UANTIZATION, or round-off, takes place when-
ever physical quantities are represented numeri-
cally. A quantizer is an operator that assigns a value
to ‘a variable equal to its closest integer. Analog-to-
digital conversion consists of both sampling and
-.quantizing. » ‘
“Quantization noise is bounded between +1/2 a
quaﬁtqm unit, and can be made small by choice of
the basic\unit. The smaller the unit, however, the more
-digits are \required to represent the same physical
quantities, and the greater is the difficulty and expense
/in storing and processing these quantities. To establish
a balance between accuracy and économy, it 1s necessary.
to have a means of evaluating the distortion resulting
from rough quantization. The analysis of quantization
developed in this article is a statistical one. Although
a quantizer is a nonlinear operator to signals, it acts
linearly upon their probability distributions.

The probability density distribution of a quantizer

output signal is discrete, consisting of a series of uni-

formly separated impulses, with spacing equal to the

quantization box g. This density has a characteristic
function (Fourier transform) which is periodic with a
“frequency” ¢ = 2m/q. A comparison of quantization
with the addition of a statistically. independent noise
uniformly distributed (between plus and minus ¢/2)
shows that the quantizer output distribution -density
consists of samples of the distribution density of signal
plus noise. Satisfaction of a quantizing theorem (like
the sampling theorem for signals) assures that the sta-
tistics of a process can be recovered from statistics of
its quantized samples.

Quantization noise is causally related to the quan-
tizer input signal, yet.in many respects, it behaves as
if it were independent. When the quantizing theorem
is satisfied, quantizing noise turns out to be precisely
first-order flat-topped distributed, and is uncorrelated
with the signal. The quantization of high-order (corre-
lated) signals compares with the addition of first-order
noise (statistically independent, white). When a multi-
dimensional quantizing theorem is satisfied, quantiza-
tion noises are first-order, even though signals may be
‘highly correlated. ,

Statistical systems analyses are especially simple when
the quantizing theorem is satisfied. The first step in any
-analysis is therefore a check for the extent of the satis-

. faction of the quantizing theorem. This has been done
for the particular case of Gaussian-distributed signals,
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and the results give a general indication of how rough

-quantization can be, and yet the quantizing theorem

may be considered satisfied to a good approximation.
With a quantization box size g as large as three stand-
ard deviations, there will be only a 109, error in the
theoretical mean square of the quantization noise, and
an_input which is 809, correlated will yield a quantiza-
tion noise which is only 309, correlated (rather than
completely uncorrelated). This represents very rough
quantization, where two quantum levels cover a range

_of six standard deviations. Moments and densities can

therefore be recovered to.a good approximation when
process samples are quantized to be either positive or
negative and this has been demonstrated experimen-
tally. Satisfaction of the quantizing theorem is not a
stringent condition in most practical situations.

When - the quahtizing theorem is satisfied, the quan-
tizer may be replaced by a source of independent first-
order uncorrelated noise having zero mean and a mean
square of ¢2/12. Several examples are given to illus-
trate how this fact is used in the recovery of moments,
distribution densities, and correlation functions from
roughly quantized data. Examples are given to show
how a quantized feedback system may be analyzed.

A “linear” quan'tizer system has an output consisting
of the sum of two components. The first component is
the same as the output of the linear equivalent (iden-
tical system except that the quantizers are r_epléced by
unit gains) when excited by the given input. The second
component is described statistically as the output of
the linear equivalent, having no input signal, with the
quantizer replaced by a source of uniformly-distributed
independent first-order noise. The noise output and the
characteristics of the linear equivalent system will both
be independent of the signal and will completely char-
acterize the situation for the large class of inputs which
satisfy the quantizing theorem. ' LT

An external “dither” can frequently be added to the
input of a quantizer feedback system to improve per-
formance. The dither acts like a catalyst in insuring
satisfaction of the quantizing theorem, and is filtered

_out by the feedforward member before reaching the

output point. Sinusoidal, random Gaussian, or other
independent signals may be injected to achieve this ef-
fect irrespective of the characteristics of the actual in-
put signal. The effects of “dead zone” can be elimi-
nated, systems can be “statistically linearized,” and low-
frequency limit cycles can be elimininated. Injection of
an external dither can convert a very crude control
system, one containing rough quantization, saturating
quantization, or even hysteresis (as in contactor sys-
tems) to a beautifully linear, almost noise-free control

system.
~
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