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Abstract 

We present a new approach to  neural control of se- 
rial manipulators, baseld on the sequential nature of 
the forward kinematics equations. A neural network 
is trained to  compute the angle between two ad.jacent 
links, using the location error of the connecting joint as 
an input. This angle is then used to derive the location 
of the next joint, according to  a single link kinematic 
equation. The procedure is repeated until all the links 
angles are computed. When embedded in a closed loop 
controller, this algorithm provides smooth operation of 
a serial manipulator with any number of links. 

The neural network is trained by backpropagating 
the end-effector location error through the links equa- 
tions, in a similar way l , ~  Back Propagation Through 
Time. The training procedure does not involve known 
solutions of the inverse kinematics problem. Moreover, 
no retraining of the network is required when adding or 
removing links. Several examples demonstrate the ma- 
nipulator peformance foir three, four and six link robot 
arms. 

1 Introduction 

In a serial manipulator, the first joint is usually 
fixed, and the last joint is free and acts as the manipu- 
lator’s end-effector. To imove the end-effector to a de- 
sired point or along a desired path, the robot controller 
is required to  solve the Inverse Kinematics Problem. 
This problem involves tlhe computation of a sequence 
of links angles that will plosition the end-effector itt the 
desired location. 

The computational complexity involved with the nu- 
merical solution of the Inverse Kinematics Problem, 
and the capability of neural networks to approximate 
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arbitrary functions, attracted many researchers to ap- 
ply neural networks to  this problem [l-81. Most of these 
works, use known solutions of the inverse problem to 
generate input-output patterns for the network train- 
ing process. In all cases, the network computes all the 
angles between the links in one step, using the desired 
erid-effector location as the network input. 

These solutions disregard the sequential nature of 
the problem, and overlook the striking resemblance be- 
tureen the forward kinematics of a serial manipulator 
and the dynamics of a discrete time system. In this 
work we make use of this quality, and train a neural 
controller of a serial manipulator by using a method 
simi1a.r to Back Propagation Through Time [9]. 

In idhe next section we present some background ma- 
terial. A “one step” solution to  the Inverse Kinemat- 
ic:; Problem demonstrates how the Jacobian matrix of 
the forward kinematics can be used to  backpropagate 
the location error of the end-effector. This eliminates 
the need for known solutions in the network training 
process. The use of the Jacobian matrix is further ex- 
tended in section 3, where we present a sequential ap- 
proach to the solution of the Inverse Kinematics Prob- 
lem. Section 4 concludes the paper with suggestions 
foir future research. 

2 Esackground 
2.1 Problem Statement 

Consider the planar robot arm depicted in figure 1. 
We assume that all the links have constant and equal 
length, set for simplicity to unity length. The end- 
effecto’r location [x,, ye] is given by: 

= cosel + cos(ol + e,) + . . . (1) 
Ye = sin81 + sin(81 + 82) + (2) 

where Bk is the angle between link IC - 1 and link I C ,  
IC = 1,2 . .  .L ,  and L is the number of links. These 



equations represent the forward kinematics of the ma- 
nipulator. The  Inverse Kinematics Problem is defined 
as follows: Find a sequence of angles { 81,&, . . . B L }  
that  will position the end-effector a t  a desired point 
[ z d ,  Yd]. 

1 

Figure 1: A planar serial manipulator 

2.2 “One Step” Solution 

The  common approach to the solution of this prob- 
lem by using a neural network [l-81, is t o  calculate all 
the links angles in one step. The input to the neural 
network is the desired end-effector location (see fig- 
ure 2 ) .  The  network is usually trained by presenting 
it with input-output patterns, which are generated by 
analytical solutions of the inverse problem. 

Figure 2: Neural network configuration in a “one step” 
solution of the Inverse Kinematics Problem 

However, the network can be trained without re- 
lying on known solutions, in the following way: a 
desired end-effector location [zd, yd] is intrJduced to 
the network. The  network calculates the links angles 
{e1, Q2, . . . OL}, and those are substituted into the for- 
ward kinematics equations (1,2) to yield the actual 
end-effector location [ze, ye]. The location error 

(3) 
A T e = [zd - Ye, Yd - Ye] 

is then multiplied by the Jacobian matrix 

d F  -sin 01 - sin(61 + 6 2 )  - sin(6’1 + 6%) . . . I - =  [ dB cosel + cos(el + e,) cos(el + e,) . . . 
(4) 

The product is used to compute the required change in 
the weight matrices, according to the LMS algorithm 
1101: 
L 1  

= 2p [$ITe ( 5 )  
aeTe 

A W  = -p- a w  
This training procedure is described in figure 3. In this 
figure NN refers to the neural network, and F refers to 
the forward kinematics equations (1,2) 

XD 
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Figure 3: Training a “one step” controller, using the 
Jacobian matrix of the forward kinematics equations 

Note that any configuration change of the manipula- 
tor (such as adding or removing links) will require an 
appropriate change in the network structure (adding 
or removing output nodes). In that case, the train- 
ing procedure should be repeated, using the relevant 
Jacobian matrix. 

2.3  Simulation Results 

The performance of the “one step” controller is 
demonstrated by the following example of a 3-link 
robot arm. A neural network with 2 inputs (zd,yd) 
and 3 outputs (@1,62,83) was trained according to the 
procedure described above. The training input was a 
set of desired end-effector locations, equally spaced in 
the reachable domain of the robot arm. 

Figure 4 shows the controller performance after con- 
vergence of the network weights. In this example the 
robot base is fixed a t  the origin of the XY plane, 
and the end-effector is commanded to follow a set of 
straight lines. It seems that the neural network suc- 
ceeded to learn the inverse kinematics of the manip- 
ulator, and the end-effector does follow the straight 
lines as commanded. 

However, when looking a t  the robot arm itself (fig- 
ure 5) ,  we observe an unacceptable behavior. At the 
same time that the end-effector is smoothly tracking 
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Figure 4: End-effector trajectories (solid lines) of a 
3-link robot arm, commanded to follow straight lines 
(dotted) 

a straight line, the angles between the links (change 
abruptly. Since the neural network was trained to pro- 
vide a static mapping between points in the XY plane 
and a sequence of links angles, it does not necessarily 
guarantee smooth change of the angles when the end- 
effector moves between two close points. The controller 
can therefore switch back and forth between redundant 
solutions of the inverse kinematics problem. 

-3- ’ I 

Figure 5: 3-link robot arm following a straight line 

-3 -2 1 2 

The next section describes a new approach to the 
neural control of serial manipulators, which aims to  
solve these difficulties. 

3 Back Propagation Through Links 

3.1 Global Solution 

By defining the links angles relatively to a common 
base line (see figure a), we can describe the forward 
kinematics of a planar serial manipulator with L links 
als follows: 

where: k = 1,2 .. .L  is the joint index, [ Z k ,  ?Jk] describe 
the h a t i o n  ofjoint k, and e k  is the angle between link 
k: antd the 3: axis. 

Figure 6: A planar serial manipulator with angles de- 
fined relatively to a base line 

The set of non linear equations (6,7) is in a form 
similar to the state equations of a dynamic, discrete 
tiime system: 

Zk+t = F(zk, ‘Jk) (8) 

where the state vector is z 3 [z,ylT and the control 
variable is U = 8. We wish to find the control se- 
quence (81, &, . . .  e,} that will bring the end-effector 
[x,+:,,y,+1] to a desired point [Zd,Yd]. This is a ter- 
minal control problem, where the cost function to be 
minimized is the error in the end-effector position: 

J = eTe (9) 

and 

(10) 
A T e = [Zd - ZL+l, Yd - YL+l] 

Nguyen and Widrow [ll] and others [9, 121 have used 
am algorithm called Back Propagation Through Time 
(13PTT) to solve similar terminal control problems. 
According to this algorithm, a neural net is fed with 
z t ,  the state vector a t  index L.  The network then com- 
putes the control I&, required to move the state from 
index k to the next index L + 1. Usually, this index 
rtfers to time. In our case, the index k refers to links 
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along the robot arm. It is therefore appropriate to de- 
note the following method of robot arm control as Back  
Propagation Through L inks  (BPTL). 

The  basic element in the controller is a neural net- 
work (see figure 7) which calculates the required orien- 
tation of link t, based on the location of joint I C .  The 
angle computed by the neural network and the joint lo- 
cation are used together to calculate the location of the 
next joint, by using equations (6,7).  This procedure is 
repeated until all the angles are found. 

Figure 7: The  neural network configuration in Back 
Propagation Through Links 

Since the first joint is located a t  the origin, the pro- 
cedure is initialized by translating the robot arm to 
minus the desired point, and feeding this value as the 
first joint location. The controller then solves for the 
angles that will bring the end-effector to the origin. 
These angles are equal to the angles required to bring 
the end-effector to  the desired point, when the first 
joint is fixed at the origin. 

The  complete controller structure is depicted in fig- 
ure 8. In this figure F1 refers to the equations describ- 
ing the forward kinematics of one link (6,7). 

Figure 8: Back Propagation Through Links - controller 
structure 

The  neural network is trained by back propagating 
the location error of the end-effector, through all the 
links. As was shown in the previous section, we use 

the Jacobian matrix of one link 

to back propagate the location error through the link 
equation a t  index L .  By multiplying the location er- 
ror by the Jacobian matrix, we get the error gradient 
required to calculate the change in the weight matrix. 
The errors that were back propagated through the neu- 
ral network, are summed with the location errors of 
joint k ,  to produce the locationerror at joint k-1. This 
is the standard Back Propagation Through Time ap- 
proach to terminal control, applied here to back prop- 
agating the error through the links. 

This approach eliminates the need for retraining the 
neural network after a configuration change, since the 
network is the same for all links. However, it does 
not solve the problem of redundant solutions to the 
inverse kinematics problem. In order to do that, we 
have to provide the controller with information on the 
current geometry of the manipulator. By doing so, we 
can look at the motion of the end-effector between two 
close points, and solve for the required change in the 
geometry, instead of solving for the geometry itself. 

3.2  I n c r e m e n t a l  Solution 

Consider a small change in 8k, denoted as AQk. This 
will cause an appropriate change in 2 k + 1  and Y k + l .  

After applying small changes to all the links angles, 
the robot arm geometry is described by: 

Z k + l  + Axk+l = 
Y k + l  + AYk+l = 

X k  f A X k  + COs(6k -t A6k) 

Yk + AYk -k sin(6k -k Aok) 
(12) 
(13) 

Subtract the original one link equations (6,7) and get: 

A Z k + l  = AXk + COS(6k + A8k) - COS8k (14) 

Ayk+l = AYk + sin(6k + A6k) - sin6k (15) 

We wish to solve for the sequence of angle increments 
(AB1, AB2,. . . A ~ L }  that will change the end-effector 
location from [ z L + i ,  Y L + ~ ]  to [xL+i + AxL+i, Y L + ~  + 
A y ~ + 1 ] .  This is a similar terminal control problem to 
the one we faced in the previous section. We use a 
similar controller architecture (see figure 9), where an 
additional parameter - the current value of the link 
angle - is fed to each neural network and link equa- 
tions. The term Fa in figure 9 refers to the difference 
equations that describe the local kinematics of a single 
link (14,15). 

In order to initialize the procedure at a value differ- 
ent then zero, we set the initial location increment to 
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Figure 9: 
Links - neural network and link equations sequence 

Incremental Back Propagation Through 

1 -  

0.5- 

3 -  

-0.5- 

1 -  

-1.5- 

- 2 -  

-2.5 

- 3 -  

minus the desired change a t  the end-effector location: 

- 

In that case, the output of the final block 
[ A x L + ~ ,  A y ~ + l ]  should be zero. 

The natural way to  obtain Axd and Ayd is to put 
the controller inside a closed loop, as described in fig- 
ure 10. In this figure, B denotes a block which contains 
a sequence of a neural network and a single link dif- 
ference equations, such as described in figure 9 .  For 
simplicity, we refer in this figure to the x coordinate 
only. Note that the building blocks of this con troller 
are identical for all links. 

(figure 11). The same network, with no retraining was 
used to control a 4-link manipulator (figure 12) and 
a 6-link manipulator (figure 13). The only difference 
in the controller structure is additional NN and Fa 
biochs. 

1.5- 

1 -  

0.5 - 

0 -  

-0.5 - 

-1 - 

-1.5 - 

-?: -0:5 0 0:5 ; 1:5 2 2:5 f 
Figure 11: Incremental Back Propagation Through 
Links - 3-link robot arm 

1.5, 

- 
-2 -1.5 -1 -0.5 0 0.5 1 

- 
1.5 2 

Figure 12: Incremental Back Propagation Through 
Links - 4-link robot arm 

Figure 10: Incremental Back Propagation Through 
Links - closed loop controller structure 

4 Conclusions 

3.3 Simulation Results 

The next figures show a serial manipulator following 
straight lines. The manipulator was controlled accord- 
ing to the closed loop scheme described above. The 
neural network element of the closed loop controller 
was initially trained by using a 3-link configuration 

A new approach to kinematic control of serial ma- 
ni,pulators was introduced. This approach is based on 
the sequential nature of the forward kinematics equa- 
tions, and uses the same neural network repeatedly to 
compute only one link angle a t  a time. It is similar 
in nature to Back Propagation Through Time, where 
th'e time index there is replaced by a joint index here. 
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Figure 13: Incremental Back Propagation Through 
Links - 6-link robot arm 

The training procedure of the neural network does not 
require known solutions of the inverse kinematics prob- 
lem, and need not be repeated when adding or remov- 
ing links. 

Future work will extend the approach presented here 
to solve the general inverse kinematics problem, for 
the 4D Hartenberg-Denavit transformations. Different 
arm structures, such as a truss with no revolute joints 
could also be treated in the same way. The simple cost 
function used in this work should be augmented with 
additional terms, such as a requirement for a desired 
end-effector orientation, constraints on link angles or 
changes in angles during a unit time, and obstacles 
avoidance, including avoidance of self collision between 
far away links of the same arm. 
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