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Abstract 

A Neurointerface is a trainable filter based on neural 
networks that serves as a coupler between a human op- 
erator and a nonlinear system or plant that is to be 
controlled or directed. The purpose of the coupler is to 
ease the task of the human controller. The equations 
of the plant are assumed to be known. If the plant is 
unstable, it must first be stabilized by feedback. Using 
the plant equations, off-line automatic learning algo- 
rithms are developed for training the weights of the 
Neurointerface. If the plant is subject to disturbance, 
an adaptive disturbance canceller is used to minimize 
the effect. The Neurointerface can be adapted to be an 
inverse of the plant, so that when it is cascaded with 
the plant, the overall plant response closely approxi- 
mates the human command input. 

1 Introduction 

For many tasks, productivity, safety, and liability con- 
ditions require a considerable degree of skill from hu- 
man operators. In order to overcome lack of skill, spe- 
cial man-machine interfaces may be adopted. The ba- 
sic idea is to  change the operational space through a 
Neural Network (NN), allowing the human operator to 
interact with the process through less-specialized com- 
mands. Hence, the operator devotes his attention to 
solving a less complex problem, .directly at the task 
level. The objective is to improve the productivity ,and 
safety levels of such tasks even in the case of unskilled 
operators. 

This paper aims at showing how NNs can be applied to 
the design of man-machine interfaces for practical real- 
time problems. The term “Neurointerface” is chosen 
to emphasize the use of NNs for the solution of man- 
machine interface problems. 

The design of Neurointerfaces involves the training of 
NNs, which are incorporated in nonlinear adaptive fil- 
ters. One searches for the set of parameters (NN 
weights) that are best solutions for a predefined cost 
function (mean-square error). The Backpropagation 
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(BP) algorithm [l] is used in this work for the design 
of Neurointerfaces. 

A real man-machine interface is used here as a case 
study. The problem is to design a Neurointerface 
that facilitates the backing of a truck connected to a 
double-trailer configuration under human steering con- 
trol. The steering commands of the human driver are 
fed to the Neurointerface whose output controls the 
steering angle of the front wheels of the truck. 

2 What is a Neurointerface? 

A Neurointerface may be thought of as a form of in- 
verse of the plant to be controlled. A desired plant 
response can be realized by driving the plant with an 
inverse controller whose input consists of simple com- 
mand signals applied by a human operator. Thus, an 
unskilled operator using a Neurointerface can produce 
actions like those of an experienced operator. 

While cases might exist in which the Neurointerface 
provides only an approximation to the actions taken 
by an expert operator, the change of operational space 
made by the Neurointerface allows the human oper- 
ator to interact with the process through easier less- 
specialized actions. This is the case, for instance, in 
backing the truck and trailers. The Neurointerface may 
be considered as a black box that takes commands from 
the driver (desired direction of the trailer back part) 
and provides the necessary actions (steer the wheels) 
in order to achieve such a goal. The angle between cab 
and first trailer and the angle between first and sec- 
ond trailer contain sufficient information to obtain an 
approximate inverse modeling of the system. 

It should be noted that the driver is not eliminated in 
this work. Nguyen and Widrow (1990) [2] described a 
NN that provided full automation in backing a trailer 
truck to a loading dock and indeed, eliminating the 
need for the driver. In the present work, human action 
is essential. In fact, the driver is concerned with pro- 
viding the desired spatial trajectory, free of obstacles 
and normally the shortest one. 
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The truck-backing-up exercise is a kinematics inverse 
modeling problem. It means that the dynamic effects 
that may occur during the operation are not signifi- 
cant. The Neurointerface can also be applied to dy- 
namic inverse modeling problems. A good example of 
a dynamic system that could be controlled by a Neu- 
rointerface is a humanly-operated construction crane. 
A flexible cable does the coupling between the trolley 
and the load. Normally, movements in the trolley gen- 
erate oscillations in the load. Thus, the crane operator 
is concerned when shifting the load from one point to 
another about achieving movement free of oscillations. 
Here, the Neurointerface may be regarded as a black 
box that takes commands from the crane operator (de- 
sired trajectory of the load) and provides the necessary 
actions (actuation on each degree of freedom of the 
crane) in order to  provide a smooth load movement. 

Human control of robotic systems is another potential 
application area for the Neurointerface idea. 

The Neurointerface is designed to operate in real time. 
The training procedure is generally performed off-line, 
before the trained Neurointerface is used in the real 
system. Fig. 1 shows a cascade of a trained Neurointer- 
face driving the actual process (nonlinear plant). This 
is the basic configuration in which the Neurointerface 
is supposed to work. Feedback is provided by the hu- 
man operator sensing and observing the plant output 
and changing the control input as required to get the 
desired plant response. The relation between the plant 
output and the Neurointerface input must be simple 
however in order for the human operator to be able to 
control the plant. 

f ]  Neurointerface N;$n;arI 

Figure 1: A cascade of the trained Neurointerface and 
the plant. 

The basic topology of a Neurointerface is shown in Fig. 
2. It is a feedforward nonlinear adaptive filter consist- 
ing of a tapped delay line connected to a multi-layer 
NN. The weights WO, w1,. . . , w, are adjusted automat- 
ically by a learning process. 

3 The Truck Backer 

The kinematic equations for the motion of the truck 
and double trailers are easily derived from geometric 

Figure 2: A feedforward nonlinear adaptive filter in- 
corporating a three-layer NN. 

considerations. Regarding the schematic diagram of 
the truck and trailers shown in Fig. 3, these equations 
are 

(1) 
862 sin 62 tan 61 

E!%+- sin 62 cos 82 sin 63 

- at = v (r + -) L1' 

> ,  at L2 + L3 

where v is the backing speed of the truck and L1, L2 
and L3 are, respectively, the effective lengths of the 
truck, the first and second trailers. 

The truck backer is an interesting example. It repre- 
sents the control of a nonlinear unstable system. Our 
goal is to control nonlinear unstable systems under hu- 
man direction. We assume in this work that the plant 
to be controlled is known. The backing truck and trail- 
ers is a good example. 

The first step is to stabilize the unstable plant about an 
equilibrium point, and this can be done in many cases 
by making use of negative feedback with fixed gains. 
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Figure 3: Schematic diagram of a truck and two trail- 
ers. 

The idea is illustrated in Fig. 4. 

Plant 

I U 

I 

Figure 4: The plant state space representation, includ- 
ing stabilization feedback. 

In Fig. 4, the plant is represented in state-space form. 
The plant is a single input, single output system. The 
thin lines carry scalar signals, and the heavy lines carry 
vector signals. The box C is a linear combiner with 
fixed weights that converts the plant state variables 
into the plant output. The box K is another linear 
combiner with fixed weights that converts the state 
variables into a scalar stabilizing signal. For the truck 
backer example, the state variables are 02 and 03. The 
plant output variable to be controlled is simply 03. The 
plant input is the steering angle 01 of the front wheels 
of the truck. 

The input command to the Neurointerface controls the 
trajectory of the truck and trailers. A constant input 
causes backing along a circle of fixed radius. A sud- 
den step change of the input command causes backing 
along a circle of a different fixed radius, after a tran- 
sient takes place and dies out. A zero command input 
causes backing along a straight line, after transients die 

out. 

Steering the truck system through the Neurointerface 
is a lot like steering a conventional automobile while 
driving forward. The instantaneous angle of the steer- 
ing wheel determines the radius of curvature of the cir- 
cle that the car follows. Changing the car's steering 
angle causes an instantaneous change in curvature of 
the trajectory, but without transients. 

For the truck backer, controlling angle 03, the angle 
between the two trailers, would be sufficient to control 
the trajectory. If the angle 81 of the truck front wheels 
is controlled to achieve and maintain the correct fixed 
value of 03, the desired motion along a circle of fixed 
radius would occur, after transients die out. Thus, the 
truck backer is a Single-Input Single-Output (SISO) 
system. This would be true even if there were more 
than two trailers. 

4 Training a Neurointerface 

A block diagram illustrating the training of the Neu- 
rointerface is shown in Fig. 5. The Neurointerface is 
adapted so that the cascade of it and an exact model of 
the plant would have the same response as a chosen ref- 
erence model. The Neurointerface would develop into 
an inverse of the plant if the reference model were a 
unit gain. If there is a response delay in the plant, the 
reference model would need the same delay or more. 
The reference model could be a linear system having 
a simple two-pole response. A reference model with a 
double pole has been used with the truck backer, giving 
exponential transients with step changes in the input 
command signals. 

Reference 
Model ' 

n 1 
Training 

Noise 

OFF LINE 

Noise 

Figure 5: Off-line learning process for training the Neu- 
rointerface. 

Training the Neurointerface is done off line. A noise 
input to the Neurointerface is used in the training prc- 
cess. This noise signal is also used to drive the input of 
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the reference model. The output of the reference model 
is compared with the plant output, and the difference 
is an error signal that is to be minimized by adjust- 
ing the weights of the NN in the Neurointerface. The 
structure of the Neurointerface is shown in Fig. 2. 

In order to adapt the weights of the Neurointerface, 
an error signal at the Neurointerface output is needed. 
What is available however is the error signal at the 
output of the plant model. In order to get the appro- 
priate error signal for adapting the Neurointerface, it 
is necessary to “backpropagate” the available error sig- 
nal through the known equations of the plant model. 
The basic ideas are explained in the Prentice-Hall book 
“Adaptive Inverse Control” by Widrow and Walach [3], 
pages 480-484. The specific details of how this is done 
are given next. 

The SISO nonlinear plant of Fig. 5 which is to be 
controlled by the Neurointerface is described by the 
following discrete-time state space equations 

(2) 
T 

x k  = f ( 2 k - 1 ,  U k  - K xk--11, 

Yk = C T x k .  

Vector Xk E Rnz represents the state variables, u k  E R 
is the plant input, and Y k  is the plant output. Func- 
tion f : Rn5 x R - Rnz is assumed to be analytic and 
f ( 0 , O )  = 0. The plant is considered to be Lagrangian 
stable (bounded states). If this is not the case, it is as- 
sumed that the feedback gain K E RnK makes the plant 
Lagrangian stable in an open bounded region contain- 
ing the origins of the state space and plant input. 

The Neurointerface is described by the equation 

Signal r k  E R is the Neurointerface command input, 
and signal Uk E R, the Neurointerface output. Vector 
w E Rnw represents the weights of the feedforward NN. 
The components of the vector R k  represent the signals 
generated by the Neurointerface’s tapped delay line. 
They are connected to the feedforward NN inputs as 
shown in Fig. 2. 

During the training phase, the Neurointerface output, 
U k ,  is connected directly to the plant model input (also 
denoted by U k ) ,  and the goal is to adapt the weight 
vector w step-by-step so the mean-square error, 

defined in a time window of IC samples, is reduced. 
The signal d k  is the reference model output, and is the 
desired signal that the plant output Y k  is suppose to 
follow at each k .  The following constrained optimiza- 
tion problem reflects this idea: 

minimize .7 ( 5 )  
subject to equations 2 and 3 

for k = 7 + 1 , .  . . , K + 7,  and X I  specified. 

Using Lagrangian techniques 141, equation 5 can be rep- 
resented as an unconstrained optimization problem in 
the form, 

and the objective is to calculate the gradient so w 
can be adjusted using a small step Aw in the direction 
of - 2. This will reduce the value of the mean-square 
error defined in equation 4. The optimization variables 
are now the Lagrangian multipliers P k ,  6 k  E R and Xk E 
Rnz, the state variables x k ,  the plant input U k ,  the 
plant output y k ,  and the weight vector w. 

The gradient is given by 

In order to compute it, one must calculate the values 
of ,&, k = 7 + 1,. . . , T + IC. They are obtained by 
applying the optimality conditions, 

to equation 6. As a result, the plant model equations 
need to be computed for IC samples of the time window. 
They are: 

u k  = d R k ,  w ) ,  (9) 
x k  = f ( x k - 1 , U k  - K ’ x k - l ) ,  

Y k  = C T x k  

k = I t - 1 , .  . . ,7  + IC, and 57- specified. 

Likewise, the Lagrangian variables are also computed 
in the same time window. First, 6 k  is computed using 
the error signal e k  and the following equation: 
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Second, x k  is computed through a recursive equation 
running backwards in time: 

Finally, the values of ,&, k = 7 + 1,. . . , 7 + K are 
computed through the following equation: 

With these values, it is possible to compute the gra- 
dient using equation 7. The Lagrangian multiplier 
,& is the “error” signals referred to the output of the 
Neurointerface, needed to adapt it. 

The following algorithm summarizes the steps neces- 
sary to  compute the gradient E. 
Algorithm 1: Given Rk and d k  for k = 7 + 1 , .  . . ,7+K; 
given x 7  and w; 

compute: 

3. for k = 7 + 1 , .  . . ,7  + K, compute: 
T 8.f ( x k - 1 ,  u k  - K x k - 1 )  

auk 
p k  = ( 

4. Compute the gradient E: 
a3 dg(Rk,w) - = -  

dW P k  
k = 7 + 1  

dW 

The gradient is a moving average of the K samples 
in the window. With its value, the weight vector w can 
be updated using the equation: 

cy > 0, 
d J T  
dw ’ nw = -cy- 

where cy is a small positive number. 

Once the Neurointerface is trained, it can be used to 
control the plant. Referring to Fig. 6, the human com- 
mand input to the Neurointerface causes the plant out- 
put to respond as if the cascade of Neurointerface and 
plant were equivalent to the reference model. 

t b 

Figure 6:  The trained Neurointerface connected to the 
plant. 

5 Plant Disturbance 

An important subject is that of plant disturbance. The 
configuration of Neurointerface and plant of Fig. 1 
does not show this. In fact, if plant disturbance were 
present, it would be apparent to the human operator 
who in some cases might be able to modify the com- 
mand input in order to counteract the disturbance. 
Generally, this would not be easy for the operator to 
do because of the effects of inherent delay in the plant 
dynamic response. Some other means for dealing with 
plant disturbance without requiring action on the part 
of the human operator would be desirable. 

A method for cancelling plant disturbance without af- 
fecting the plant dynamics is taught in Chapter 8 of 
the 1998 Prentice-Hall book by Widrow and Walach 
[3]. The method can be applied to Neurointerface con- 
trol. The idea is illustrated by the block diagram of 
Fig. 7. The following is a brief explanation. A full 
description is given in the reference. 

Refer now to Fig. 7. It can be seen that once again a 
copy of the Neurointerface is used to drive the plant. 
This diagram is more complicated than that of Fig. 6 
however because it includes an adaptive disturbance 
canceller. 
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Figure 7: A Neurointerface connected to a plant with 
a disturbance canceller. 

In Fig. 7, both the plant and an exact model of the 
plant are driven by the Neurointerface output. The 
output of the plant model, which is disturbance free, 
is subtracted from the plant output. The difference 
is pure plant disturbance, referred to the plant out- 
put. The plant disturbance is fed to the box labeled 
Q (copy). This box is a SISO nonlinear adaptive filter 
that has been trained by a off line process (see Fig. 
8) to be a best least squares inverse of the plant. The 
output of Q is subtracted from the plant input, but not 
subtracted from the plant model input. It is shown in 
the Widrow, Walach reference that if the plant is linear, 
this feedback noise canceller is optimal, and that it re- 
duces the plant disturbance observed at the plant out- 
put to the lowest level physically possible in the least 
squares sense. This optimality has not been, proven yet 
for nonlinear systems, but simulation experiments have 
shown the adaptive canceller to be highly effective. In 
any event, because the driven response of the plant and 
the plant model are identical, subtracting their outputs 
to obtain the disturbance signal to drive Q and to ob- 
tain feedback results in a feedback loop with zero gain 
around it. Thus, the disturbance canceller does not 
affect the dynamic response of the plant, whether the 
plant is linear or nonlinear. The training of the box Q, 
shown in Fig. 8, uses training noise to effect a learn- 
ing process that makes the cascade of Q and the plant 
model behave as best possible in the least square sense 
like a piece of wire, i.e. a unit gain. The training 
process is identical to that used in Fig 5 to train the 
Neurointerface. Both the filter Q and the Neuroint- 
erface are configured like the nonlinear adaptive filter 
shown in Fig. 2. 

Training r 
Noise 

Q 

/ 
PROCESS 

Figure 8: Training the filter Q for use in the plant 
disturbance canceller. 

If the filter Q is an exact inverse of the plant, then the 
plant disturbance will be perfectly cancelled. This will 
never happen perfectly however, because there must 
always be at least one sample time of delay around 
the loop. Also, any delay in the plant will prevent 
Q from being a perfect inverse of the plant. In the 
linear case, if the plant is nonminimum phase, Q can 
not be a perfect inverse, but the adaptive disturbance 
canceller is nevertheless optimal. In the nonlinear case, 
optimality is plausible but yet unproven. 

6 Conclusion 

A Neurointerface is an inverse or model reference in- 
verse of a nonlinear plant to be controlled. It serves as 
a trainable interface between the plant and a human 
operator. In a strict sense, nonlinear plants do not 
have inverses. Yet, an adaptive filter based on Neural 
Networks can be trained to be a best least squares in- 
verse of a nonlinear plant. Once converged, the inverse 
or Neurointerface makes a good approximate inverse, 
even for input signals other than the training signals. 
Use of a Neurointerface makes it easy for the human 
operator to control or direct a nonlinear plant. 
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