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Abstract: This article aims at showing how neural networks can be employed in the
generation of human-machine interfaces (neurointerfaces) for practical real time applications.
In a great number of real world applications, due to technical and economic factors, full
automation is not possible. In such cases, the human presence is essential and indeed, the
system performance becomes highly dependent on human skills. Accordingly, an interface
that modifies the problem, allowing unskilled human operators to perform the same task in
a satisfactory way, becomes extremely useful. The adaptive nonlinear inverse modeling
approach is employed as the basic methodology for specification and design of
neurointerfaces. A successful application, a neurointerface that helps an operator to back up
a scaled truck model connected to single-trailer and double-trailer configurations, is
presented. Copyright © 1998 IFAC

Keywords: Neural Networks, Inverse Control, Adaptive Filters, Adaptive Control, Nonlinear

Systems.

1. INTRODUCTION

Nowadays, the human-machine interaction has become
a major concern. For many tasks, productivity, safety
and liability conditions require a considerable degree of
skills from human operators. In order to overcome the
lack of skills, special human-machine neurointerfaces
may be adopted. The basic idea is to change the
operational space through a neural network, allowing
the human operator to interact with the process through
- less-specialized commands. Accordingly, the operator
devotes his attention to solve a less complex problem,
directly at the task level. The objective is to improve
the productivity, and safety levels of such tasks even in
the case of unskilled operators.

This paper aims at showing how neural networks can
be employed in the generation of human-machine
interfaces for practical real time problems. Due to the
complexity of such problems, neural networks are
becoming a natural choice. Their abilities to reproduce
highly nonlinear behaviors are described extensively in
the literature.
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In fact, the field of neural networks is experiencing a
tremendous resurgence of activity. Successful industrial
applications and favorable comparisons with
conventional techniques are certainly the main causes
of such interest. Fast growing low cost computational
systems with considerable processing capabilities have
provided an easy and reliable environment for the
development of new training algorithms and more
advanced  topologies for  neural  network
implementations.

This article is divided in 4 (four) sections. Section 2
presents the basic ideas concerning neurointerfaces. In
Section 3, the adaptive inverse modeling approach, a
framework utilized for neurointerface design, is
described. A successful neurointerface application is
presented in section 4. The neurointerface helps an
operator to back up a scaled truck model connected to
single-trailer and double-trailer configurations.

2. THE NEUROINTERFACE

A neurointerface may be thought of as an
approximation of the system inverse model. Although
such a statement may not be obvious, in fact, an
operator develops with his experience a set of causal



rules that map standard behaviors into control actions
(cognitive model), and this is exactly what inverse
modeling does. Thus, a neurointerface tries to
reproduce the actions of an experienced operator by
using the system inverse model.

While cases might exist in which the neurointerface
provides just an approximation of those actions taken
by an expert operator, the change of operational space
made by the neurointerface, although it may not solve
the problem completely, allows the human operator to
interact with the process through less-specialized
actions. For instance, in a complex industrial process,
such as a steel plant described in Vescovi, et al. (1997),
the operators can not observe directly the main
variables of interest during operation (quality,
production level, etc.). Instead, they control the process
by reasoning about a set of related variables that they
can directly observe (pressure, speed, humidity, etc.).
The relations between these observable variables and
the main variables of interest are not known precisely.
A neurointerface applied to such a process may not be
able to completely invert the process model due to the
lack of information, and consequently may not solve
the interface problem completely. Nevertheless, the
productivity, safety and liability conditions may be far
improved with its utilization.

There are cases, however, where the neurointerface can
be fully specified. The main variables of interest are
either directly available or may be expressed as some
function of the observed variables. In addition, the
mapping between standard behavior and control actions
can also be achieved by using knowledge of the
functional relations between the main variables of
interest. This is the case, for instance, in backing a
truck and trailer to a loading platform. Although, this
constitutes a difficult task for all but the most skilled
truck drivers, a neurointerface can be fully specified
and the trailer truck operation exercise reduced to a
much less complex problem. In this case, the
neurointerface may be considered as a black box that
takes commands from the driver (desired direction of
the trailer back part) and provides the necessary actions
(steer the wheels) in order to achieve such a goal. The
truck speed and the angle between cab and trailer are
sufficient information to obtain a precise inverse
modeling of the system. We should note that the driver
was not eliminated in this problem. Nguyen and
Widrow (1990) proposed a neural network that
provided the full automation in backing a trailer truck
to a loading dock and indeed, eliminating the presence
of the driver. In the present work, the human action is
essential. In fact, the driver is concerned with providing
the desired spatial trajectory, free of obstacles and
normally the shortest one.

The truck-backing-up exercise is a kinematics inverse
modeling problem. It means that the dynamic effects
that may occur during the operation are not significant.
The neurointerface can also be applied to dynamic
inverse modeling problems. A good example of this is
the operation of a construction crane (Lamego and Rey,

1995). Since normally, a flexible cable does the
coupling between the trolley car and the load,
movements in the trolley car generate oscillations in the
load. Thus, the crane operator is concerned in shifting
the load from one point to another while achieving
movement free of oscillations. Here, the neurointerface
may be regarded as a black box that takes commands
from the crane operator (desired trajectory of the load)
and provides the necessary actions (actuation on each
degree of freedom of the crane) in order to provide a
smooth load movement.

It’s also interesting to mention the case of robot arms
because, in general, they do have inverse. For instance,
Ferreira (1984) shows how to use the inverse nonlinear
modeling to provide adaptive decoupling control for
disturbance cancellation due to gravity, variable inertia
and speed couplings (centrifuge and coriolis), in open
chain robot arms. Using the Lagrange formalism the
inverse model of an open chain robot arm is a very
complex nonlinear vector equation. In general, there are
many complaints about the complexity of this model.
However, the inverse model has a nice hidden property:
it is linear with respect to its parameters. Thus, the
parameters can be easily identified and consequently,
an inverse can fully specified. While this approach is
general, a great analytical and computational effort is
required to obtain a robot inverse model. In addition,
each new robot requires a new model. A neurointerface
applied to such a case may be able to completely invert
the robot model, and consequently reduce the modeling
effort. Here, the neurointerface may be considered as a
black box that takes commands from the operator
(desired spatial trajectory of the robot arm) and
provides the necessary actions (actuation on each
degree of freedom of the robot arm).

3. THE DESIGN OF NEUROINTERFACES USING
ADAPTIVE NONLINEAR INVERSE MODELING

The nonlinear inverse modeling approach has been
used for many years associated with linear feedback
strategies. Basically, the objective is to cancel the plant
nonlinear dynamical effects by using a nonlinear device
that can reproduce an approximated inverse of the
plant. The term “approximated” is employed to
emphasize that, in general, a nonlinear system does not
possess inverse. However, despite some pathological
cases that might eventually exist, the methods of
adaptive inverse modeling can often be applied to
obtain acceptable inverse approximations of nonlinear
systems.

The specification and design of a neurointerface use the
fact that a nonlinear plant can be approximated by a
neural network model, here represented by the function
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Variables u and y are, respectively, the plant input and
plant output vectors. w,, is the neural network weight

vector.

The neurointerface can be regarded as a neural network
approximation of the plant inverse model. It should be
noted that the conventional and intuitive method,
shown in figure 1, for adapting a linear filter to be the
inverse of a linear plant does not apply to nonlinear
cases. This is due to the fact that nonlinear systems do
not commute. Roughly speaking, the block inversion
shown in figure 1 does not work for nonlinear systems.
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Figure 1. Inverse modeling of a linear plant.

Accordingly, the first step in a neurointerface design is
to obtain a neural network model for the plant as
defined in equation (1) and then, use it to obtain a
neural approximation for the plant inverse
(neurointerface). Figure 2 shows the nonlinear system
identification procedure. The neural network uses the
current and previous values of the plant input vector
and also previous values of its output vector as its
inputs. Its output represents an approximation of the
plant output vector.

The neural model can be trained with a set of input-
output data either acquired from the real plant or
obtained from the plant mathematical model (if
available).
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Figure 2. Nonlinear system identification.

The backpropagation-through-time, Werbos (1990),
may be used to adapt the weights of the neural network
model. If the input of the neural network model does
not include any connection to plant output (a
feedforward neural network), the conventional
backpropagation algorithm, developed by Werbos
(1974) and rediscovered and popularized by Rumelhart, .
et al. (1986), may be employed.

The final step, shown in figure 3, is to train the
neurointerface to compute an approximated inverse for
the obtained plant neural model.
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Figure 3. Scheme used to adapt a neurointerface.

Like the neural model case, the neurointerface
computes a function g: RFHISHEHIM _y pm f the
form
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Variables r and u are, respectively, the neurointerface
input and output vectors and w( is the neurointerface

weight vector.

The vector r represents the ideal behavior of the plant
neural model output vector y or a subset of it. Due to
physical limitations, the ideal behavior, in most of
cases, may not be achieved. Therefore, in order to
provide a more realistic assumption concerning the
desired behavior of the output vector y, a reference
model can be adopted as shown in figure 3.

Because the plant is nonlinear, the neurointerface is
trained in the configuration it will normally work with.
The inversion shown in figure 1 is not allowed here.
Consequently, to compute the mean square error



gradient with respect to the neurointerface weights,
information concerning the plant must be available.
This is the reason why the plant is replaced by its
neural realization during the neurointerface adaptation
procedure.

The change in the neurointerface weights at each
training step is in the negative direction to the gradient
of the system error (¢, ). To find the gradient, the
chain-rule expansion for ordered derivatives is
employed
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Each of the terms in equations (4) and (5) is either a
Jacobian matrix, which may be calculated using the
dual-subroutine (Werbos, 1992) of the
backpropagation algorithm, or is a previously
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specific, the first term in equation (5) is the partial
derivative of the neurointerface’s output with respect to
its weights. This term is one of the Jacobian matrices of
the neurointerface and may be calculated with the dual
subroutine of the backpropagation algorithm. The
second part of equation (5) is a summation. The first
term of the summation is the partial derivative of the
neurointerface’s current output with respect to a
previous output. However, since the neurointerface is
externally recurrent, this previous output is also a
current input. Therefore the first term of the summation
is really just a partial derivative of the output of the
neurointerface with respect to one of its inputs. By
definition, this is a sub-matrix of the Jacobian matrix
for the network, and may be computed using the dual-
subroutine of the backpropagation algorithm. The
second term of the summation in equation (5) is the
ordered partial derivative of a previous output with
respect to the weights of the neurointerface. This term
has already been computed in a previous evaluation of
equation (5), and need not be re-computed. A similar
analysis may be performed to determine all of the terms
required to evaluate equation (4). After calculating
these terms, the weights of the neurointerface may be
adapted using the weight-update equation
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The neurointerface is designed to operate in real time
without any adaptation algorithm. This implies that its
adaptation procedure is performed offline. Figure 4
shows the basic configuration that a neurointerface is
supposed to work with. Note that there is no external
feedback in this topology. The neurointerface does not
cancel disturbances that may occur in the plant. It just
changes the operational space through a recurrent
neural network, allowing the human operator to interact
with the process through less-specialized commands.

Nonetheless, there are situations where the plant
inversion supplied by the neurointerface is not enough
to provide reliable operating conditions. Disturbance
effects may occur during the plant operation and may
lead it to risky operating regions. To overcome the
disturbance effects and provide more reliable operating
conditions to the operator, adaptive linear control
schemes may be adopted.
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Figure 4. Basic topology.

Figure 5 provides a conventional adaptive linear
control topology that can be used with a neurointerface.
In this case, the adaptive linear controller may have its
parameters adapted using the same reference model
adopted to the neurointerface training as a plant
idealization. Of course, the reference model has to be
linear and differentiable. The last restriction allows the
error gradient computation with respect to the adaptive
linear controller parameters and indeed, the adaptation
of the linear controller.
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Figure 5. Neurointerface working in closed loop.

Another possible adaptive linear control scheme is
shown in figure 6. It is the adaptive inverse control
technique described in Widrow and Wallach (1996). In
this scheme, an equivalent linear model for the
neurointerface and the nonlinear plant combined is
identified in real time. Then, using a digital copy of the
linear model, the linear controller C and the linear



disturbance canceler Q are calculated offline. The
offline process can rum much faster than the real time,
so that as the plant linear model is evaluated, Q and C
are immediately obtained.

The same procedure used in adaptive linear systems
can be employed here. The neurointerface is able to
cancel most of the nonlinear effects the plant may have
and indeed, it can be used in combination with adaptive
linear control schemes for the control of nonlinear
plants.
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Figure 6. Neurointerface combined with adaptive
inverse linear control.

4. EXPERIMENTAL RESULTS

Backing a truck and trailer to a loading platform
constitutes a difficult task for all but the most skilled
truck drivers. This section briefly presents the
experimental results of a neurointerface that reduces
the trailer truck operation exercise to a much less
complex problem. Two configurations are considered:
a scaled truck model connected to single-trailer
configuration (see figure 7) and connected to a double-
trailer configuration (see figure 8). The neurointerface
may be considered as a black box that takes commands
from the driver (desired direction of the trailer back
part) and provides the necessary actions (steer the front
wheels). For the single-trailer configuration, the desired
direction of the trailer back part is related to the angle
between cab and trailer. For the double-trailer
configuration, it is related to the angle between the first

trailer and the second one. In both implementations,
the neurointerface works in closed loop. The adaptive
linear control topology presented in section 3, figure 6
is employed here. For the single trailer configuration,
the neurointerface has, as its inputs, the truck speed, the
desired value of the angle between cab and trailer (6,)
and the previous value of the neurointerface's output
(the front wheel steering angle, 6;). Similarly, for the
double-trailer configuration, the neurointerface has as
its inputs, the truck speed, the angle 6, the desired
value of the angle between the first trailer and the
second one (6;) and the previous value of the
neurointerface's output (the front wheel steering angle,
6;). The neurointerface was designed following the
steps described in section 3. Acquired data from the
truck prototype were used to obtain the neural model
for each configuration. The obtained neural models
were used for the training of the neurointerfaces. In
both cases, only the disturbance canceler Q, an adaptive
linear combiner, is utilized. The involved dynamics are
simple and, indeed, the controller C need not be
implemented. The equivalent plant linear model is
adapted in real time.

Figure 7. Truck model connected to a single-trva‘iler
configuration.

Figur 8. Truck model connected to double-trailer
configuration.

The offline process for adaptation of Q is started at
every 500 samples, sampling periqd of 30 ms. The data
acquired in this interval (15 sec.) are used as the
training set for Q. The experimental results are shown
in figures 9 and 10. They correspond to sequences of
data acquired from the truck model moving backwards
in both configurations.

CONCLUSIONS

This article presents a new approach for generation of
human-machine interfaces through neural networks
(neurointerface) for practical real time applications.
The adaptive nonlinear inverse modeling approach is



employed as the basic methodology for specification
and design of neurointerfaces. The neurointerface is
able to cancel most of the nonlinear effects the plant
may have and, indeed, it can be used in combination
with adaptive linear control schemes for the control of
nonlinear plants. A successful application, a
neurointerface that helps an operator to back up a
scaled truck model connected to single-trailer and
double-trailer configurations, is also presented. This is
an introductory work and a great effort will be needed
to improve the neurointerface approach. However, the
general aspects covered in this paper combined with
the excellent quality of the experimental results lead to
conclude that the fully utilization of neurointerfaces for
real time applications seems to be very promising.
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Figure 9. Experimental results for the truck model
connected to a single-trailer configuration: (a)
desired behavior of 0, real behavior of 6, and

neurointerface's output (6;); (b) truck speed.
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Figure 10. Experimental results for the truck model
connected to a double-trailer configuration: (a)
desired behavior of 05, real behavior of 0; and 0,
and neurointerface's output (0;); (b) truck speed.
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