
Back Propagation Through Links:
A New Approach to Kinematic Control of Serial Manipulators

Ran Gazit*
Gravity Probe B, Hansen Labs

Stanford University
Stanford, CA 94305-4085

Abstract

We present a new approach to neural control of se-
rial manipulators, baseld on the sequential nature of
the forward kinematics equations. A neural network
is trained to compute the angle between two ad.jacent
links, using the location error of the connecting joint as
an input. This angle is then used to derive the location
of the next joint, according to a single link kinematic
equation. The procedure is repeated until all the links
angles are computed. When embedded in a closed loop
controller, this algorithm provides smooth operation of
a serial manipulator with any number of links.

The neural network is trained by backpropagating
the end-effector location error through the links equa-
tions, in a similar way l , ~ Back Propagation Through
Time. The training procedure does not involve known
solutions of the inverse kinematics problem. Moreover,
no retraining of the network is required when adding or
removing links. Several examples demonstrate the ma-
nipulator peformance foir three, four and six link robot
arms.

1 Introduction

In a serial manipulator, the first joint is usually
fixed, and the last joint is free and acts as the manipu-
lator’s end-effector. To imove the end-effector to a de-
sired point or along a desired path, the robot controller
is required to solve the Inverse Kinematics Problem.
This problem involves tlhe computation of a sequence
of links angles that will plosition the end-effector itt the
desired location.

The computational complexity involved with the nu-
merical solution of the Inverse Kinematics Problem,
and the capability of neural networks to approximate

‘Ph.D. Candidate, Dept. of Aeronautics & Astronautics.
t Professor, Dept. of Electxical Engineering

0-7803-2722-5195 $4.00 0 1995 IEEE 99

Bernard Widrowt
Information Systems Laboratory

Stanford University
Stanford, CA 94305-4055

arbitrary functions, attracted many researchers to ap-
ply neural networks to this problem [l-81. Most of these
works, use known solutions of the inverse problem to
generate input-output patterns for the network train-
ing process. In all cases, the network computes all the
angles between the links in one step, using the desired
erid-effector location as the network input.

These solutions disregard the sequential nature of
the problem, and overlook the striking resemblance be-
tureen the forward kinematics of a serial manipulator
and the dynamics of a discrete time system. In this
work we make use of this quality, and train a neural
controller of a serial manipulator by using a method
simi1a.r to Back Propagation Through Time [9].

In idhe next section we present some background ma-
terial. A “one step” solution to the Inverse Kinemat-
ic:; Problem demonstrates how the Jacobian matrix of
the forward kinematics can be used to backpropagate
the location error of the end-effector. This eliminates
the need for known solutions in the network training
process. The use of the Jacobian matrix is further ex-
tended in section 3, where we present a sequential ap-
proach to the solution of the Inverse Kinematics Prob-
lem. Section 4 concludes the paper with suggestions
foir future research.

2 Esackground
2.1 Problem Statement

Consider the planar robot arm depicted in figure 1.
We assume that all the links have constant and equal
length, set for simplicity to unity length. The end-
effecto’r location [x,, ye] is given by:

= cosel + cos(ol + e,) + . . . (1)
Ye = sin81 + sin(81 + 82) + (2)

where Bk is the angle between link IC - 1 and link I C ,
IC = 1,2 . . .L , and L is the number of links. These

equations represent the forward kinematics of the ma-
nipulator. The Inverse Kinematics Problem is defined
as follows: Find a sequence of angles { 81,&, . . . B L }
that will position the end-effector a t a desired point
[z d , Yd].

1

Figure 1: A planar serial manipulator

2.2 “One Step” Solution

The common approach to the solution of this prob-
lem by using a neural network [l-81, is t o calculate all
the links angles in one step. The input to the neural
network is the desired end-effector location (see fig-
ure 2) . The network is usually trained by presenting
it with input-output patterns, which are generated by
analytical solutions of the inverse problem.

Figure 2: Neural network configuration in a “one step”
solution of the Inverse Kinematics Problem

However, the network can be trained without re-
lying on known solutions, in the following way: a
desired end-effector location [zd, yd] is intrJduced to
the network. The network calculates the links angles
{e1, Q2, . . . OL}, and those are substituted into the for-
ward kinematics equations (1,2) to yield the actual
end-effector location [ze, ye]. The location error

(3)
A T e = [zd - Ye, Yd - Ye]

is then multiplied by the Jacobian matrix

d F -sin 01 - sin(61 + 6 2) - sin(6’1 + 6%) . . . I - = [dB cosel + cos(el + e,) cos(el + e,) . . .
(4)

The product is used to compute the required change in
the weight matrices, according to the LMS algorithm
1101:
L 1

= 2p [$ITe (5)
aeTe

A W = -p- a w
This training procedure is described in figure 3. In this
figure NN refers to the neural network, and F refers to
the forward kinematics equations (1,2)

XD
A I

7-

Figure 3: Training a “one step” controller, using the
Jacobian matrix of the forward kinematics equations

Note that any configuration change of the manipula-
tor (such as adding or removing links) will require an
appropriate change in the network structure (adding
or removing output nodes). In that case, the train-
ing procedure should be repeated, using the relevant
Jacobian matrix.

2.3 Simulation Results

The performance of the “one step” controller is
demonstrated by the following example of a 3-link
robot arm. A neural network with 2 inputs (zd,yd)
and 3 outputs (@1,62,83) was trained according to the
procedure described above. The training input was a
set of desired end-effector locations, equally spaced in
the reachable domain of the robot arm.

Figure 4 shows the controller performance after con-
vergence of the network weights. In this example the
robot base is fixed a t the origin of the XY plane,
and the end-effector is commanded to follow a set of
straight lines. It seems that the neural network suc-
ceeded to learn the inverse kinematics of the manip-
ulator, and the end-effector does follow the straight
lines as commanded.

However, when looking a t the robot arm itself (fig-
ure 5) , we observe an unacceptable behavior. At the
same time that the end-effector is smoothly tracking

100

I f f ~ ~ ~ f I I
... /-

-.’ ’

? -. -
. . . .

” - -
.

. , . . , . . , . .
*_, , . . d. - / - . . . w
\ ...
%

:I?\=
...............

-2 1 0 1 2

Figure 4: End-effector trajectories (solid lines) of a
3-link robot arm, commanded to follow straight lines
(dotted)

a straight line, the angles between the links (change
abruptly. Since the neural network was trained to pro-
vide a static mapping between points in the XY plane
and a sequence of links angles, it does not necessarily
guarantee smooth change of the angles when the end-
effector moves between two close points. The controller
can therefore switch back and forth between redundant
solutions of the inverse kinematics problem.

-3- ’ I

Figure 5: 3-link robot arm following a straight line

-3 -2 1 2

The next section describes a new approach to the
neural control of serial manipulators, which aims to
solve these difficulties.

3 Back Propagation Through Links

3.1 Global Solution

By defining the links angles relatively to a common
base line (see figure a), we can describe the forward
kinematics of a planar serial manipulator with L links
als follows:

where: k = 1,2 .. .L is the joint index, [Z k , ?Jk] describe
the h a t i o n ofjoint k, and e k is the angle between link
k: antd the 3: axis.

Figure 6: A planar serial manipulator with angles de-
fined relatively to a base line

The set of non linear equations (6,7) is in a form
similar to the state equations of a dynamic, discrete
tiime system:

Zk+t = F(zk, ‘Jk) (8)

where the state vector is z 3 [z,ylT and the control
variable is U = 8. We wish to find the control se-
quence (81, &, . . . e,} that will bring the end-effector
[x,+:,,y,+1] to a desired point [Zd,Yd]. This is a ter-
minal control problem, where the cost function to be
minimized is the error in the end-effector position:

J = eTe (9)

and

(10)
A T e = [Zd - ZL+l, Yd - YL+l]

Nguyen and Widrow [ll] and others [9, 121 have used
am algorithm called Back Propagation Through Time
(13PTT) to solve similar terminal control problems.
According to this algorithm, a neural net is fed with
z t , the state vector a t index L. The network then com-
putes the control I&, required to move the state from
index k to the next index L + 1. Usually, this index
rtfers to time. In our case, the index k refers to links

101

along the robot arm. It is therefore appropriate to de-
note the following method of robot arm control as Back
Propagation Through L inks (BPTL).

The basic element in the controller is a neural net-
work (see figure 7) which calculates the required orien-
tation of link t, based on the location of joint I C . The
angle computed by the neural network and the joint lo-
cation are used together to calculate the location of the
next joint, by using equations (6,7). This procedure is
repeated until all the angles are found.

Figure 7: The neural network configuration in Back
Propagation Through Links

Since the first joint is located a t the origin, the pro-
cedure is initialized by translating the robot arm to
minus the desired point, and feeding this value as the
first joint location. The controller then solves for the
angles that will bring the end-effector to the origin.
These angles are equal to the angles required to bring
the end-effector to the desired point, when the first
joint is fixed at the origin.

The complete controller structure is depicted in fig-
ure 8. In this figure F1 refers to the equations describ-
ing the forward kinematics of one link (6,7).

Figure 8: Back Propagation Through Links - controller
structure

The neural network is trained by back propagating
the location error of the end-effector, through all the
links. As was shown in the previous section, we use

the Jacobian matrix of one link

to back propagate the location error through the link
equation a t index L . By multiplying the location er-
ror by the Jacobian matrix, we get the error gradient
required to calculate the change in the weight matrix.
The errors that were back propagated through the neu-
ral network, are summed with the location errors of
joint k , to produce the locationerror at joint k-1. This
is the standard Back Propagation Through Time ap-
proach to terminal control, applied here to back prop-
agating the error through the links.

This approach eliminates the need for retraining the
neural network after a configuration change, since the
network is the same for all links. However, it does
not solve the problem of redundant solutions to the
inverse kinematics problem. In order to do that, we
have to provide the controller with information on the
current geometry of the manipulator. By doing so, we
can look at the motion of the end-effector between two
close points, and solve for the required change in the
geometry, instead of solving for the geometry itself.

3.2 I n c r e m e n t a l Solution

Consider a small change in 8k, denoted as AQk. This
will cause an appropriate change in 2 k + 1 and Y k + l .

After applying small changes to all the links angles,
the robot arm geometry is described by:

Z k + l + Axk+l =
Y k + l + AYk+l =

X k f A X k + COs(6k -t A6k)

Yk + AYk -k sin(6k -k Aok)
(12)
(13)

Subtract the original one link equations (6,7) and get:

A Z k + l = AXk + COS(6k + A8k) - COS8k (14)

Ayk+l = AYk + sin(6k + A6k) - sin6k (15)

We wish to solve for the sequence of angle increments
(AB1, AB2,. . . A ~ L } that will change the end-effector
location from [z L + i , Y L + ~] to [xL+i + AxL+i, Y L + ~ +
A y ~ + 1] . This is a similar terminal control problem to
the one we faced in the previous section. We use a
similar controller architecture (see figure 9), where an
additional parameter - the current value of the link
angle - is fed to each neural network and link equa-
tions. The term Fa in figure 9 refers to the difference
equations that describe the local kinematics of a single
link (14,15).

In order to initialize the procedure at a value differ-
ent then zero, we set the initial location increment to

102

Figure 9:
Links - neural network and link equations sequence

Incremental Back Propagation Through

1 -

0.5-

3 -

-0.5-

1 -

-1.5-

- 2 -

-2.5

- 3 -

minus the desired change a t the end-effector location:

-

In that case, the output of the final block
[A x L + ~ , A y ~ + l] should be zero.

The natural way to obtain Axd and Ayd is to put
the controller inside a closed loop, as described in fig-
ure 10. In this figure, B denotes a block which contains
a sequence of a neural network and a single link dif-
ference equations, such as described in figure 9 . For
simplicity, we refer in this figure to the x coordinate
only. Note that the building blocks of this con troller
are identical for all links.

(figure 11). The same network, with no retraining was
used to control a 4-link manipulator (figure 12) and
a 6-link manipulator (figure 13). The only difference
in the controller structure is additional NN and Fa
biochs.

1.5-

1 -

0.5 -

0 -

-0.5 -

-1 -

-1.5 -

-?: -0:5 0 0:5 ; 1:5 2 2:5 f
Figure 11: Incremental Back Propagation Through
Links - 3-link robot arm

1.5,

-
-2 -1.5 -1 -0.5 0 0.5 1

-
1.5 2

Figure 12: Incremental Back Propagation Through
Links - 4-link robot arm

Figure 10: Incremental Back Propagation Through
Links - closed loop controller structure

4 Conclusions

3.3 Simulation Results

The next figures show a serial manipulator following
straight lines. The manipulator was controlled accord-
ing to the closed loop scheme described above. The
neural network element of the closed loop controller
was initially trained by using a 3-link configuration

A new approach to kinematic control of serial ma-
ni,pulators was introduced. This approach is based on
the sequential nature of the forward kinematics equa-
tions, and uses the same neural network repeatedly to
compute only one link angle a t a time. It is similar
in nature to Back Propagation Through Time, where
th'e time index there is replaced by a joint index here.

103

-41
-2 -1 0 1 2 3 4 5

Figure 13: Incremental Back Propagation Through
Links - 6-link robot arm

The training procedure of the neural network does not
require known solutions of the inverse kinematics prob-
lem, and need not be repeated when adding or remov-
ing links.

Future work will extend the approach presented here
to solve the general inverse kinematics problem, for
the 4D Hartenberg-Denavit transformations. Different
arm structures, such as a truss with no revolute joints
could also be treated in the same way. The simple cost
function used in this work should be augmented with
additional terms, such as a requirement for a desired
end-effector orientation, constraints on link angles or
changes in angles during a unit time, and obstacles
avoidance, including avoidance of self collision between
far away links of the same arm.

Acknowledgments

The first author gratefully acknowledges the support
of the FAA’s Satellite Program Office (AGS-100) and
the FAA Technical Center. Mr. Y.C. Chao and Mr.
M. Moataz of Stanford University participated in early
stages of this work.

References

[l] R. K. Elsley, “A learning architecture for control based on
back-propagation neural networks,” in International CO n-
ference on Neural Networks, vol. 2 , pp. 587-594, IEEE, July
1988.

[2] G. Josin, D. Charney, and D. White, “Robot control using
neural networks,” in International Conference on Neural
Networks, vol. 2, pp. 625-631, IEEE, July 1988.

[3] A. Guez and Z. Ahmad, “Solution to the inverse kinematics
problem in robotics by neural networks,” in International
Conference on Neural Networks, vol. 2, pp. 617624, IEEE,
July 1988.

[4] S . Lee and R. M. Kil, “Robot kinematic control based on
bi-directional mapping neural network,” in International
Joint Conference on Neural Networks, vol. 3, pp. 327-335,
1990.

[5] T. Yabuta and T. Yamada, “Possibility of neural networks
controller for robot manipulators,” in International Con-
ference on Robotics and Automation, pp. 16861691, IEEE,
May 1990.

[6] J. M. Zurada, M. Kavari, and J. H. Lilly, “Robot kinemat-
ics modeling using multilayer feedforward neural networks,”
in Artificial Neural Networks in Engineering, pp. 785-790,
ASME Press, November 1992.

[7] L. C. Rabelo and X. J . R. Avula, “Hierarchical neurocon-
troller architecture for robotic manipulation,” IEEE Con-
trol Systems Magazine, vol. 1 2 , no. 2, pp. 3741 , April 1992.

[8] K . Liu and J. P. H. Steele, “A new artificialneural systems
architecture and its application to robot control,” in Artifi-
cial Neural Network# in Engineering, pp. 505-510, ASME
Press, November 1993.

[9] P. J . Werbos, “Backpropagation through time: What it
does and how to do it,” Proceedings of the IEEE, vol. 78,
no. 10, pp. 1550-1590, October 1990.

[lo] B. Widrow and S. D. S t e m s , Adaptive Signal Processing.

[ll] D. H. Nguyen and B. Widrow, “Neural networks for self-
learning control systems,” IEEE Control Systems Maga-
zine, pp. 18-23, April 1990.

[12] E. S. Plumer, Optimal Terminal Control Lr3ing Feedforward
Neural Networks. PhD thesis, Stanford University, August
1993.

Prentice-Hall, 1985.

104

