo-
metrically toward the stationary point, exactly like the se-

‘quence of guesses in the surface exploration. For the present,

disregard the source of derivative measurement noise.
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The following is an explanation of the feedback model.
The next guess is equal to the present guess (this accounts for
the unity feedback branch) plus a constant (—k) times the
derivative. From Eq. [3], the derivative equals 2a times
z(n) minus the constant 2ab. Since the next guess will be-
come the present guess for the next iteration cycle, it is

stored by the unit delay (the feedforward branch of transfer

function z) to supply the signal at node z(n) at the proper
time. It is clear from the flow-graph model that, if the
iterative process is stable, equilibrium will be reached when
z(n) reaches the value b.

The flow graph can be reduced, and the transfer function
from any point to any other point can thus be found. The
resulting characteristic equation is !

2k —1Dz+1=0 [5]

The iterative process is stable when 0 < k£ < 1/a. ‘In order
to choose the “loop gain” k to get a specific transient decay
rate, the second derivative 2¢ would have to be measured
at some point on the curve.

Each time a guess in z is to be made, the derivative is
physically measured (Fig. 4a), whereas in the model (Fig.
4b) it is obtained as a quantity proportional to z. If the
surface were of higher degree than second, the derivative
would not be simply proportional to z but would be some
polynomial in . 'The model could still be made, but it would
not be of a linear system, and transients would not be geo-
metric. Nevertheless, the iteration proeess will locate the
stationary point. In ifs vicinity, transients will be geometric
because the second and lower degree terms of the Taylor
expansion of any continuous surface become the dominating
ones. For this and other reasons, exploration of the para-
bolic surface is given special attention.

The derivatives of a parabola and the partial derivatives
of a parabolic surface could be measured in the manner illus-
trated in Fig. 5. The dimensionless ratio of v to B is defined
as the perturbation P of the measurement.

The first and second derivatives are given by Egs. [6 and
7]. These relations are precise for parabolas and are ap-
proximate for higher degree curves:
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dy/dzle = (1/26)(C — 4) (6]
d%y/da®|., = (1/6%(C — 2B + A) {7]

Fig. 6 shows a two-dimensional paraboloid and a plan view
of a possible sequence of vector changes in the independent
variables x; and z, while a minimum is being sought. Each
component of a veetor change is a linear combination of the
local partial derivatives. The resulting transients are multi-
dimensional geometric progressions.

The surface being searched is given by Eq. [8], the partial
derivatives by Eqgs. [9], and the second partial derivatives by
Eqs. [10]:

Yy = az® + bxe® + e + dzs +exims + [8]

0y/éx: = 2axy + ¢ + e [9a]
0y/0xs = 2bxs + d + exy [9b]
0%y /6m® = 2a [10a]
8% /02,02, = ¢ [10b]
8% /oxy? = 2b [10¢c]

A vector flow-graph model of the iterative process is given
in Fig. 7a. The branches in this graph are capable of carry-
ing two-dimensional samples, indicated by column matrices,
and the matrix gains of the branches signify that outputs
equal premultiplied by gains. The two-dimensional flow
graph is completely analogous to the one-dimensional graph.
The feedforward branch is merely a delay with no cross-
coupling of the coordinates, and the unit feedback branch is
simply a .unit instantaneous transmission with no cross-
coupling. The first partial derivatives are formed, as indi-
cated by Eqgs. [9], from the linear combination of the con-
stants ¢ and d and of the z’s premultiplied by the matrix of
second partials.

This flow graph can be reduced straightforwardly by mak-
ing use of the rules of matrix algebra. There are as many
natural frequencies (decay rates) as there are independent
coordinates. The multidimensional loop gain in this case is
determined by choice of the matrix of k’s.

Among the more useful surface-searching methods are the
method of steepest descent, Newton’s method, and the South-
well Relaxation method. These methods can be represented
by feedback models such as those of Fig. 7. They differ
mainly in the choice of the ¥’s in the feedback matrix.

The method of steepest descent requires that vector changes
in adjustment be made in the directions of the successive local
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gradient vectors and that the magnitudes of these changes
be proportional to gradient magnitudes. Here, the matrix
of k’s is a diagonal one with equal elements on the main
diagonal. Adjustment transients crosscouple from one co-
ordinate to the other when this method is practiced.

Newton’s method is a one-step process, wherein the matrix
of ks is the inverse of the matrix of second partials. Multi-
dimensional transients die out completely in one step. A
modified Newton’s method has the same matrix of k’s, only
scaled by a factor less than unity. Transients die out
geometrically, not in one step, and are of a single time con-
stant. Successive adjustments proceed along a straight line
in multidimensional space from the initial guess to the sta-
tionary point. Crosscoupling of transients among the co-
ordinates is not present with this method. Newton’s method
is of interest mainly for analytical purposes. Physical im-
plementation in complicated situations has the disadvantage
of requiring machinery for matrix inversion. '

The Southwell method requires changes made to minimize
y with each successive adjustment. In the two-dimensional
feedback model, ky; = 1/20 and ke = 1/2b. Switches that
close alternately must be included in the model (see Fig. 7b)
to represent the one-component-of-change-at-a-time char-
acteristic of this method. Although transients are of a single
time constant, their effects crosscouple among the adjustment
coordinates.

A basic limitation on the speed of adaptation of adaptive
systems arises from statistical sample-size requirements in
the measurement of environmental characteristics. Meas-
urements of the mean square error surface are in general
noisy, and this noise propagates by way of the iterative sur-
face-searching process into the adjustment variables and
causes loss in system performance. Study of the performance
feedback processes leads directly to a relation between system
performance and its rate of adaptation.

Performance Measure—Misadjustment

Noise enters the adaptation feedback system of Fig. 4
because the input process cannot be continued indefinitely
for each measurement of mean square error (A,B,C, of Fig.
5, needed for gradient measurement). This noise has the
following effect on adaptation. The slower the adaptation,
the more precise it is; the faster the adaptation, the more
noisy (and poor) are the adjustments. )

Consider that the adaptive model has only a single adjust-
ment. A plot of mean square error vs ho for this simplest
system would be a parabola, analogous to the parabola of
Fig. 1. During each cycle of adjustment, the derivative of
y = (€ with respect to z = ho would have to be measured ac-
cording to the scheme of Fig. 5.

Noise in the system adjustment causes loss in steady-state
performance. It is useful to define a dimensionless param-
eter M, the misadjustment, as the ratio of the mean increase
in mean square error to the minimum mean square error.
It is a measure of how the system performs, on the average,
after adapting transients have died out, compared with the
fixed optimum system. With regard to the curve of Fig. 4

M= ({y) —o)/c [11]

From consideration of Eq. [2], it can be seen that ((y) — ¢),
the average increase in y, is equal to the variance in z multi-
plied by a. The variance is due to derivative measurement
noise that propagates by way of the iterative surface-
searching process.

The noise propagation path is shown in the flow graph of
Fig. 4b. Assuming that derivative measurement noises are
statistically independent from one iteration cycle to the next,
the variance in z equals the variance in derivative noise
multiplied by (%a?r), a conservative approximation to the
sum of squares of the impulses of the impulse response from
the noise injection point to the adjustment z. The time
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Fig. 7 Feedback models of two-dimensional surface-searching

constant 7 is defined so that, if 7 = 1, adaptation transients
decay by a factor (1/¢€) with each iteration cycle.

A detailed derivation of the variance in derivative meas-
urements is given in Refs. 6 and 7. The result is that

variance in derivative measurement = ac/NP  [12]

The number of forward (see Fig. 5) or backward measurements
per cycle is N, and the perturbation is P (see Fig. 5). Rela-
tion [12] is based on several assumptions: that the adjust-
ment z is in the vicinity of the minimum, that the prediction
error signal is gaussian distributed (relation [12] is quite in-
sensitive to the shape of this distribution density, however),
and that the error samples are uncorrelated. The misad-
justment can be deduced as

M = 1/8N7P [13]

If the nature of the physical process permits data repeat-
ing, i.e., if it is possible to apply the same strip of input data
to the system for both forward and backward measurements
(making sure that initial conditions are the same), the vari-
ance of the derivative measurement noise turns out not- to
depend on the amplitude of the perturbation. Making the
same assumptions as were made previously, the expression
for the variance with data repeating can be shown to be

variance in derivative measurement = 4ac/N~  [14]

In this case, N is the total number of error samples per cycle..
Accordingly, the misadjustment is

M = [1/2(N7)] [15]

The (N7) product is related to the total number of samples
seen by the system in adapting to a step transient in input '
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process statistics. Notice that a given effect could be
achieved by using many samples per cycle (large N) and few
cycles with large steps to adapt (small 7), or by using few
samples per cycle (small N) and proceeding toward the opti-
mum with small steps (large 7).

Let the number of samples that elapse in one time constant
of adaptation be called the adaptation time constant *T.
Where data repeating is not practised, I' = 2N7. Where
data are repeated, I' = N7. Expressions [13 and 15] be-
come [16 and 17], respectively:

M = 1/4TP | [16]
M = 1/2T . [17]

Multidimensional adaptation processes can be analyzed by
generalizing these methods. It can be shown that the mis-
adjustment increases with m? when Newton’s method is used
and that the misadjustment increases with m when data are
repeated for any single time-constant method.

In the cases of one-step adaptation ( = 0), or adaptation-
to-completion on a fixed body of N repeated input process
samples, it can be shown that

M = m/N [18]

Systems Applications

These prineiples may be applied in a variety of situations,
two of which are illustrated in Fig. 8. Performance feedback
is used in the system of Fig. 8a to achieve imitation of an
unknown complex system. The adaptive system learns of
the characteristics of the unknown system by imitating its
- behavior as best it can. The mean square error is a parabolic
function of the adjustments if the input is stationary and the
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output of the unknown dynamic system is stationary. A
combination of imitation and prediction enables an adaptive
system to predict the output of an unknown dynamic system
by making use of both its input and output signals. A con-
ventional predictor would use only the output signal. In
Fig. 8b, a scheme is shown which combines a low noise, low
capacity link (for performance feedback) with a high capacity, -
noisy communication link. An adaptive filter is used to
separate noise and signal. The mean square error is again a
parabolic function of the adjustments, and the rate of adapta-
tion is limited by the capacity of the low capacity link.

A fundamental form of adaptive feedback control system
is shown in Fig. 9a. Adaptation for the minimization of the
mean square of the control-system error signal allows self-
optimization in the event of change in input process statistics
and in the event of unexpected change in “plant” character-
istics. The mean-square error surface would not be pre-
cisely parabolic in this case, and there is no guarantee that
the surface would have only a single minimum. In the
vicinity of a minimum, the surface can be represented by
first- and second-degree terms in its multidimensional Taylor
expansion, and, as such, the misadjustment formulas that
were derived for parabolic surfaces should at least deseribe
“lock-on” behavior. In Fig. 9b, a different error criterion is
used. The feedback system is adapted to imitate a model.
Such systems are called “model-reference’” adaptive systems
8. '

The misadjustment gives a measure of the effectiveness of
adaptation. It gives information neither on the magnitude
of the minimum mean square error nor on the effectiveness
of the choice of adjustment variables (whether or not there
are enough of these and whether they are the best to use).
Simulation experiments have shown that the measured mis-
adjustments rarely differ from their predicted values by as
much as 20 or 309,.

The misadjustment formulas are quite accurate when ap-
plied to the situations for which they have been derived.
These formulas serve as rules of thumb when performance cri-
teria other than minimization of mean square error are used
and when the worker is nonlinear (9,10).

Speed vs Quality of Adaptation

Let the predictor of Fig. 3 have a total of five variable taps
on its tapped delay line. Suppose that data-repeating is
possible and that a misadjustment of 109} is acceptable.
The question is, how rapidly could this system adapt? The
adaptation time constant can be derived from formula [17],
generalized for m dimensions:

M = m/2T = 5/2T = 0.1 [19]
ARS JournaL



Therefore I' = 25 samples. This system could adapt quite
precisely to a major change in input process statistics after
“seeing” several time constants worth of data (75 to 100
samples). In this case, the time constant of adaptation is
five times the response time of the system itself.

If the predictor were operating ‘“on line” in a real time
process, data-repeating would not be possible. In addition,
a cost resulting from perturbing the system adjustment when
measuring gradient components would accrue to the mis-
adjustment exactly equal to the perturbation. Making use
of Eq. [16], the misadjustment is therefore

M = m?/ATP + P [20]

For any given M, the optimum choice of P (that minimizes
T’) requires that

m/ATP = P [21a]
= m/(T)1e [21b]

With five adjustments and an allowable misadjustment of
10%
0.1 = 5/(T)2 [22]

Therefore I' = 2500 samples. The data-repeating scheme is
always the more efficient. It is 100 times as efficient for this
example.

The benefits of data-repeating can often be attained in
on-line systems by using auxiliary off-line systems in con-
junction with them. Gradient measurements are made by
data-repeating in the auxiliary systems; thus, ‘“dithering”
of the adjustments of the on-line system is not required. An
example of the application of these principles to the feedback
control system of Fig. 9a is illustrated in Fig. 10. Increased
speed of adaptation is possible with the system of Fig. 10,
at the expense of more equipment. One problem is to give
the auxiliary plant the flexibility to match the actual plant.
Knowledge of the form of the actual plant can be put to good
use here. ’

The system of Fig. 10 operates in the following fashion.
The weights %,hs, . . . in the auxiliary system controller are
set equal to the like-numbered weights in the actual con-
troller. The weights %,ks, . . . in the plant model in the
auxiliary system are then adjusted to minimize the mean
square error in the difference between the actual system out-
put and that of the auxiliary system. The weights kik,, . . .
are then fixed for some time. The weights A,h,, . . . in the
auxiliary controller are varied to measure the performance
surface gradient. The decision is then made by adaptation
process no. 1 to change the adjustments in the actual con-
troller according to the gradient measurements in the auxiliary
system. Since both plant characteristics and input environ-
mental characteristics would be varying continually in many

Output

( Fig. 10 Data-repeating with auxiliary system
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control situations, both adaptation processes would be operat-
ing continually, first one, then the other, using and re-using

_ the same data.

Pattern-Recognizing Control Systems

In the adaptive systems described previously whose ad-
justable portions are completely formed on the basis of recent
past history, optimal use of performance measurements was
seen to be made with data-repeating. The formulas de-
veloped indicate that a feedback control system employing
data-repeating could adapt to a major change in input process
statistics and/or a major change in the dynamic characteris-
tics of the controlled member in about 10 times the duration
of the impulse response of the system itself and would ex-
hibit a misadjustment of only 209,. To make possible even
faster adaptation with less misadjustment, the use of pattern-
recognizing adaptive control systems is hereby proposed.
The schemes proposed are highly speculative. They have
not yet been checked, either theoretically or experimentally.

Pattern-recognizing adaptive control systems would make
use of other measurements for adaptation, in addition to the
direct performance measurements, such as environmental,
input, noise, and, where available at various points in the
system, signal measurements. All of these measurements
would be fed to pattern-recognizing filters (see Fig. 11). On-
line system adjustments would be set by combinations of the
outputs of the conventional adaptation systems and the out-
puts of the pattern-recognizing filters. The pattern-recog-
nizing adaptive systems would have the ability to use longer-
term experiences by associating current control problems with
similar ones that have been seen previously and for which
control strategies have already been worked out and learned.

Complete reliance upon the outputs of the pattern-recog-
nizing filter in the system of Fig. 11 for the setting of the
knobs of the on-line controller would produce open-loop
adaptation. Instead of this, it is proposed that adjustment
control be divided between the dictates of the pattern-
recognizing filter and the dictates of a slower conventional
closed-loop adaptation process. The ultimate objective of
adaptation in the example of Fig. 11 is the minimization of
the control-system mean square error.

For pattern-recognizing adaptive systems to be feasible,
it is essential that the pattern-recognizing filters themselves
be adaptive. To design such filters manually would be quite
difficult. Self-design would alleviate this problem. Also, it
would permit the filter to be tailor-made to the individual
control system and to remain as such in spite of possible spon-
taneous internal system changes. In vehicle control systems,
longer term experiences needed for the “training” of the
pattern-recognizing filters could be obtained during a single
flight, during many flights, or from telemetered data of pre-
vious flights of other similar vehicles.

Considerable progress has been made recently in the de-

- velopment of adaptive pattern-recognizing machines. One

such machine that uses an artificial “neuron” called Adaline
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Fig. 11 Pattem—recoghizi.ng adaptive feedback 'sy'stem
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Fig. 12 Adaline

(for adaptive linear, Ref. 11) has been developed by this
author and M. E. Hoff and is described in the next section.
Although this machine (shown in Fig. 12) has been designed
to classify binary geometric patterns, where input signals are
quantized to be either +1 or —1, a similar machine has been
used to classify ternary signals (41, 0, —1) and, in principle,
could be used on true analog signals as well.

Adaline Pattern-Classifying Machine

In Fig. 13, a block schematic of the Adaline neuron is
shown. This is actually a combinatorial logical circuit and
is a typical element in the adaptive pattern classifying cir-
cuits to be considered. This element bears some resemblance
to a biological neuron, whence the name.

The binary input signals on the individual input lines have
- values of +1 or —1, rather than the usual binary values of
"1 or 0. Within the neuron, a linear combination of the in-
put signals is formed. The weights are the gains a,a0, . . . ,
which could have both positive and negative values. - The
output signal is 41 if this weighted sum is greater than a cer-
tain threshold and —1 otherwise. The threshold level is
determined by the setting of ao, whose input is permanently
connected to a -1 source. Varying ao varies a constant
added to the linear combination of input signals.
 For fixed gain settings, each of 25 possible input com-
binations would cause either a +1 or —1 output. Thus, all
possible inputs are classified into two categories. The input-
output relationship is determined by choice of the gains ao,
... as. In the adaptive neuron, these gains are set during an
iterative learning process.

Quantizer
+ Neuron
output
-‘ -

€
measured error

. n
inputs

€n
neuron error

+

+1,-1
desired output

% Probability of Neuron error
Fig. 13 Block schematic of Adaline; error relations
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The adaptive pattern classification machine shown in Fig.
12 has been constructed for the purpose of illustrating the
principles of adaptive behavior and artificial learning. Dur-
ing a training phase, crude geometric patterns are fed to
the machine by setting the toggle switches in the 4 X 4 input
switch array. Setting another toggle switch (the reference
switch) tells the machine whether the desired output for the
particular input pattern is +1 or —1. The system learns
something from each pattern and accordingly experiences a
design change. The total experience gained in the learning
process is stored in the values of the weights ao . . . ai. The
machine can be trained on undistorted noise-free patterns by
repeating them over and over until the iterative search process
converges or until it can be trained on a sequence of noisy
patterns on a one-pass basis such that the iterative process
converges statistically. Combinations of these methods can
be accommodated simultaneously. After training, the ma-
chine can be used to classify the original patterns and noisy
or distorted versions of these patterns. Adaline can be used
to classify patterns into several categories by using a multi-
level output quantizer and by following exactly the same
adaptive procedure.

The following is a description of a simple iterative search-
ing routine. Many variations on this scheme are workable,
and some give greater ultimate flexibility. A pattern is fed
to the machine, and the reference switch is set to correspond
to the desired output. The error e (see Fig. 13) is then read
(by switching the reference switch; ‘the error voltage appears
on the meter, rather than the neuron output voltage). All
gains including the level are to be changed by the same ab-
solute magnitude, such that the error is brought to zero. This
is accomplished by changing each gain (which could be posi-
tive or negative) in the direction that will diminish the error
magnitude by 4. The 17 gains may be changed in any se-
quence, and after all changes are made, the error for the
present input pattern is zero. Switching the reference back,
the meter reads exactly the desired output. The next pat-
tern and its desired output are presented, and the error is
read. The same adjustment routine is followed, and the error
is brought to zero. If the first pattern were reapplied at
this point, the error would be small but not necessarily zero.
More patterns are inserted in like manner. Convergence is
indicated by small errors (before adaption), with small flue-.
tuations about a stable root mean square error value. This
adaptation procedure may be modified readily in order to
get slower (and smoother) adaptation by correcting only a
fraction of the error with the insertion of each pattern.

The error signal measured and used in adaption of the
neuron is the difference between the desired output and the
sum before quantization. This error is indicated by e in
Fig. 13. The actual neuron error, indicated by e, in Fig.
13, is the difference between the neuron output and the de-
sired output.

The objective of adaptation is the following. Given a
collection of input patterns and the associated desired out-
puts, find the best set of weights aq, a, . . . an to minimize the
mean square of the neuron error (e,?. Individual neuron
errors could only have the values of 4-2, 0, and — 2 with a two-
level quantizer. Minimization of (e.2?) is therefore equivalent
to minimizing the average number of neuron errors.

The simple adaption procedure described above minimizes
(e?) rather than (e,%). The measured error ¢ will be assumed
to be gaussian-distributed with zero mean. Using certain
geometric arguments, it can be shown that, under a wide
variety of conditions, (e.?) is approximately half of (e2), which
is approximately half of (e?), and minimization of (e?) is
equivalent to minimization of (e,?) and therefore to mini-
mization of the probability of neuron error. The ratio of
these mean squares has been calculated and is plotted in Fig.
13 as a function of the neuron error probability. This plot
is a good approximation even when the error probability -
density differs considerably from the gaussian.
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For any collection of input patterns and the associated
desired outputs, the measured mean square error (e2) can be
shown to be a precisely parabolic function of the gain settings,
Gg, . . . @n. Therefore, adjusting the a’s to minimize (e2) is
equivalent to searching a parabolic stochastic surface (having
as many dimensions as there are a’s) for a minimum. How
well this surface can be searched will be limited by sample
size, i.e., by the number of patterns seen in the searching
process. '

A statistical -analysis of the surface-searching process, an
analysis almost identical to that for the adaptive sampled-
data system, has been presented in Ref. 11. This theory
shows that the adaptation procedure implements the method
of steepest descent. An extremely small sample size per
iteration cycle is taken, namely one pattern. One-pattern-
at-a-time adaptation has the advantages that derivatives are
measured easily (with data-repeating accuracy) and that no
storage is required within the adaptive machinery except for
the weight values (which contain the past experiences of the
neuron in a compact and directly usable form). The close
association between mean square error and error probability
allows misadjustment to be interpreted as a percentage of
extraerror probability resulting from training on a limited
-sample size or a limited number of patterns. Using formula
[181, the theoretical misadjustment for a single neuron is
(the addition of 1 in the numerator accounts for the variable
threshold level)

= (m + 1)/N (23]

The number of input lines to the neuron is m and the number
of patterns used in training is-N.

Formula [23] has been verified experimentally by sta-
tistical generalization tests, similar to tests that psychologists
use to measure animal learning. Neurons were trained with
small numbers of patterns selected at random from a large
collection. The percentage errors in classifying the large
collection as a function of the number of training patterns
used was able to be predicted. To get a reasonable misad-
justment, say 20 or 309, formula [23] leads to a simple “rule
of thumb”: the number of patterns required to train an
adaptive classifier is equal to several times the number of in-
put lines.

In the pattern—recogmzmg adaptive control system, pat-
terns would be spacial and temporal, involving all the vari-

ables monitored by the recognition filter over significant’

episodes in time. More study will be required to determine
how rapidly such filters could adapt.

Realization of Adaptive Circuits With. Chemical
“Memistors”

The structure of the Adaline neuron and its adaptation
procedure is sufficiently simple that an electronic, fully auto-
matic neuron is being developed. To have such an adaptive
neuron, it is necessary to be able to store the gain values, ana-
log quantities that could be positive or negative, in such a
manner that these values could be changed electronically.

A new circuit element called the memistor (a resistor with
memory, Ref. 12) has been devised by this author and M. E.
‘Hoff for the realization of automatically adapted Adaline
neurons. A memistor provides a single variable gain factor.
Each neuron therefore employs a number of memistors equal
to the number of variable weights.
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The memistor consists of a conductive substrate with in-
sulated connection leads and a metallic anode, all in an elec-
trolytic plating bath. The conductance of the element is
reversibly controlled by electroplating. Like the transistor,
the memistor is a three-terminal element. The conductance
between two of the terminals is controlled by the time
integral of the current in the third, rather than by its instan-
taneous value as in the transistor. Reproducible elements
have been made which are continuously variable, which
typically vary in resistance from 100Q to 12, and which do
this in about 10 sec with several milliamperes of plating cur-
rent. Adaptation is accomplished by d.c. current, whereas
sensing the neuron loglcal structure is accomplished non-
destructively by passing a.c. currents through the array of’
memistor cells.

None of the element values or memistor characteristics is
critical, because performance feedback in the adaptation
process automatically finds the best weights in any event.
These neurons have been built and have adapted even with
some defective memistor elements.

The first working memistors were made of ordinary pencil
leads immersed in test tubes containing copper sulphate-
sulphuric acid plating baths. Present elements are made
by grinding down small {5 carbon resistors so that a flat
graphite surface is obtained with the resistor connections ex-
posed. Light coats of rhodium provide smooth substances
for plating and protect the copper lead connections. These
connections are insulated, and the substrates are sealed with
their individual copper plating baths in polystyrene cells.

. These elements are small, rugged, and noneritical in manu-

facture. Improvements are being sought (by using different
baths, different plating metals, different geometries, and
different substrate materials) in lifetime and in electrical
characteristics such as stability, relaxation, smoothness, and
speed of adaptation.

It is expected that memistors and -other components that
will appear in the future will have a substantial effect in
making possible cheap, simple, and reliable systems, both
control and logical types.
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