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Abstract 
At present, the control of a dynamic system (the ‘$plant”) is generally 
done by means of feedback. This  paper proposes a n  alternative approach 
that uses adaptive filtering to  achieve feedforward control f o r  both lin- 
ear and nonlinear plants. Precision is  attained because of the feedback 
incorporated in the adaptive filtering. Disturbance in the plant can be 
optimally controlled by a special circuit that obtains the disturbance at 
the plant output, filters it, and feeds it back into the plant input. The  
circuit works in such a way that the feedback does not  alter the plant dy- 
namic response. The concept of adaptive inverse control has application 
to  both linear and nonlinear, MIMO and SISO plants [I].  

Keywords: adaptive control, adaptive inverse control, MIMO control, 
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1: Introduction 

In classical analog control systems, feedback is used to attain precise control of 
the plant [2]. Likewise, discrete time control systems build on this classical material 
and use similar methods to control a plant using a digital computer [3]. However, 
we propose that those methods which are most natural for developing an analog 
controller are not the most natural for developing a digital controller. 

Here, we present a different control paradigm for discrete-time control which uses 
adaptive signal processing methods to control either linear or nonlinear, SISO or 
MIMO plants. Precision is attained, not due to output feedback, but rather due to  
the implicit feedback incorporated in the adaptive process. 

The control of plant dynamic response is treated separately, without compromise, 
from the optimal control of plant disturbance. All of the required operations are based 
on adaptive filtering techniques. Following the proposed methodology, knowledge of 
adaptive signal processing allows one to go deeply into the field of adaptive control. 

In this paper, we first discuss the adaptive elements used by the adaptive inverse 
control designer. Next, the adaptive inverse control concept is presented; an example 
and conclusions follow. 
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2: Adaptive elements 

The basis for adaptive inverse control rests firmly 011 the foundational theory of 
adaptive signal processing. Depending on the particular control problem at hand, 
either or both of the two basic categories of adaptive element may be required, that is, 
linear adaptive elements (filters) or nonlinear adaptive elements. These are described 
in the following sections. 

2.1: Linear adaptive elements 

A linear single-input single-output (SISO) filter of length n is depicted in Fig. 1. 
It consists of a tapped-delay line, a set of weights ( W O ,  U J ~ ,  . . . , w,) and a summation 
unit. The output of the filter is computed as the weighted sum of the past n+ 1 input 
samples. The filter shown is an FIR (finite impulse response) filter, which is sufficient 
for our purposes. IIR (infinite impulse resplonse) filters also exist but are more difficult 
to adapt, and the added generality is rarely useful since an appropriately long FIR 
filter can approximate any IIR filter. 
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Figure 1: Structure of a linear. single-input single-output, FIR filter. 

As described so far, the filter is static. Even so, it can still be useful for many 
purposes. Such a filter will have a fixed transfer function, that is, a fixed input-output 
relationship. It would be adequate for the purpose of controlling a linear plant zf we 
knew exactly what the transfer function of the jilter needed to be. Such information is 
unknown initially in a practical control problem, although it can be determined with 
some effort. We are therefore motivated to find an automated method of determining 
the required filter. 

By augmenting the filter of Fig. 1 with a desired out,@ and an adaptation algo- 
rithm, the difference between the actual output and desired output (the error) can 
be used by the adaptation algorithm to adapt the filter’s transfer function. In time, 
it will converge to the desired transfer function. One simple yet highly powerful 
algorithm for this task is the LMS algorithim which is discussed in reference [4]. 

While the filter shown in Fig. 1 is a SISO filter, it  is easily modified to make an 
adaptive multi-input multi-output (MIMOl) linear filter. Using a filter with “appro- 
priately large” n, any linear SISO or MIMiO function cain be modeled. 
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2.2: Nonlinear adaptive elements 

A nonlinear element analogous to the one shown in Fig. 1 exists; the only change 
is the addition of a nonlinear “sigmoid” function at the output of the device. The 
hyperbolic tangent function is very frequently employed for this purpose. 

By itself, such a nonlinear adaptive element is rarely useful, but when combined 
into networks, they form a very powerful computing methodology*. Figure 2 shows 
a schematic representation of such a network, where the dark disks represent input 
values, and the white disks represent nonlinear adaptive elements as described above. 
The adaptive element on the right is considered to be the output of the network. Such 
a network has been proven to be capable of approximating (with arbitrarily small 
error) any smooth nonlinear function, using only two layers of adaptive elements [5]. 
In our work, the final layer of adaptive elements in a network have the nonlinearity 
removed. This allows for non-restricted dynamic range. 

Figure 2: Schematic representation of a network of nonlinear adaptive elements. 

A number of adaptation algorithms exist for these networks, but by far the most 
ubiquitous is the backpropagation algorithm. An excellent discussion of this algorithm 
may be found in reference [6]. Again, MIMO nonlinear filters are easily obtained by 
appropriate extensions. 

3: The adaptive inverse control concept 

3.1: Control of linear SISO plants 

By constructing an appropriate topology of adaptive elements, precise control of a 
dynamical system can be achieved. We will first describe the adaptive inverse control 
concept as it applies to a linear SISO plant, and then extend the analysis to more 
general plants in later sections. Necessarily, we consider the plant to be stable. If it 
is unstable, it must first be stabilized by standard feedback techniques. The feedback 
need not be optimized, since any feedback that stabilizes will suffice. We also consider 
the plant to  be time invariant (or at worst, slowly time varying with respect to the 
control rate). Then, a transfer function exists for the plant and is computed as the 
z-transform of the plant’s impulse response. Similarly, there exists an inverse of this 

‘often called (artificial) neural networks, where the adaptive elements are called (artificial) 
neurons. 



transfer function and the cascade of a filter implementing the inverse transfer function 
with the plant will produce the identity function-the output of the plant will exactly 
track the input control signal. 

Clearly, this is very nearly what 'we would like for any regulator or tracking control 
problem. More generally, we might like the controlled system to have a transfer 
function conforming to some pre-determined model. Then, by preceding the plant by 
a filter whose transfer function is the product of the transfer function of the model 
and the inverse of the plant, a controller is implemented which gives the desired 
input-output relatiowhip. 

systems commute, and constructing a system as shown in Fig. 3. 
We can realize this model-reference control system b y  recalling that linear SISO 

Plmt 
output 

'3 L---* 
Figure 3: Adaptive inverse control structure for controllling a linear SISO plant. 

In this figure, the plant is preceded by a linear filter ~ C O ~ Y ,  whose weights are 
copied from the adaptive filter e. The output of 6copy is used as the input to the 
plant, and also as input to the linear filter M whose transfer function is that of the 
desired model. The output of M is then the desired output of the filter 8, and is used 
by the LMS algorithm to adapt 6. Thus, when adaptation has converged, the cascade 
of the plant followed by e will have a transfer function equal to the transfer function 
of M .  Due to the commutability of linear filters, the cascade of ecopy followed by 
the plant will have the same desired transfer function. This is the beauty of adaptive 
inverse control! 

One detail which has been glossed over thus far is that if the plant is nonminimum 
phase, then its inverse will be non-causal. In such a case', a delayed inverse can still 
be obtained. This is done by incorporating a pure delay term A into the filter M .  
This delay is not a deficiency of the adaptive inverse control method; indeed, it is 
inevitable with any controller for such a plant. 

3.2: Control of linear MIMO and nonlinear plants 

One property on which we relied to create the above model-reference controller was 
that linear SISO systems commute. Regretfully, this proplerty does not hold for either 
linear MIMO or nonlinear plants. Happily, all is not lost since inverses and delayed 
inverses do commute, even for these systems. Thus, by partitioning the problem into 
two distinct parts, the inverse part and the model-reference part, we can in the same 
way come up with a controller which will control linear MIMO and nonlinear systems. 
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Such a controller, less the model M ,  is shown in Fig. 4. It is the same as the one 
of Fig. 3 except that the pure inverse or delayed inverse is being computed as C. The 
A block represents a general modeling delay term necessary for a nonminimum phase 
plant. Additionally] the entire system would be preceded by M to give the overall 
desired transfer function. 

U Command Plant 
output * 

Figure 4: Inverse controller capable of linear and nonlinear, SlSO and MlMO control. 

One additional problem arises for nonlinear systems which has yet to  be formally 
resolved. This is that nonlinear systems in general are not one-to-one functions] and 
thus do not have inverses in the strictest sense. Consider, for example, the sinusoid 
function which is “invertible” only in regions [k7r - 7r/2, k~ + 7r/2], where k is an 
integer. That is, if y = sinz,  then z can only be uniquely determined if IC is also 
known: z = sin-’(y, I C ) .  

To solve this problem, we can consider nonlinear functions to have “local inverses,” 
and require extra side-information such as some appropriate state approximation 
to create a true inverse. For any nonlinear control problem, this appropriate side 
information will need to  be determined and used to train the inverse controller. 

3.3: Removing controller bias due to disturbance 

When disturbance is present in the plant or in the sensing apparatus] the above 
method will produce a biased controller. We see this by observing that the disturbance 
will cause a region in the input space around a desired set point to be trained to have 
a single output value. The modified scheme in Fig. 5 alleviates this problem. For 
simplicity] the model has been eliminated from this figure, but it could be easily 
added. The bias due to disturbance is removed by first making an adaptive model of 
the plant, and secondly finding the inverse of the plant model. No bias exists in the 
plant model since it is not the input but the output of the model which is perturbed; 
consequently, there will be no bias in the plant inverse. 

4: Disturbance canceling 

The systems presented so far allow for very simple yet effective design of controllers. 
However, one issue which needs to be addressed further before a fully practical con- 
troller exists is that of disturbance. We have seen that a controller can be built 
which is not biased by disturbance, but have not considered any way of rejecting the 
disturbance. 
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Command 

Figure 5: A system which i s  unbiased by disturbance. 

Classical control methods address disturbance via feedback. Using either output 
feedback or state feedback, the transfer function of the plant is changed to make 
the system stable, change the transfer function of the sys,tem in order to  meet design 
criteria, and to provide a degree of disturbaince rejection. A problem with this method 
is that all three of the design goals can compete with each other, and a tradeoff 
between them must be sought. 

The adaptive inverse control concept al.lows the designer to address these three 
issues separately and independently. Feed'back is still utsed in order to  stabilize the 
plant, but the design of the feedback is not critical so long as the plant is stable. 
Secondly, we have already seen that a model-reference inverse controller is realized 
in order to meet the specific design requirements (i.e., those of the model). All that 
remains is to control the disturbance. 

Rather than using feedback disturbance rejection, as is done in feedback control, 
adaptive inverse control uses signal proces,sing techniques to  attempt to cancel the 
disturbance completely. The basic idea is that the plant disturbance is estimated, 
filtered by a filter 0, and then added .to the plant contro:l signal+. While it is beyond 
the scope of this paper to develop all the details of the disturbance canceler here, 
the interested reader is referred to  referencle [l] where the subject is treated compre- 
hensively. Figure 6 shows the complete controller architecture, including disturbance 
canceler, for a linear SISO plant. Similar structures are used for MIMO and nonlinear 
plants. 

5 :  An illustrative example 

An example is used to illustrate the concepts presented in this paper. For this 
example, we desire to control an unstable and nonminimum-phase linear SISO plant, 
with transfer function: 

(s - 0.5) 
(s + l)(,s - 1)' 

+In a sense, this is feedback control, but notice that if there is no disturbance present, the feedback 
will be zero, and the transfer function of the plant is unaltered. 
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Figure 6: Complete controller including disturbance canceler, for a linear SlSO plant. 

The plant was stabilized by using unity feedback and a compensating network with 
transfer function: 

k ( s  + 1) 

For this experiment, IC was selected to be 24. The sampling rate was chosen to be 10 
Hz, which gives the resulting discrete-time transfer function: 

(s + 7)(s - 2 ) ’  

0.1032(2 - 1.0513)(2 + 0.8608) 
(2  - 0.9048)2(z - 0.8187) 

The impulse response for this plant is shown in Fig. 7(a). 
An adaptive inverse controller of the form shown in Fig. 3 was used, with the model 

M equal to a pure delay of 20 time samples. The delayed-inverse impulse response, 
as found by simulation, is shown in Fig. 7(b). Convolving the plant impulse response 
with the delayed-inverse impulse response, we get the impulse response in Fig. 7 ( c ) .  
While this impulse response is not perfect, the controller is still able to  accurately 
control the plant. 

The plant was also simulated with disturbance. Figure 7(d) shows the square of 
the output error for a the simulated plant. The disturbance canceler was turned on 
at  the 5,000th sample time. Dramatic improvement can be seen. 
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6: Conclusions 

Adaptive inverse control is a very simple yet highly effective way of controlling 
linear or nonlinear, SISO or MIMO plants using signal processing techniques. The 
control scheme is partitioned into smaller sub-problems which can be independently 
optimized. While a simple linear example was presented, these control structures, 
coupled with simple learning algorithms, show great promise for the control of com- 
plicated and highly nonlinear systems. Future work needs to  be done to  characterize 
system responses and to  establish the optimality of disturbance control. This is very 
much an open area for resdarch. 

7: References 

1. Bernard Widrow and Eugene Walach. Adaptive Inverse Control. Prentice-Hall, Englewood Cliffs, 
NJ ,  1995. 

2. Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic 
Systems. Addison-Wesley, Reading, MA, second edition, 1991. 

3. Gene F. Ranklin, J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems. 
Addison-Wesley, Reading, MA, second edition, 1990. 

4. Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Prentice-Hall, Englewood 

5. A. N. Kolmogorov. On the representation of continuous functions of many variables by superpo- 
sition of continuous functions of one variable and addition [in Russian]. Dokl. Akad. Nauk USSR, 

Cliffs, NJ, 1985. 

114:953-956, 1957. 

6. D. E. Rumelhart, G. E. Hinton, and R. J .  Williams. Learning internal representations by error 
propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, 
volume 1, chapter 8. The MIT Press, Cambridge, MA, 1986. 

38 


