VStatistical Awnalysis of Amplitude-
- Quantized Sampled-Data Systems

B. WIDROW

UANTIZATION, or round-off, oc-

curs whenever physical quantities
are represented numerically. The values
of measurements may be designated by
integers corresponding to their nearest
numbers of units. Round-off errors have
values between =+1/2 unit, and can be
made small by choice of the basic unit.
It is apparent, however, that the smaller
the size of the unit, the larger will be the
numbers required to represent the same
physical quantities and the greater will
be the difficulty and expense in storing
and processing these numbers. Often, a
balance has to he struck between ac-
curacy and cconomy. In order to
establish such a balance, it is necessary
to have a means of evaluating quantita-
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tively the distortion resulting from rough
quantization. The analytical difficulty
arises from the inherent nonlinearities of
the quantization process.

Part I. Background

DEFINITION OF QUANTIZER

Tor purposes of analysis, it has been
found convenient to define the quantizer
as a nonlinear operator having the input-
output relation shown in Fig. 1(A). Its
output x’ is a single-valued function of the
input x, and has-an “average gain” of
unity.  Aninput lying somewhere within
a quantization “'hox" of width g will yield
an output corresponding to the center of
that box, i.c., the input is rounded off
to the center of the hox.

The quantizer symbol of Fig. 1(B)
is uscful in representing a rounding-ofl
process as a dynamical system clement
whose inputs and outputs are signals in
real time,  As a mathematical operator, a
guantizer may be delined as processing
continuous signals to give a stepwise con-
tinnous output, or as processing sampled
signals to give a sampled output.

The attention of most of this work will
be focused upon the basic quantizer of

Fig. 1. The analysis that develops will
be applicable to a variety of different
kinds of quantizers which can be repre-
sented in terms of this basic quantizer
and other simple linear operators. For
example, the quantizers shown in Fig. 2
are derived from the basic quantizer by
changing input and output scales and by
the addition of constants or d-c levels to
input and output. Notice that these
input-output characteristics would ap-
proach the dotted lines whose slopes are
the average gains if the quantizer box
sizes were made arbitrarily small.

Another kind of quantizer that can be
represented in terms of the basic quantizer
and some positive feedback is one having
hysteresis at each step. The input-out-
put characteristic is a staircase array of
hysteresis loops, an example of which is
shown in Fig. 3.

Two- and 3-level quantizers, which are
more commonly called clippers, appear
in ‘“‘contactor” systems. They will be
treated as ordinary quantizers whose in-
puts are confined to two and three levels
respectively.  Fig. 4 shows their input-
output characteristics and their block-
diagram symbols. Fig, 5 shows examples
of how clippers with hysteresis can be
represented as clippers with positive feed-
back.

Lvery physical quantizer is noisy to a
certain extent, which means that the
ability of a quantizer to resolve inputs
which come very close to the box edges is
limited. These box edges are actually
smeared lines rather than infinitely sharp
lines. I an input close to a box edge
is randomly rounded up or down, the
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quantizer can be represented as an ideal
(infinitely sharp) quantizer with a ran-
* dom noise added to its input.

= Quantized systems result when quan-
© tizers ure combined with dynamic ele-
ments. These systems may be open-
looped or closed-looped, sampled, con-
" tinuous, and linear or nonlinear (except
for the quantizers). In a sense, quan-
" tized systems are more general quantizers.
Several quantized feedback systems will
be examined in part III

- SAMPLING AND QUANTIZATION

A numerical description of a contin-
uous function of an independent variable
may be made by plotting the function on
~ graph paper as in Fig. 6. The function

x(}) can be approximately represented
over the range 0<¢<10 by a series of
numerical values, its quantized samples:
1,1,2,0, -1, -2, -2, —1,0,0, 1.

The plot of Fig. 6 suggests that quan-
tization is like sampling in amplitude;
Quantization is a sampling process that
acts not upon the function itself, however,
but upon its probability density distribu-
tion (DD). -

Both sampling and quantizing are
effected when signals are converted from
analog to digital. Sampling and quan-

_tizing are mathematically commutable

Fig. 1 (left). Basic quantizer
A—Input-output characteristic 5a/2
B—-Block-diagram symbol 3972

q/2

Qulput

/
/¥ (Averagey.
/ '(slvopeg =t input

inpul Output

"—-(If) ~far -

s

+q/2 -q/2

Output

Fig. 2 (right).
scale changes and
of constants

Effects of
addition

.

A—Quantizer without dead

‘,_.(1:)__.{0»-—-/
Z =
-2q - 71 q 2q input
-q/2
—Zd3qr2
(A)

..@f)

7
/ -q/2
/ ®
Average).
/ Aslope t1=2
Output

input -
> Q{3 2

/
/

2q
zone »

B—Equivalent reoresentation a7

of characteristic in A
C—CQuantizer with scale and S3@/2-q -2
.-, d-¢ level changes £
D—=Equivalent representation © 7
of characteristic in C A9

whether a signal is first sampled and then
the samples are quantized, or if the signal
is quantized and the stepwise continuous
signal is then sampled. -

Both sampling and quantizing degrade
the quality of a signal and irreversibly
diminish - knowledge of it. A recon-
structed signal has a “dynamical” com-
ponent of error which is proportional to
signal amplitude and is due to the gran-
ularity in ¢, and a ‘‘static” component of
error or a noise which is practically in-
dependent of signal amplitude and is
due to quantization granularity.

*Sampled-data systems behave very
much like continuous systems in a macro-
scopic sense. They could be analyzed
and designed as if they were conventional
continuous systems by ignoring the effects
of sampling. In order to take these effects
into account, use must be made of the
theory of sampled-data systems. Quan-
tized systems, on the other hand, behave
in a macroscopic sense very much like
systems without quantization. They too
could be analyzed and designed by ignor-
ing the effects of quantization. These
effects in turn could be reckoned with by
applying the statistical theory of quanti-
zation.
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theory of quantization which has already
been presented in some detail in refer-
ences 1 and 2. The material is given for
review and, at the same time, represents
a more advanced and simpler view of
this theory. .

Part II. Statistical Theory of
Amplitude Quantization

FIrST-ORDER PrOBABILITY DD oF
QuaNTIZER OUTPUT

Let only the probability density dis-
tribution of the variable being quantized
be considered. It will be seen that the
DD of the quantized variable may be ob-
tained by a linear sampling process on the
DD of the unquantized variable. The.
analysis that follows will be developed
for sampled signals because high-order
random processes are more easily de-
scribed in sampled form. How this
analysis applies to continuous signals
will be explained later.

If the samples of a continuous variable
x are aliindependent of each other, a first-
order probability density w.(x) com-
pletely describes the process. Its char-
acteristic function (CF) is the Fourier
transform, equation 1.

Wilu)= f-mm wo(x)e ™ dx 1)

A quantizer input variable may take on a
continuum of amplitudes, while the out-
put assumes only discrete amplitudes.
The probability density of the output
wz/(x") consists of a series of impulses
that are uniformly spaced along the
amplitude axis, each one centered in a
quantization box.

Fig. 7 shows how the output DD is
derived from that of the input. Any in-
put event (signal amplitude) occurring
within a given quantization box is “re-
ported” as being at the center of that box.
Each impulse of the quantized DD must
have an area equal to the area under
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the quantized variable being at a certain
- level is equal to the total probability of

the input being within the corresponding .

quantization box.

% The impulse distribution 'w,v(x’) has a
characteristic function W;/(ux), which is
periodic, being the Fourier transform of a
series of impulses having uniform spacing
g. The analysis techniques- developed
for the study of linear sampled-data sys-
tems will be used in the derivation of the
characteristic function Wz () of the
quantized variable.

The DD of a quantizer output w;(x’)
consists of area samples of the input
distribution density w;(x). The quanti-
zer may be thought of as an area sampler
acting upon the ‘“signal,”” the probability
density w;(x). Fig. 8 shows how w;/(x’)
may be constructed by sampling the
differences d(x+¢/2) —d(x—g/2), where
d(x) is the input distribution, the integral
of the input DD. Fig. 9 is a block-
diagram model of this process, showing
how w;(x) is first modified by a linear
‘““filter” whose transfer function is:

“wy(x'). Using an asterisk notatxon to
“indicate sampling, )
sin (gu/2) *

Wz{(u)—[Wz(u)q‘ @u/2) ] 3)

‘The difference between area sampling
and amplitude sampling is most clear in
the frequency domain, where both give
periodic transforms. The typical re-
peated section is the same as the trans-
form of the envelope multiplied by 1/q
in the case of amplitude sampling. For
area sampling, the transform of the en-
velope is multiplied by sin {(qu/2)/(qu/2),
and then repeated at a frequency ¢=
2x/q. Fig. 10 illustrates how Wz(u) is
derived from W.(u).

When the quantization frequency or
fineness ¢ =2w/q is twice as high as the
highest frequency component contained
in the shape of w:(x), the periodic sec-
tions of W/(%) do not overlap, and it is
possible to recover w,(x) from the quan-
tized distribution w,-(x’). (This can be
done by inverse transforming the ratio of
a typical section of Wi(u) divided by

Fig. 5. Saturating quantizers with hysteresis

A—Three-level clipper with hysteresis
B—Continuous-data representation of A -
C—Sampled-data rzpresentatation of A
D—Two-level clipper with hysteresis =
E—Continuous-data representation of D
F—Sampled-data representatation of D

sin (qu/2)(gu/2), and is demonstrated in
part II1.) Henceforth, this will be called
the quantizing theorem.

Consider a typical section of the
quantized CF which is :

sin (wu/$)
(wu/¢)

This typical section is a product of two
factors and could be thought of as a CF
in its own right. It is well known that
the CF of the sum of two statistically in-
dependent variables is the product of the
individual CF’s. The typical section is
identical therefore to the CF of the sum
of the quantizer input and a statistically
independent noise whose CF is
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This noise will ultimately be linked to
quantization noise which has the flat-
topped distribution density w,(n), as
shown in Fig. 11.

It is interesting to compare quantxza—
tion with the addition of an independent
random noise whose DD is wyy(n}. This
comparison is indicated in Fig. 12. The
DD of the quantizer output is a series of
impulses whose spacing is ¢. The DD
of signal plus noise is continuous. The im-
pulse DD consists of the impulse samples
of the continuous DD under all conditions.
The continuous DD can be uniquely
derived from the impulse DD (as the sin
x/x envelope) only when the quantizing
theorem is satisfied.

Itis well known that the moments of a
random variable are given by the deriva-
tives of its CF at the origin (#=0).
For example, the kth moment of x or the
average of x* is given by:

— g B Wa(w)
xk=(j)"* ——Eik— u=0

W)= )

(6)

The zero-th moment is WL(0)=1;
area under w;(x)=1.

If the quantizing theorem is satisfied,
the periodic sections of the quantized CF
do not overlap, and the derivatives of the
quantized CF at the origin are the same
as those of the typical section. Thus,
the moments of the two output signals in
Fig. 12 would be the same. Satisfaction of
the quantizing theorem insures that the
moments of a quantized signal are the

the

same as those of the sum of the unquan-
tized signal and a satistically independent
noise uniformly distributed between plus
and minus half a quantization box.

FIRST-ORDER PROBABILITY DENSITY OF
QuaNTIZATION NOISE

The investigation of the behavior of
the quantizer would be complete at this
point (knowledge of the output CF that
results for a given input CF would be
sufficient to determine the noise CF) if it
were true that quantization noise were
statistically independent of the quantizer
input. The quantization noise signal is
actually causally related to the input
signal. Since the output of a quantizer
is a single-valued function of the input, a
given input yields a definite output and,
consequently, a definite noise. The de-
termination of the noise CF and DD isa
new separate problem.

The causal tie between the input signal
and the noise can be explored only when
joint in-out distribution densities are
derived.}? In spite of the causal con-
nection between signal and noise, the DD
of the quantization noise is wy,(n), in-
dependent of the DD of the quantizer in-
put, as long as the quantizing theorem is
satisfied. Quantization noise is bounded
and under all conditions must be distrib-
uted in some fashion between plus and
minus half a box.

Quantization noise may be regarded as
the difference between an input variable
and the value of the center of the box

wyy () Fig. 11 (left). Flat-
--=1/q topped DD (A),
and CF (B)
-q/2 o q/2 n
(A)
Wey (u)
- —
b2

Fig. 12  (right).
B Yt Comparison of quan-
-2¢ -$ o ¢ v/ tization with noise
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which it falls into. The distribution of

"-quantization noises resulting from inputs

within the zero-th box may be constructed
by plotting w.(x) between —g/2<x<q/2.
The noise distribution' resulting from in-
puts within the first box may be obtained
by considering w.(x) for values g/2<x<
3g/2 recentered to the origin. Events tak-
ing place in the various boxes are exclusive
of each other. The probability of a given
noise magnitude arising is, therefore, the
sum of the probabilities of that noise aris-
ing from each box. Fig. 13 shows how
the DD of quantization noise may be con-
structed graphically from a plot of w:(x).
This technique leads to a simple analytical
derivation of the quantization noise CF.

The summing process illustrated in Fig.
13 could be achieved in the following way.
The distribution density w;(x) could be
added to itself, shifted a distance g to the
right, shifted 2¢ to the right, etc., and’
shifted ¢ to the left, 2¢ to the left, etec.
This infinite sum could then be multiplied
by a “window function” which has the
value unity over the range —q/2<x<gq/2
and zero clsewhere. The sum of the
densities is represented by the ex-
pression of equation 7:

©

Z w(x+mgq)

m=— o

(73

The transform of this sum is equal to o
times the impulse samples of 1V,(x) and
is given by:

X(1) [q |—

(t
19 x'(t)
x“)"‘—‘%—‘ X{t)+n(1)
n (1), noise whose
c‘.f. is w“‘(u)
d.d.of (X+n) d.d. of X*
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Multiplication in the probability density
domain by the window function corre-
sponds in the CF domam to convolutxon
with:

1 sin (wu/¢)
¢ (wu/s)

It follows, therefore that the CF of the

quantlzatxon noise 15 ] }
‘ u
sin -:r( ——k)
¢

W(:—z )(1“— E Wz(ktb)—u*
k=—e -n"'(——k)
. _ )
(9)

An examination of equation 9 makes
apparent the fact that when the quantiz-
ing theorem is satisfied, the sum has only
one nonzero term, which is:

sin (7wu/¢)
(wu/9)

This means that when the gquantizing
theorem is satisfied, the quantization
noise has a sin #/u CF and a DD that is
uniformly distributed between =*g/2. A
closer examination of equation 9 shows
that the quantization noise will be pre-
cisely flat-topped even when the quantiz-
ing theorem is only one half satisfied, i.e.,
when the input CF W, () is zero for Iul >¢,
rather than for [u[>¢/2. Itisinteresting
_to note that satisfaction of the quantizing
theorem allows complete recovery of an
original probability density given the
quantized probability density. Half-sat-
isfaction of the quantizing theorem allows
only moments to be recovered. At the
same time, half-satisfaction of the quan-
tizing theorem insures a flat-topped
qguantization noise DD.
It should be noted that equation 9
gives the characteristic function of the
quantization noise under all conditions.

Fig. 13. Construc-
tion of DD of quan-
tization noise
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SECOND-ORDER. PrOBABILITY DD OF
QuaNTIZER OUTPUT

If a sampled input variable is a second-
order process, the joint DD wy,,,,” (21, X2)
is required to ’describe its statistics where
x and x, aré respective first and second
samples of an adjacent sample pair.
This DD requires a 3-dimensional pres-
entation (Fig. 14) in which quantization
will be seen to give volume sampling
rather than area sampling. .

The quantization grid of Fig. 14 is
square because the quantization box size
is the same for both x; and x,. The DD of
the quantizer output wuze(x’, x2')
consists of a set of impulses at the center
of each square - whose amplitudes
(volumes) equal the volumes under
Wy (1, %) within the bounds of the
squares. Associated with the input DD
is its CF Wy, (111, 1), given by equa-
tion 10 and shown in Fig. 15.

szz;(uh u )= ffwzx-z:(xh x2)
e TIEUIT) g dyy  (10)

Inspection of Fig. 8 shows that area’
samples of the first-order DD w,(x) can
be obtained by forming a new function of
x and then taking its impulse samples.
The new function of x, given by equation
11, equals the area under w.(x) within a
range of width ¢ centered at x.

(Area over range of width g)
z+4/

T otx)dx— I
=d(x+g/2)—d(x—q/2)

This scheme can be generalized to derive
the volume samples w,,,.,(x1, x2). The

z'w,(x)d:c (11)

Fig. 14 (left). Volume sam-
pling

Fig. 15 (right). Two-dimen-
sional input CF
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first step is to form a new function of
x; and x, which equals the volume under
Wy, 2,(1, x2) Within a ¢ X ¢ square in the
x1, %2 plane whose edges are parallel to
these axes and is centered at x;, x;.

(Volume over range 6f ¢ Xg square)

z,+q/2 [f nLis 'lbn oo %1, X2)dxy —

—-q/2
2 e gy s %2)dm) dy

fzz-q/z [fZIW/’ wzx.::(xh xZ)dxl—

n—4q/2

—_ Waey ,,,(x;, xg)dx,] dx, (12)

The next step is to take its impulse sam-
ples to get w./.s(x’, x2'). From this
point on, it is best to examine the process
in the 2-dimensional CF domain. The
block diagram of Fig. 16, analogous to the
1-dimensional model of Fig. 9, is very
helpful. Fig. 16(A) shows how the rela-
tion 12 can be implemented. Notice
that orders of integration can be inter-
changed. The system of Fig. 16(B)
results from algebraic simplifications of
the cascade of Fig. 16(A).

The theory of 2-dimensional impulse
modulation can be developed by general-
ization of the usual 1-dimensional theory.
The results that bear upon the present dis-
cussion are: the CF of w,, 2y (%), x2") is
periodic along the u; and u, axes with
spacing ¢ =2w/g, being a sum of 2-dimen-
sional ‘‘typical sections.” FEach typical
section is identical to the Fourier trans-
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Fig. 16. Block diagram of volume sampling

A—Detailed process
form of the 2-dimensional- signal pre-
sented to the impulse modulator, multi-
plied by 1/¢% It follows that the typical
‘section of Wy *,z;(1t, %,) is the same as the
CF of the sum of the quantizer input sig-
nal and a statistically independent noise
having the CF.

g* sin (xu,/9) sin (wu/¢)

W,,(u;. u2)=—g_, (‘R‘ul/¢) (‘ruz/‘f’)

Equation 14 is a formal expression for
Wzn':z:'(uh u?)*

(13)

impulse modulator

B—Simplified equivalent
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Fig. 17 illustrates the manner in which
W zo'(tt1, o) is derived from Wy, .,(u,

(14)

Fig. 17 (left). For-
mation of quantized
2-dimensional CF
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Two - dimensional

flat-topped DD

shown in Fig. 18.

u3). Notice the analogy to TFig. 10 ¢
Equation 14 can he expressed in asterisk
notation, where the asterisk represents
2-dimensional impulse modulation.

Wy 22’ (13, 402)
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An examination of the CF of equation’
16 shows it to be the CF of a degenerate
second-order process, i.e., a first-crder
process.

sin (zu;/¢) sin (zt2/9)
(wu/p)  (7uz/9)

It consists of the product of independent
factors. The random process that it
describes could just as well be described
by the following 1-dimensional CF.

(1)

sin (mu/¢)

(w/$) . an
The CF of equation 16isthe Fourier trans-
form of the 2-dimensional flat-topped DD
It is apparent that the
process described consists of noise sam-
ples that are statistically independent and
distributed uniformly between =%g/2.

It is again appropriate to compare
quantization with the addition of an
independent noise. Let the noise in this
case be the same as the previous first-
order flat-topped distributed independ-
ent noise. The 2-dimensional density of
the quantizer output will be a 2-dimen-
sional array of impulses, while the 2-
dimensional probability density of the
addition of the input signal x and the
noise 7 will be continuous. The impulse
DD will be the 2-dimensional impulse
samples of the continuous DD.

If the CF of the quantizer input is
band-limited in two dimensions, and if
the grain size g is fine enough, i.e., if
Wy za(t1, u2)=0 for #,>¢/2 and/or for
us>¢/2, the sections of W,y . (1, us)
do not overlap. If this 2-dimensional
quantizing theorem is satisfied, the
2-dimensional input density is recoverable
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R
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from knowledge of the 2-dimensional out-
put impulse density. The moments of
x and all joint moments of x;, x, may be
derived from corresponding moments of x’
and xy/, x2’, even when the 2-dimensional
quantizing theorem is only half-satis-
fied. Under these conditions, all first-
order and second-order (joint) moments of
quantizer output signal are the same as if
the quantizer were a source of additive,
independent, uncorrelated flat-topped dis-
tributed noise. It should be recalled that
although quantization noise is, in many

respects, like independent _noise, it is

actually causally connected to the input
signal. Its DD will next be shown to be
independent of the signal’'s DD if the
quantizing theorem is only half-satisfied.

SeECOND-ORDER PROBABILITY DENSITY OF
QuanTIZATION NOISE

The derivation of the DD of quantiza-
tion noise when the input signal is second-
order proceeds by direct analogy to the
1-dimensional case. Following is a de-
scription of a 3-dimensional graphical
procedure for getting the noise DD from
the input DD. The joint input DD shown

in Fig. 14 is sliced along the square’

quantization grid. The slices are then
stacked and summed to give the 2-dimen-
sional noise DD. Joint input events
give joint noise events, whose probabilities
are computed by summing their prob-
abilities of occurrence within each box.
This is analogous to the first-order pro-
cedure shown in Fig. 13, and again leads
to a simple analytical derivation of the
2-dimensional characteristic function of
the quantization noise.

The result of this derivation, given by
equation 18, is seen to be a generalization
of equation 9.
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The sum of equation 18 consists of
only the single term 19 when the 2-di-
mensional quantizing theorem is only
half-satisfied.

(18)

(19)

It follows that, under these conditions,
although x; and x, are statistically con-
nected, their corresponding quantiza-

- tion, box.
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tion noise are statistically independent.
These noises are uniformly distributed
between plus and minus half a quantiza-
Plausibility of a situation
where statistically connected samples
give independent quantization noises can
be demonstrated by inspection of Fig. 6.
Small changes in x cause large frac-
tional changes in quantization noise.
Noise samples are therefore far more
erratic and show far less correlation than
signal samples.

SATISFACTION OF QUANTIZING THEOREM;
QUANTIZATION OF GAUSSIAN SIGNALS

Just as precisely band-limited signal
waveforms occur infrequently in physical
situations, precisely band-limited CF
are rare also. From a practical stand-
point, however, many signals are essen-
tially band-limited, and at the same time,
many CF’s are almost band-limited. A
few CF’s and DD’s will be examined.

A DD which is uniformly distributed
over a certain range, like that of quantiza-
tion noise, for example, has a CF of the
form (sin u/x). This CF is not band-
limited, but its amplitude decays with the
factor lul A flat-topped CF, on the other
hand, has a (sin x/x) DD. Although
this CF is precisely band-limited, it
could not be the CF of a physical process
because it calls for negative probability
density. Convolving two such CF's
gives a triangular CF which is still
precisely band-limited. Tts DD is (sin
x/x)? which is never negative, but the
moments are indeterminate.

A very interesting and important DD is
the normal or Gaussian DD of equation
20. The standard deviation is ¢, and £
is the average or d-c level,

we(x)=——=¢ (x—DY2? (20)
27o?
The corresponding CT is:
u202
~ (55 —juz
Wiu)=e ( ? ) (21)

Notice that the DD and CF amplitudes
have the same shapes. The average x
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displaces w;(x) and causes a linear phase

shift in its CF. TFig. 19 shows the Gaus-

sian DD and CF for x=0. Notice that
the Gaussian CF is not band-limited, but -
decays very sharply with the factor.
eV, o

If a signal having this DD and CF were
quantized, the sections of the quantizer
output CF would overlap, as shown in
Fig. 19(C). A typical section is of the
form: :

_(u+ng)%62 sin w(’-‘-i-n)
(, : ) _\¢ /

(++)
"\e

Fig. 19 suggests a way in which the
extent of the satisfaction of the quantiz-
ing theorem can be computed. The over-
lap on section 2, essentially due to sections
1 and 3 although actually due to the in-
finite number of sections, contributes to
the derivatives of the CF at its origin and
thereby has effect upon the moments of
the quantizer output. An analysis based
on the idea that the quantization noise is
uniformly distributed between plus and
minus half a box is somewhat in error.
The nature of this analysis error as re-
flected in the moments has been computed
and depends only upon the ratio of stand-
ard deviation to grain size.

Since the random Gaussian variable x
was chosen with zero mean, the CF of
x’ is an even function. The overlaps of
sections I and 3 cancel for all odd deriva-
tives and reinforce for all even derivatives,
All odd input and output moments are
zero and all errors in odd moments are
zero.

An expression for the contribution to
the second derivative at #=0 because of
the overlap of sections I and 3 is:

a2l T 1
20 qi<2+g‘q 2~l>
o= T

This causes a decrease in second moment.
An expression for the contribution to the
fourth derivative at u=0 because of the
overlap of sections I and 3 is:

(22)

(23)
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This causes an increase in fourth moment.
These expressions have been used to com-
pute the errors in quantizer output mo-
ments as entered in.Table I.

When the quantizing theorem is not
perfectly half-satisfied, the DD of the
quantization noise is not necessarily uni-
formly distributed (in special cases it
might be; e.g., where the input DD is it-
self uniformly distributed over the range
+g/2). If the signals and noises were
mutually independent, errors in the out-
put moments could be used directly to
derive the errors in moments of the noise.
These analysis errors are of great interest
to the systems engineer, and can be
derived from differentiation of the CF of
the quantization noise as given by equa-
tion 9. For a band-limited W,(x), the
only term of importance in the sum,
equation 9 is the one for £=0. For a
nonband-limited input CF, the overlap
from sections I and 3 corresponds to the
k=1 and —1 terms.

A general expression for the error in
second derivative at #=0 of the noise
CFis:

L) () i

An expression for the error in fourth
derivative at #=01is:

() () s

(26)

(25)

The errors in mean square and mean
fourth entered in Table I pertain to a
Gaussian input with zero mean.

When a quantizer input of arbitrary
DD has a nonzero mean, a general ex-
pression for the error in mean is:

(£)e(2)em ()
() ()

Wz(2) in expression 27 is the CF of the
input with the mean removed. Errors
in odd moments vary sinusoidally with
input d-c level and are maximum for x=
q/4.

Maximum errors in mean for a Gauss-
ian input ‘are 8.3(10)"1® ¢ for g¢=g,
2.3(10) ~2 g for =20, and 3.5(10) 2 ¢ for
g=30. Since the mean of uniformly
distributed quantization noise is zero,
these errors represent biases developed

by quantization.

When ¢g=30, the actual quantization
noise DD is a highly distorted version of
the flat-topped DD. The distortion is
evidenced by the disparity of 489 in its
mean fourth. The nature of such dis-
tortion is interesting, but generally not of
great importance in system analysis.
The mean and mean square, on the other
hand, are of crucial importance. At
worst, the mean is in error by only 3!/,%,
of a quantum level, and the mean square
is in error by only 13% of (1/12) ¢
These remarkable results suggest the pos-
sibility of simple and effective statistical
analyses for crude systems which con-
tain 2- and 3-level quantizers.

When a correlated Gaussian signal is
quantized, a question of importance is:
how does the correlation coefficient (the
ratio of the correlation or joint first
moment to the mean square) of the quan-
tizer output and the correlation coefficient
of the quantizer noise vary with that of
the input and with the ratio of standard
deviation to grain size? The 2-dimen-
sional Gaussian DD and its CF are de-
scribed by equations 28.
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The 2-dimensional CI' of the signal after
quantization is similar to the CF in Fig.
17.  Of interest are the effects of overlap
upon the partial and cross-partial deriva-
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tives at the origin, which cause errors in
an analysis based on the assertion that
quantization noise is uncorrelated. The
important CF sections are shown at. the
top of [Fig. 20. Equation 291is a formula
for the zero-th section.

sin <1r u_.) sin ( T 1’) — 02t 24-20U, Uy} UyT)
[ [ e 2 ]
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The autocorrelation of the quantizer
output is determined by the cross-pattial
derivative at the origin. It turns out
that the contributions of sections 1 and 2_
to this derivative are opposite at the

(29)

_origin and therefore cause no error in the

output autocorrelation. ~Likewise, ‘the
contributions of sections 3 and 4 cancel:
The contributions of 7 and & reinforce
and are opposite, in a sense, to those of
5 and 6. The latter four sections are-
mainly responsible for the error in the
output autocorrelation. Sections 5 and
6 are particularly important and overlap
heavily for high positive input correla-
tions, when the sections become elongated
as illustrated in Fig. 20. Sections 7 and
8 overlap heavily when input correlations
are large and negative. Overlap is in-
creased both by increase in grain size
and increase in maomtude of input corre-
lation.

The error in output autocorrelation
due to overlap has been computed and is
given very closely by the approximation:

(Errcr in output autocorrelation)

qz —(l—p)lriv—:
~7 c (30)

When the 2-dimensional quantizing
theorem is at least half-satisfied, the
quantization noise itself is uncorrelated.
The double sum, equation 18, has only a
single term. When this condition is not
met, the double sum has other terms
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Fig. 20. Constant contours of quantized CF
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which overlap with the zero, zero term,
and cause errors in the autocorrelation of
the qudrntization noise. These errors

‘comprise the correlation of the quantiza--

tion noise, since without these errors the
noise is completely uncorrelated. The
“autocorrelation of the quantization noise
. can therefore be derived from differentia-
“tion of equation 18 at the origin. ‘Such a
procedure is not actually necessary, for it
will next be shown that when the first-
. order quantizing theorem is satisfied to a
good approximation, the error in the
quantizer output correlation is equal to
the_error in the autocorrelation of the
noise itself. The output autocorrelation
is equal to the input autocorrelation plus
the correlation of the noise.

The correlation of a quantizer output
signal is given by equation 31. The
noises #; and 7, are causally related to x;
and x. respectively.

(11 )(x0+-12) = x;;'f‘ 11—1—.;:'-"!- 77361+n1n2

(31)

This assertion is proved if it can be shown
that mx; and 7:x, are zero. When the
correlation is very high, p—1 say, equa-
tion 31 becomes the same as equation 32,
which gives the mean square of the quan-
tizer output.

()t m) =224 2mx,+m? (32)

Assuming that the first-order quantizing
theorem is satisfied to a good approxima-

tion, the output mean square is essentially -

that of the input plus that of the noise.
The cross correlation 2n,x, is therefore nil.

It follows that the average 2mxis alsomil,
being even less than the former when p
is less than 1. The same argument

applies to m.x;.
proof.

This completes the

The error in the output autocorrelation
given by the relation 30 is the same as the
correlation of quantization noise. A plot
of this rclation is shown in Fig. 21. The
same curves can be used for negative as
well as positive values of . The correla-
tion of quantization noise is positive if
the input correlation is positive and nega-
tive if the input correlation is negative.
The curves are normalized, and it should

be noted that the absolute correlation of
the noise equals the noise correlation co-
efficient multiplied by ¢?/12. These
results agreé with correlations of Gauss-
ian signals derived by Bennett® from a
different point of view.

It is interesting to note that the
multidimensional quantizing theorem can

" never be satisfied by a continuous signal.
Its quantization noise’ cannot be un-
corrélated  for® arbitrarily small time
shifts. The noise autocorrelation func-
tion is more highly peaked than the input
autocorrelation function, however, mean-
ing that the noise is far more “random”
than the signal. Its power density
spectrum is broader.

It is also interesting to note that the
autocorrelation function of the quantizer
output equals the input autocorrelation
function plus that of the noise when the
first-order quantizing theorem is half-
satisfied. In this respect, the causally
connected noise adds to the signal as if it
were statistically independent of it.

Part III. Systems Applications

Two categories of systems applications
of the statistical theory of amplitude
quantization will be discussed. These are
open-loop and closed-loop applications.

The open-loop applications  are con-
cerned mainly with the making of
statistical measurements. The basic
problem is that of being able to recover
actual process statistics from quantized
measurements of the process. The re-
covery problem includes both DD’s and
moments. The closed-loop applications
include the analysis of qiiantized sam-
pled-data feedback systems, and the im-
provement of performance of quantized
systems by injection of external “dither”
signals which have the ability to insure
satisfaction of the quantizing theorem,
regardless of the nature of actual system
input signals.

SHEPPARD'S CORRECTIONS FOR
GROUPING

When the 1-dimensional quantizing
theorem is half-satisfied, quantization
noise acts like an independent noise
which is uniforinly distributed between
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+¢/2, has mean square of ¢2/12, mean
fourth of ¢*/80, and has zero odd mo-
ments. The moments that result when
such a noise is added to the quantizer
input signal x is expressed by the follow-

-ing equations:

(x+n)=%+a=%
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(x+n)t=x242% ﬁ+n27=x2+ﬁ g

1
(x+n)3=x343x2 74 3% n2+4n3=x3 ;q’i‘

(x+m)*= 544423 4G+ 4T it
—zt greit L ¢ (33)
2 80

and so on. :

These equations are based on the facts
that the average of the sum is the sum
of the averages, and that the average of
the product is the product of the averages
for statistically independent . The
moments of the unquantized DD given
by equations 34 are obtained very directly
from those of the quantized DD.

=

=X

- — 1
x2=x'2+<——(; qz>

— — 1 -—
3= g3 — g2y
x3=x +< 4q t)

K

—

- — 1 — 1

4z g4 e g2 a2 o
xi=x +< 2q X 24()9) (34‘)
and so on.

The expressions in parentheses in

equation 34 are known as Sheppard’s
corrections, first reported in 1898 by
Dr. W. F. Sheppard.* His derivation
made use of the Poisson sum formula.
It should be noted that these corrections
are quite accurate even for extremely
rough quantization, when ¢ is as big as
three standard deviations for a smoothly
distributed process.

INTERPOLATION OF FIRST-ORDER DD
FROM HISTOGRAM

When the quantizing theorem is satis-
fied to a good approximation, it is pos-
sible to recover a first-order DD either
from its histogram or its quantized im-
pulse DD. An inspection of Fig. 9 aids
in recollection of the mechanism by which
wy(x’) is formed from w.(x) and sug-
gests a way of reversing the process.
If the quantizing theorem is satisfied, the
inverse of impulse modulation is sin x/x
filtering.  "The inverse of the linear dis-
crete filtering (7% —¢=7*%?) is linear
discrete filtering via the following transfer
function.



(35)
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The inverse of integration is differentia-
tion with the transfer function (ju).

Fig. 22(A), a block diagram the in-
verse of that of Fig. 9, shows how w.(x)
can be recovered from w./(x’). The
ordering of discrete filtering and sin
x/x filtering has been reversed to give a
form which can be realized graphically
with greater facility. The remainder of
Fig. 22 demonstrates the graphical im-
plementation of this process as applied
to a Gaussian signal which has been
quantized to a granularity of ¢ = 2.
Since 99.7% of the area of the DD is
contained between =30, the histogram
contains essentially three ‘bars,” the
impulse DD has three impulses.

In Fig. 22, the original DD is recovered
fairly accurately from a very rough
histogram containing only three bars.
The same technique has been applied to a
variety of experimental histograms with
comparable success.

RECOVERY OF AUTOCORRELATION
FUNCTION FROM ROUGHLY QUANTIZED
PROCESS SAMPLES

Consider the autocorrelation function
¢22'(7) of a quantized sampled signal
illustrated by Fig. 23. When the high
order quantizing theorem is half-satis-
fied, this discrete correlation function is
the same as that of the unquantized sam-

pled signal, except for the + = 0 point.
The mean square is increased by ¢?/12
as a result of the addition of the flat-
topped uncorrelated quantization noise.
Since the autocorrelation of the quantiza-
tion noise is zero except for zero shift,
the only effect of quantization is upon
the r = 0 point. This has been demon-
strated many times by digital simulation.
Data could be deliberately rounded off
with larger and larger grain size, and the
successive autocorrelation. functions can
be computed. Until the multidimen-
sipnal quantizing theorem is violated, they
differ only in the mean-square point.
This effect is indicated in Fig. 23.

When the first-order quantizing theorem
is satisfied to a good approximation, but
the samples being quantized are so highly
correlated that the quantization noises are
correlated, the noise correlations add to
the input correlations. The points on the
autocorrelation curve showing the highest
correlation are first affected as the grain
size is increased, and this effect will be in
accord with the curves of Fig. 21 if the
quantizer input is Gaussian.

For a grain size of g=3¢, 2 Gaussian
signal can be thought of as essentially
quantized to' two levels (the quantizer
here is a no-dead-zone type). Making
use of the curve for g=3¢ in Fig. 21, it
can be shown with a small amount of
calculation that correlation of quantiza-
tion noise causes as much as a 159, change
in the correlation of the quantizer output

only if the correlation coefficient of the in-
put is as high as 509,. This means that
fairly accurate autocorrelation functions
could be obtained from 2-level signals.
In binary, each sample would be 1 bit of
datum. A similar conclusion was drawn
by Van Vleck,® who derived the autocor-
relation function of clipped Gaussian noise
with zero mean by an analytical method
similar to the one used subsequently by
Bennett.?

One-bit autocorrelation functions have
been measured very successfully by Dr.
James F. Kaiser, and his results are re-
ported in reference 6. )

A new area of application of 1-bit
statistics will no doubt be in the field of -
space communications over millions of
miles, where the real-time detection of
threshold signals will be done by digital
correlation techniques. Allowances in the
complexity of computing and recording
equipment are minimal here, and great
advantage:is to be obtained in being able
to process, with very crude and simple
digital apparatus, input signals which are
completely buried in noise. Message in-
formation will be carried by the statistics
of the transmitted signal amplitudes,
rather than by the direct amplitudes.
Detection will be based on moments of
the received signals. As we have seen,
moments may be recovered from roughly
quantized measurements.

At my suggestion, the radar echo data
from the planet Venus, originally used in
its history-making detection,” has been
deliberately rounded off to four levels and

w, (X) o-iva2 j ) Wy (X) to two levels and rerun on the data re-
= _Eblq——’ v ° duction computer at Lincoln Laboratory
Wt —eua - L w, (u) on computer at Lincoln Laboratory,
x = $r2 ¢r2 ! - Massachusetts Institute of Technology.
tz;;(;rre‘!e interpolator differentiator The radar returns were originally quan-
A) tized to 64 levels. Preliminary tests have
420 S%lown t'ha.t Fietectability was not appre-
ciably diminished in going to four levels
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and only began to show serious deteriora-
tion when signals were quantized to two
Mevels. However, with the signals quan-
tized to two levels, detection was still
very positive; with some increase in sam-
ple size this might have been even more
positive.

ANALYSIS OF QUANTIZED SAMPLED-DATA
FEEDBACK SYSTEMS

The stability of a quantized feedback
_system is unaffected by the presence of
the quantizer.

A test for stability may be made by
replacing the quantizer with a gain of
unity. If the resulting linear system is
stable, then the quantized system is stable.
The effect of quantization is to inject a
bounded noise. A bounded noise in a
stable system cannot cause an unbounded
output. Stable-amplitude limit cycles
are not precluded, however. These are
quite possible and are most common when
the quantizer is a no-dead-zone type.

The results of the quantization of
Gaussian signals indicate that the first-
order quantizing theorem would be half-
satisfied to a good approximation by any
signal having a fairly smooth DD whose
dynamic range covers at least two or three
quantization levels, and that the quantiza-
tion noise will have correlation coefficients
less than a few per cent even when the
signal has correlation coeflicients as great
as 80%. These conditions are often met
in quantizer control systems.

The output of a quantizer differs from
the input by a quantity which varies be-
tween +¢/2and —¢/2. Anexact descrip-
tion of this difference is difficult to obtain.
On the other hand, statistical methods will
allow relatively simple calculation of the
probability density distribution of this
difference, the quantization noise. The
beauty of the method arises from the fact
that alargeclass of inputs to the quantizer,
whose properties can be well defined,
yield identical quantization notse sta-
tistics. These statistics characterize the
quantization process. The quantizer out-
put is the sum of the two inputs plus a
quantization noise which is a different
time waveform but has the same statistics
as in the previous case. In this sense,
superposition applies, and the quantizer
acts like a linear device when the quantiz-
ing theorem is half-satisfied.

The nature of the quantization noise
and the way in which this noise propagates
and affects system outputs may be deter-
mined with great {facility when the
quantizing thecrem is half-satisfied. Itis
necessary to be able to determine from the
input and system characteristics the ex-
tent to which the quantizing theorem is

Fig. 24. Simple
quantized sampled-
feedback system
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satisfied by a quantizer embedded in a
feedback loop.

The effect of the quantization noise it-
self upon the satisfaction of the quantiz-
ing theorem is twofold: to both help and
hinder. It helps when it provides extra
variance and extra dynamic range to the
quantizer input signal, and it hinders
when the wideband CF of the quantizer
output is fed back to the quantizer input
and broadens its CF. If the quantization
noise were statistically independent of the
quantizer input signal, then the noise
would be guaranteed to aid in the satis-
faction of the quantizing theorem. The
characteristic functions all over the sys-
tem would be narrower and the dynamic
range of all signals would be increased.

The effects of the causal connection be-
tween signals and noise, as manifested in
the impulsive nature of a quantizer out-
put DD tends to be mollified in the course
of the feedback process. Ordinary low-
pass filtering within the feedback path
can be shown to produce an effect on
characteristic functions which is like
low-pass filtering -in the CF domain.
Also the injection of the input signal has a
low-pass filtering effect on CF’s. Often
these smoothing effects on the CF's are
adequate so that the input signal to the
quantizer has the same statistical char-
acteristics as if the quantization noise
were independent. On the other hand,
there are cases where the causality be-
tween signals and noises has an appreci-
able effect on the CF of the quantizer
input.

The approach to be taken here is the
following one. The quantizing theorem
will be assumed satistied to a good
approximation. An analysis of the noise
appearing at the quantizer output based
on this assumption will be made. Errors
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in this analysis will be calculated by test-
ing for the satisfaction of the quantizing
theorem at the quantizer input. The
test will be made by ignoring the effects
of the noiseitself. Conditions will be de-
rived where ignoring the quantization
noise will be justified. Cases where this
is not justified turn out to be rare and
will not be treated here.

In Fig. 24(A) a sampled-data unity-
feedback control system is shown. The
error signal is both sampled and quantized
and the sampling period T=In2. Fig.
24(B) follows from (A) by the usual re-
duction procedures.® The output of Fig.
24(B) is the samples of the output of Fig.
24(A). The system of Fig. 24(C) follows
from (B) when the quantizing theorem is
half-satisfied.

Various transfer functions will be
needed in the evaluation of the system
output ncise and in testing for the
satisfaction of the quantizing theorem at
the quantizer input. The discrete trans-
mission from point 4 to point D in Fig.
24(C) is:

TAD=éz_l (36)
The transmission from 4 to B is:

1
Tap=1—3 27" (37)

The transmission from point N to point D
is:

27t (38)

(SR

Twp=Tap=

The transmission from N to B is:

Twp=—_27" (39)

[

Assume that the system is excited by a
certain input and that the box size q is



sufficiently small so that the multi-
dimensional quantizing theorem is satis-
- fied. The DD of the noise component
appearing at the output will be uniformly
distributed between ==g¢/4 and will be a
first-order process. This follows from
knowledge of Typ. The noise component
in the quantizer input signal which enters
by the way of the feedback path is also
uniformly distributed between =+g/4 as
may be seen from consideration of Typ.
As long as the variance of this noise com-
ponent is small compared to the variance
" of the signal component of the quantizer
input, the effect upon the satisfaction of
the quantizing theorem of the quantiza-
tion noise itself may be ignored. The
variance of the quantization noise com-
ponent at point B is ¢?/48.

Let- the system input be Gaussian
where samples at point 4 are first-order
and have the variance ¢2. The signal
variance at point B equals ¢* multiplied
by the sum of the squares of the impulses
of the transmission T,p. This variance
1% therefore (5/4)0®.  Aslong as-the signal
variance is, say, five times as great as that
of the noise at point B, the effect of
quantization noise -upon the satisfaction
of the quantizing theorem may be safely
ignored. This occurs for ¢g<12e.

The signal component at point B is
Gaussian, has a mean square of 5/4 %
and the following power-density spec-
trum

5 1 1
$pp(s) =o? P B
4 2 2

The first-order quantizing theorem will
be satisfied to a good approximation when
¢ is as big as three standard deviations
of the signal at point B, that is; ¢=(3/2)
5¢. With this granularity, quantization
noise has a mean square which is only
139, different from that of flat-topped
distributed noise. Knowing the auto-
correlation function of the signal and
making use of equation 30 -or the graph
of Fig. 21, the correlation coefficient of
the noise for a shift of one sample time is
89%. The power density spectrum of the
noise at point A, is, therefore, to a good
approximation:

(40)

Dbonlz)= %22 {1-0.082"1—0.08z) (41)
The power spectrum of the samples of
the noise at the system output is the same
as this spectrum multiplied by one
quarter.

This simple example illustrates the
method which is usable in the analysis of
quantized feedback control systems when
inputs are Gaussian. Non-Gaussian in-
puts cause almost Gaussian signals within

systems that provide adequate integration
and smoothing in accord with the central
limit theorem. Such cases may be

- treated by the foregoing mean square and

autocorrelation techniques. A more ex-
acting analysis would require knowledge
of how CF’s propagate in linear systems.?
Testing for the satisfaction of the quantiz-
ing theorem would have to be done for the
particular CF that develops at the quan-
tizer input point.

Quantization noise has a standard
deviation of V/¢?/12 and this standard

““deviation “propagates’” from where it

arises to an output point via the square
root of the sum of the squares of the
impulse response of the transmission path.
The noise is bounded between =g¢/2;

this bound propagates via-the sum of the -

magnitudes of the impulse response of the
same . transmission path.. The -bound
and the standard deviation are-usually
easy to calculate and together give an
excellent picture of the quantization noise
DD.

LINEARIZATION OF QUANTIZED FEEDBACK
SysTEMS BY INJECTION OF EXTERNAL
DITHER

When the quantizing theorem is satis-
fied, the statistical performance of a
quantized system is predictable and may
be specified in general without regard to
the nature of the system'’s input.

It is always possibe, at least theoreti-
cally, to inject an independent external
signal to insure that the quantizing
theorem will be satisfied to a good
approximation. The external signal, or
dither, could be made to -assist the al-
ready present input signal in the satis-
faction of the quantizing theorem or could
be made to suffice alone.

Once an input component excites a
system so that the quantizing theorem
is satisfied, no other statistically inde-
pendent input component could undo
this condition because, when independ-
ent signals are added, CF’s multiply.
If the multidimensional CF of the quan-
tizer input is already band-limited, then
multiplication by another multidimen-
stonal CF yields a product which is still
band-limited (perhaps even narrower).

Some of the advantages gained by the
use of external dither are that quantizer
systemns can be made to be ‘small-
signal linear,” average values of quantiza-
tion noise can be made to be very close
to zero, quantization noises can be made
to have predictable variances, statistical
bounds which might be much smaller
than absolute bounds can be insured, and
limit cveles and the sometimes associated
mode switchings can be climinated. Some
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of the arguments against the use of

- dither are that more equipment and/or

more computing is necessary to generate
and apply dither, and that it causes
greater output noise in certain systems.
The latter objection does not always:
apply. Usually the reverse is true,

particularly-in cases where the quantizer .-~

is followed by low-pass filtering.
Cousider again the quantized sampled-
data system shown in Fig. 24. It has
been shown that the variance at the
quantizer input (point B) because of:
quantization mnoise is ¢?/48, and the
variance at point B due to the first-order
input of variance o%is 50%/4. In order .
that the grain size g equal three standard
deviations of the signal at point B, a
minimal requirement for approximate

satisfaction of the quantizing theorem,

the standard deviation of a first-order
Gaussiati input (the dither in this case) -
must be: - o

25
o=—"-9
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The™ quantization noise output has a
variance of ¢2/48 and the dither output
component has a variance of ¢2/45, giving
a net standard deviation of about 0.2q.
With no dither, the bound on the output
noise is:

gf1 -
I(-)=02
2<2> >

since the discrete impulse response from
point B to the output is z71/2, Use of
dither offers no real advantage here in
reducing systems noise.

Suppose that the system of Fig. 24(4)
is quiescent, with signals at all points zero.
A constant input whose amplitude lies be-
tween =£¢/2 will go undetected. Small
amplitude linearity could be achieved,
on the other hand, by adding a contin-
uous Gaussian signal at the system input
whose samples are a first-order process, or
by ihjecting first-order Gaussian samples
directly at the quantizer input point.
The same effect could be accomplished
by injecting dither at any point in the
system, but more output variance might
result than if the dither were injected
directlv.
quantizing theorem as indicated above
insures that the d-c bias developed across
the quantizer will be less than 3.50;
of q.

If the quantizer in the system of Fig. 24
is replaced by one having no dead zoue,
the svstem shown in Fig. 25(A) results.
The conditions for the satisfaction of the
quantizing theorem are the same and.
when it is satisfied, there is very little
differcnice between the systems.  Marked

Approximate satisfaction of the -
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differences appeaf when the quantizing
theorem is not satisfied.
When the input in Fig. 25(A) is zero,

a very interesting phenomenon takes’

place. A stable-amplitude -oscillation or
limit cycle of Fig. 25(B) develops.

It can be shown that a constant input
whose amplitude varies between =+g¢/6
would not change the nature of the limit
cycle and therefore would remain un-
detected. Although the quantizer has
no dead zone, the entire system has one.
It is smaller by a factor of three than in
the previous case.

If the svstem of Fig. 25 were dithered
by a first-order Gaussian input whose
standard deviation were greater than (2
/5/15)g, the quantizing theorem would
be approximately half-satisfied. The
quantizer would generate uniformly dis-
tributed almost wuncorrelated noise.
Limit-cycle phenomena would not take
place and the system would be linearized
for small (or large) amplitude inputs.

Dithering may be effected in varying de-
grees by the actual system input signals.
Outputs would consist of sums of irreg-
ular limit-cycle components and signal
responses. The nearer the signals come
to the half-satisfaction of the quantizing
theorem, the more irregular and the closer
to uncorrelated noise the limit-cycle com-
ponents would be.

Use of external dither is especially in-
dicated where a quantizer is followed
by a low-pass filter. A broad-band dither
signal having the required variance at the
quantizer input point insures a broad-
band ¢°/12 quantization noise. - Dither
and quantization noise variances at a
system output can be made arbitrarily
small by making the dither bandwidth
arbitrarily large. In a sampled system,

the optimum dither signal at the quantizer .

input is first-order.
Dither signals need not necessarily be
Gaussian or even random. Periodic

signals, sine waves for example, are good

possibilities. It can be shown that when
peak to peak of a sinusoidal dither equals
2g, the first-order quantizing theorem
is reasonably well half-satisfied (259 error
in meari square of the noise) and that the
per-cent correlation of the noise is, at
most, equal to that of the dither. Ina
continuous system, quantization noise
can be made arbitrarily small by increas-
ing ditheér frequency. In a sampled
system, the best frequency is usually close
to half the sampling rate. A considerable
amount of analytical work on the quan-
tization of sinusoids has been done by
Furman.??

The system of Fig. 25 with a saturating
quantizer (the solid-line characteristic)
may be analyzed by the same methods,
if the combination of dither and signal
at the quantizer input has a DD which
approximatey half-satisfies the quantiz-
ing theorem and has a dynamic range
essentially covering only two quantizing
levels. A Gaussian dither whose stand-
ard deviation equals ¢/3 and a signal
bounded between =g¢/2 would cause a
clipped output close to that which would
result if the clipper were replaced by a
gain of unity and an additive ¢%/12
quantization noise. The same is true of
a sine-wave dither of amplitude (3/4) ¢
and a signal bounded between =g¢/3.
These ideas have been verified by simula-
tion. Interesting comparisons have been
made between the point of view of this
paper and a describing function method
of analysis for systems with saturating
quantizers.’?

Summary

1. A comparison of the addition of
statistically independent first-order uni-
formly distributed noise (between =g/2)
with quantization shows that a quantized
DD consists of impulse samples of the
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signal-plus-noise DD. Quartization noise
is causally connected to the quantlzer m-

- put signal.

2. Satisfaction of the quantizing
theorem (analogous to the sampling the-

orem) insures that a DD can be recovered -

from a quantized DD. Half-satisfaction

of the quantizing theorem insures that -
. moments can be recovered and that quan--

tization noise .is uniformly distributed
between its bounds, *¢/2.

3. When a Gaussian signal is quan-
tized and the box size ¢ is as big as three
standard deviations, the quantizing the-
orem is half- satisﬁed to a good approxima-
tion.
of g in mean and 109 of ¥/ 12 in mean_
square. A signal with a correlation co-

‘efficient of 80%, will cause a quantization ‘.-

noise ‘with 30%, correlation.” A signal
with 60%, correlation will cause a. noise
with 99 correlation: . Approximate satis-
faction of the quantizing theorem will be
achieved by almost: any signal having a~
dynamic range covering as few as three
quantum levels.

4. When the quantizing theorem is
half-satisfied at a quantizer input point in
a feedback system, the quantizer may be
replaced by an additive noise source of
mean zero and mean square ¢%/12. A
test for the satisfaction of the quantizing
theorem can usually be made by ignor--
ing the effects of the quantization noise
itself.

5. An external dither signal can make
a quantized feedback system be ‘‘statisti-
cally linear” for small and large signals,
can eliminate low-frequency limit cycles,
and can eliminate the effects of hysteresis
and “dead zone.” Random and periodic
time functions make useful dither signals
and have the effect of catalysts in improv-

_ ing system performarnce, yet do not appear

appreciably in system outputs. Injec-
tion of an external dither can convert very
crude control systems containing rough
quantization, saturating ° quantization,
or even hysteresis (as in contactor sys-
tems), to beautifully linear, almost noise-
free control systems.?®
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