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Abstract- Regarding the workings of the human mind, mem-
ory and pattern recognition seem to be intertwined. You generally
do not have one without the other. Taking inspiration from life
experience, a new form of computer memory has been devised.
It has been used successfully in diverse applications such as
visual aircraft identification, aircraft navigation, and human
facial recognition. Other uses are being explored. The basic idea
will have many new areas of application.

I. INTRODUCTION

A preliminary cognitive memory design described herein
is based on concepts derived from life experience, from the
literature of psychology, psychiatry, and neurobiology [1], [2],
[3], [4], [5], and from years of experience in working with
artificial neural networks and adaptive and learning systems.
Certain conjectures about human memory are key to the
central idea. The design of a practical and useful memory
system is contemplated, a memory system that may also serve
as a model for many aspects of human memory.
The preliminary cognitive memory design would be able

to store in a unified electronic memory system visual inputs
(pictures and sequences of pictures), auditory inputs (acoustic
patterns and sequences of patterns), tactile inputs, inputs from
other kinds of sensors such as radar, sonar, etc., and to retrieve
stored content as required.
The memory would not function like a computer memory

where specific data is stored in specific numbered registers
and retrieval is done by reading the contents of the specified
memory register, or done by matching key words as with a
document search. The stored sensory data would neither have
key words nor would it be located in known or specified
memory locations. Incoming sensory data would be stored at
the next available empty memory location, and indeed could
be stored redundantly at several empty locations. In any event,
the location of any specific piece of recorded data would be
unknown.

Retrieval would be initiated by a prompt signal from a
current set of sensory inputs or patterns. A search through the
memory would be made to locate stored data that correlates
with or relates to the present real-time sensory inputs. The
search would be done by a retrieval system that makes use of
autoassociative artificial neural networks [6].

Applications of cognitive memory systems to analysis of
aerial imagery, human facial images, sounds, rote-learning for
game-playing, adaptive control systems, pattern recognition,
and to other practical problems will be explored and imple-
mented.

The proposed cognitive memory architecture would be
scalable so that larger memories could store more sensory data,
but storage and retrieval time would not increase with memory
size. How this could work will be described below.

II. DESIGN OF A COGNITIVE MEMORY SYSTEM
Figure 1 shows architectural elements and structures of a

preliminary mechanistic memory system that could behave
to some extent like human memory. It would have practical
engineering value and would be useful in solving practical
problems. This mechanistic memory system is intended to
model human memory function, and its workings will be
described in human terms. The anatomical locations in the
brain where the various architectural elements and components
might be contained are mostly unknown. What is important
is that the functions of these elements and components be
performed.

Fig. 1. Cognitive Memory

The design of the cognitive memory of Figure I is based
on the following hypotheses about human memory:

1) During a lifetime, images, sounds, tactile inputs, etc. are
stored permanently, if they were of interest when the
sensory inputs were experienced. Human memory has
enough storage capacity for a long lifetime. Old record-
ings are not deleted for lack of storage space.

2) Sensory inputs concerning a single object or subject
are stored together as vectors in a single "file folder"
or "memory folder." When the contents of the folder
are retrieved, sights, sounds, tactile feel, smell, etc., are
obtained all at the same time. Sensor fusion is a memory
phenomenon. The sensory signals are not fused, but they
are simply recorded together in the same folder and
retrieved together.
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3) Thoughts, conclusions, and problem solutions are also
stored in memory, just like sensory signals.

4) The same information stored in a memory folder may
be stored redundantly in a number of separate folders.

5) There may be many folders storing different information
about the same subject, recorded on different days. Sup-
pose you have a Bernard Widrow folder containing many
different images of his face taken during a one hour
visit, with various lighting conditions, scale, perspective,
rotation, translation, with zoom-in images of his eyes,
nose and other facial details. The folder also contains
the sounds of the conversation. After many visits, there
will be many Bernard Widrow folders. During one of
the conversations, the name of his wife was mentioned.
During retrieval, the contents of that particular folder
would need to be read in order to recall the name of his
wife.

6) Retrieval of stored information results from reading the
contents of a folder when triggered by a prompt from a
set of current sensory inputs, or by a thought process.
Recalling the name of Widrow's wife would require a
prompt, such as seeing Widrow, and the need at the
end of the conversation of saying, "please give my best
regards to Ronna Lee."

7) Current sensory inputs would have very little meaning
and would be puzzling if they did not trigger the reading
of the contents of folders containing related information.
Current sensory inputs would trigger or prompt the
delivery of the contents of folders containing experience
that is related to the present input environment. For
example, listening to and understanding the speech of
another person requires access to the memory folders
storing the sounds and associated meaning of each word
and each combination of words or phrases. Without
memory and memory access, one could hear speech but
not understand it, similar to hearing a person speak an
unknown foreign language.

8) Retrieval of the contents of the sought after folder or
folders is done by association of the current sensory
input or prompt signal with the folder contents. One
would need to scan through the folders to make the
association and find the right folder or folders. This
needs to be done rapidly, using a method that allows the
size of the memory to be increased without increasing
the retrieval time.

9) When a search is prompted by current sensory inputs
and a folder containing related information is found, all
of the folder contents could provide prompt signals to
find additional related folders that were not found in the
initial search.

10) A problem-solving process could create new patterns
from sensory inputs. These new patterns could be stored
in memory and could prompt new searches.

11) Associations are made by pattern matching or vector
matching.

12) Features of patterns are portions of the patterns them-

selves, often zoomed-in portions.
13) The memory is organized in segments. Each segment

contains a finite number of folders. Each segment con-
tains its own retrieval system for searching its fold-
ers. When a search is prompted, separate but parallel
searches take place in all memory segments simulta-
neously. Thus, search time does not increase with the
number of segments or with the total size of the memory.

III. THE WORKINGS OF THE COGNITIVE MEMORY SYSTEM
OF FIGURE 1

The preliminary cognitive memory system of Figure 1 has
the capability of performing in accord with all of the above
hypotheses. Sensory inputs are brought into the system in
the lower left of the figure. These inputs could be visual,
auditory, tactile, olfactory, etc. or, in a mechanistic system,
optical, radar, sonar, etc. These inputs are made available
to a short-term buffer memory that is part of a cognitive
problem-solver, to be described below. The sensory inputs go
through a "volition switch" before being stored. This allows
only "interesting" inputs to go to permanent storage.
The memory input is a signal vector that goes to all memory

segments simultaneously. This same signal vector serves as
a prompt signal for searching memory. Separate prompt and
memory input lines are shown in the figure because there is
evidence that in human memory, these are separate circuits
[22]. In a true mechanistic system, a single line would serve for
prompting and for memory input to the folders. The memory
input vector to be stored goes from segment to segment
looking for an empty folder. The memory input vector may be
stored in more than one folder and in more than one segment
for redundancy.
The recalled memory output vector is delivered to a buffer

memory and, along with the sensory input vector, feeds data to
a cognitive problem-solver. The recalled memory output vector
may actually be the desired memory output. Or it may be used
as an important input to the problem-solver. A simple form
of reasoning can be done by a problem-solver which, at the
present time, is envisioned to be based on the classical work
of Arthur Samuel. His checker-playing program embodies a
reasoning process that plays by the rules, plays tentative moves
ahead, and makes optimized decisions in order to win the game
of checkers.
Game playing is a good model for a general reasoning

process. Samuel's checker-player dating back to the 1950's
and 1960's is still recognized as one of the finest pieces of
work done in the field of artificial intelligence [23], [24].
Computed outputs from the problem-solver can be stored

and later retrieved from memory. A memory input switch,
shown in Figure 1, selects the memory input and prompt vector
from the current sensory inputs, from computed data from
the problem-solver, or from retrieved memory outputs. The
operation of this switch is volitional.
The working of a single preliminary memory segment is

described below
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IV. DETAILS OF THE WORKING OF A SINGLE MEMORY
SEGMENT

Memory segment 1 is shown in Figure 1. The memory input
line delivers input vectors for permanent storage, looking for
empty memory folders, if available in this segment. Some of
the memory folders are large, some small, depending on the
amount of storage space needed for the given memory input.
A prompt vector from the prompt line can initiate a search

in this memory segment containing folders with stored data.
The multiplexer switch (MUX) starts in an initial state that
causes its output to pass the prompt signal through to the
autoassociative neural network, whose output is then stored in
the buffer memory.

This multilayer neural network has been trained with all
of the pattern vectors stored in all the memory folders. This
network is trained mostly off-line (perhaps at night, during
sleep, for humans [25]). One pattern vector at a time is
used as an input to the neural network, which is trained
(using the back-propagation algorithm of Werbos [26], [27]
in mechanistic systems) to produce an output pattern vector
matching the input pattern vector. The training is iterative, one
pattern at a time, obtained by repeatedly scanning the MUX
over the set of memory folders. Thousands of patterns could be
trained into the neural network to replicate themselves at the
network output. When more input pattern vectors are stored
in this segment, they are added to the set of training patterns.
The autoassociative neural network has a finite capacity to
store training pattern responses depending on the number of
neural layers, the number of neurons per layer, and the number
of adaptive weights per neuron. The capacity of this neural
network determines the number of folders whose contents
can be trained in, thus determining the size of the memory
segment. Training can be done by cyclically scanning the
MUX or, better yet, by randomly scanning the MUX.
A simple configuration for an autoassociative neural net-

work could be architected in accord with the following
example. Let the first layer have 16 neurons, the second
have 8 neurons, the third have 4 neurons, the fourth have
8 neurons, and the fifth have 16 neurons. The configuration
is like an hourglass, as sketched in Figure 1. The choke
point is the third layer. Without a choke point, it would be
possible for the network to be trained to replicate its input
at the network output, for all input patterns. With the choke
point, the information contained in the first layer input pattern
becomes compressed at the choke point. Only a finite number
of input patterns can be trained-in to replicate themselves at
the network output. This number is statistical, depending on
the nature of the input patterns. The average of this number is
the capacity of the network, and this is being determined by
computer simulation for many different configurations of the
network.
Once the autoassociative network is trained, the trained-

in patterns replicate themselves at the network output. Other
patterns not trained-in will not replicate themselves. Thus, the
trained autoassociative neural network enables the classifica-

tion of all input patterns as "seen before" or "not seen before."
Autoassociative neural networks have been simulated, and we
have observed the above-mentioned useful properties.
Once the neural network is trained, the response to a new

memory input pattern vector is almost instantaneous. When
a prompt vector is applied as an input to the trained neural
network, the output pattern response can immediately be
compared with the input pattern, and if the patterns match,
there is a hit. Therefore, a vector identical to the prompt vector
must have been stored in one of the folders and trained into
the autoassociative neural network. In other words, the prompt
vector has been seen before. MUX scanning starts, and the
contents of each folder in sequence are tested with the neural
network for a match to the prompt vector. Once a match is
found, MUX scanning stops and the entire stored contents of
the folder are read, not just the portion of the contents that
matches the prompt vector. The total contents are delivered as
the memory output vector.

Suppose that a search is under way with the current sensory
input signal being the prompt vector. The prompt vector is fed
to the autoassociative neural network, and immediately it is
known that there is presently no match between the input and
output of this network because this prompt pattern has not been
seen before. A mechanistic form of the "visual cortex" will
try for a match by creating new patterns by "electronically"
zooming in and out of the visual image, translating up and
down, etc., relative to the pattern in the field of vision. A
mechanistic form of "head and eyes" will move to get a
different perspective, different lighting, etc., all in an attempt
to create a pattern that will match itself at the neural network
output. If a match can be achieved, then it will be known that
the face being looked at is familiar. Then, the MUX begins a
scan, the appropriate memory folder is found, and information
stored in the folder can be retrieved. Because the trained neural
network responds so quickly, varying the current sensory input
vector by "head motion" and "visual cortex" action can be
done continuously and rapidly to see if a hit can be obtained.
If so, the person looked at is first recognized, and then, after
a short while, information about the person is recalled as the
contents of the relevant folder are read. If not, the person is
not recognized.
We have all had the experience of walking down the street

and coming upon a familiar face. Recognition takes place very
rapidly. But what is this person's name? That may take a
few minutes to recall, while searching for the memory folder
containing the desired information.

Suppose that Widrow is seen. The image of his face prompts
a search. Rapid variations of the sensory input are made to
try to make a hit. In the Widrow folder, there are many
images of his face, with different sizes, rotations, translations,
perspectives, lighting, and zoomed in images of his nose, eyes,
ears, facial details, etc. If any variation of the input image
causes a match at the autoassociative neural network output,
Widrow is recognized. Then, a search through the folders of
the segment is made, and information spills from the Widrow
folder, such as the sound of his name, the sound of previous
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conversations, and the name of his wife, if all of this was
originally deemed "interesting" and permanently stored in the
folder.
The proposed cognitive memory system performs pattern

recognition but differs significantly from the usual pattern
recognition systems [28], [27]. Most adaptive pattern recog-
nition systems learn to classify patterns by adapting to a
set of training patterns. Once trained, the training patterns
are discarded. When new input patterns are applied to the
trained classifier, these patterns are classified in accord with
the training experience [27]. The cognitive memory, on the
other hand, stores the training patterns (visual, auditory, etc.)
in folders and recalls the entire contents of the folder when
prompted by a new input pattern that may match only one
set of patterns in the folder. If the patterns in the folder are
identified by their meanings or classes, then the new input
pattern gains meaning or class by induction or association.
A good example is the analysis or diagnosis of mammo-

grams. Systems have been in development for the automatic
analysis of mammograms, spotting lesions that may be can-
cerous [29], [30], [31]. These systems are trained or designed
to classify mammographic X-ray images and have done this
with some success. New unknown mammogram images have
been applied to the trained system and have, in many cases,
been classified correctly.
A cognitive memory could also be applied to this problem.

Folders for thousands of patients could be established, each
containing a series of mammograms taken from a patient
over a number of years. A history of the patient giving the
age, weight, height, blood work, biopsy, the treatment given,
and the outcome would all be recorded in the folder. When
a new patient comes into the system, the new mammogram
prompts a search and, adjusting the tolerance or closeness of
the image matching, hits take place with a number of folders.
The physician then has a number of previous cases that are
similar to the present one. From this experience, a treatment
plan can be formulated.
The way the physician currently deals with this problem

may be similar to the cognitive memory approach. The physi-
cian has had years of experience in reading mammograms
and treating patients [32]. When a new problem arises, the
physician thinks of previous similar cases. What was done
and what was the outcome? The pattern recognition system
answers the question, "what do I see?" The cognitive memory
system answers the questions, "what do I see?" and "what do
I know about that?"
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