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Abstract 
A two-layer neural network can be used to approximate any nonlinear function. T h e  behavior of the hidden 
nodes tha t  allows the  network to do this is described. Networks w i th  one input  are analyzed first, and the 
analysis is then extended to networks w i t h  mult iple inputs. T h e  result of th is  analysis is used to formulate 
a method for  ini t ial izat ion o f  the  weights o f  neural networks to reduce t ra in ing t ime.  Training examples are 
given and the learning curve for  these examples are shown to illustrate the  decrease in  necessary training t ime. 

Introduction 
Two-layer feed forward neural networks have been proven capable of approximating any arbitrary func- 
tions [l], given that they have sufficient numbers of nodes in their hidden layers. We offer a description 
of how this works, along with a method of speeding up the training process by choosing the networks’ 
initial weights. The relationship between the inputs and the output of a two-layer neural network may 
be described by Equation (1) 

H - l  

y = wi  . sigmoid(LqX + W b i )  (1) 
i=O 

where y is the network’s output, X is the input vector, H is the number of hidden nodes, Wi is the weight 
vector of the i th node of the hidden layer, Wbi is the bias weight of the ith hidden node, w i  is the weight 
of the output layer which connects the i th hidden unit to the output. 

The behavior of hidden nodes in two-layer networks with one input 
To illustrate the behavior of the hidden nodes, a two-layer network with one input is trained to approx- 
imate a function of one variable d(z) .  That is, the network is trained to produce d(z)  given z as input 
using the back-propagation algorithm [2]. The output of the network is given as 

H - l  

It is useful to define yi to be the i th term of the sum above 

yi = 216 . sigmoid(wiz + Wbi)  (3) 

which is simply the i th hidden node’s output multiplied by w i .  The sigmoid function used here is the 
hyperbolic tangent function 

sigmoid(z) = [ezcp(x) - ez:p(-z)]/[exp(x) + ezcp(-z)] (4) 

which is approximately linear with slope 1 for x between -1 and 1 but saturates to -1 or +1 its z 
becomes large in magnitude. Each term of the sum in equation (2) is therefore simply a linear function 
of x over a small interval. The size of each interval is determined by wi,  with larger wi yielding a smaller 
interval. The location of the interval is then determined by wbi, i.e. the center of the interval is located 
at z = -wbi/wi. The slope of y i ( z )  in the interval is approximately wiwi. During training the network 
learns to implement the desired function d(z )  by building piece-wise linear approximations y i (z )  to the 
function d(z ) .  The pieces are then summed to form the complete approximation. 

To illustrate the idea, a network with 4 hidden units is trained to approximate the function d(z )  
shown in Figure 1. The initial values of the weights w i ,  wi, and Wbi are chosen randomly from a uniform 
distribution between -0.5 and 0.5. The values of y i (z )  before and after training is shown in Figure 2, 
along with the final output y(z). 
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Figure 1: Desired response for first example 

Improving learning speed 

In the example above, we picked small random values as initial weights of the neural network. Most 
researchers do the same when training networks with the back propagation algorithm. However, as seen 
in the example, the weights need to  move in such a manner that the region of interest is divided into 
small intervals. It is then reasonable to consider speeding up the training process by setting the initial 
weights of the hidden layer so that each hidden node is assigned its own interval at the start of training. 
The network is trained as before, each hidden node still having the freedom to adjust its interval size and 
location during training. However, most of these adjustments will probably be small since the majority 
of the weight movements were eliminated by our method of setting their initial values. 

In the example above, d(z )  is to be approximated by the neural network over the region (-ll l ) ,  
which has length 2. There are H hidden units, therefore each hidden unit will be responsible for an 
interval of length 2 / H  on the average. Since sigmoid(wiz + Wbi) is approximately h e a r  over 

- 1 < w i z  + wbi < 1, (5) 
this yields the interval 

which has length 2/wi. Therefore 

- l/wi - wbi < 2 < l / W i  - wbi 

2/20; = 2 / H  
W; = H 

However, it is preferable to have the intervals overlap slightly, and so we will use wi = 0.7H. Next, wbi 

is picked so that the intervals are located randomly in the region -1 < z < 1. The center of an interval 
is located at 

z = -wbi/wi = uniform random value between -1 and 1 (9) 
and so we will set 

wbi = uniform random value between -1wil and lw;l 
A network with weights initialized in this manner was trained to approximate the same d(x) as in the 
previous section. Figure 3 shows yi(x) along with y(x) before and after training. Figure 4 shows the 
mean square error as a function of training time for both the case of weights initialized as above and 
the case of weights initialized to random values picked uniformly between -0.5 and 0.5. All other 
training parameters are the same for both runs. Note how after training the domain z is divided up into 
small intervals] with each hidden node forming a linear approximation to  d(x) over its own interval. As 
expected, we achieved a huge reduction in training time. 

Networks with multiple inputs 
The output of a neural network with more than one input may be written as 

H-1 

y = V i  . sigmOid(Ktx + wb;) 
i=O 

I11 - 22 
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Figure 2: Outputs of network and hidden units before and after training with weights initialized to 
random values between -0.5 and 0.5 

where X and Wi are now vectors of dimension N .  We will again define yi(X) to  be the i th term of the 
sum in equation (11). 

The interpretation of yi(X) is a little more difficult. A typical yi(X) and its Fourier transform x(U) 
for the 2-input case is shown in Figure 5. Note that y i ( U )  is a line impulse going through the origin of 
the transform space U. The orientation of the line impulse is dependent upon the direction of the vector 
Wi. This motivates us to interpret as a part of an approximation of a slice through the origin of the 
Fourier transform D ( U )  of d(z) .  

Consider a slice of the Fourier transform D(U)  of d(z) .  This slice, which we will call Di(U), goes 
through the origin of the transform space U .  The time domain version of Di(U), d i ( X ) ,  is a simple 
function of W / X  where the Wi is determined by the direction of the slice. A 2-dimensional d(z) ,  its 
Fourier transform D(U), a slice Di(U) ,  and the inverse transform of the slice d i ( X )  is shown in Figure 6. 
Since d i ( X )  is a function of a single variable W / X ,  it may be approximated by a neural network as 
shown in the previous section. The different approximations to  the di (X) ' s  are then summed up to form 
the complete approximation to d ( X ) .  

In summary, the direction of Wi determines the direction of the ith slice of D ( U ) ,  and the magnitude 
of Wi determines the interval size in making piece-wise linear approximations to  the inverse transform 
of the ith slice of D ( U ) .  The value of wbi determines the location of the interval. Finally, TI; determines 
the slope of the linear approximation. 

yi (x)  = vi . sigmoid(W;X 4- Wbj) (12) 

Picking initial weights to speed training 

Just as in the case of one input, it is reasonable to  expect that picking weights so that the hidden units 
are scattered in the input space X will substantially improve learning speed of networks with multiple 
inputs, and this section describes a method of doing so. It will be assumed that the elements of the input 
vector X range from -1 to 1 in values. First, the elements of Wi are assigned values from a uniform 
random distributation between -1 and 1 so that its direction is random. Next, we adjust the magnitude 
of the weight vectors Wi so that each hidden node is linear over only a small interval. Let us assume 
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Figure 3: Outputs of network and hidden units before and after training with weight initialized by 
method described in text 
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Figure 4: Learning curves from training of a network to approximate d ( z )  described above. The solid 
curve is due to the training of a net initialized as described in the text. The dashed curve is due to a net 
whose weights are initialized to random values between -0.5 and 0.5 
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Figure 5: A yi(X) and its 2-D Fourier transform 
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Figure 6: d(z ) ,  its Fourier transform D ( U ) ,  a slice Q ( U )  of D ( U ) ,  and the inverse transform d i ( X )  of 
Di ( U )  

that there are H hidden nodes, and these H hidden nodes will be used to form S slices, and I intervals 
per slice. Therefore, 

Since before training, we have no knowledge of how many slices the network will produce, we will set 
the weights of the network so that S = IN- ' .  Each element of the input vector X ranges from -1 to  1, 
which means the length of each the interval is approximately 2 / I .  The magnitude of Wi is then adjusted 
as follows 

H = S * I  (13) 

1wl.l = I (14) 
= H h  (15) 

In our experiments, we set the magnitude of Wi to 0.7.H* to provide some overlap between the intervals. 
Next, we locate the center of the interval a t  a random location along the slice by setting 

Wbi = uniform random number between -IWil and lWil (16) 

The weight initialization scheme above was used in training a neural network with two inputs to 
approximate the surface shown in Figure 7 .  The function describing this surface is 

d ( q ,  z2) = 0.5 sin(nz;) sin(2nz2) (17) 

A network with 21 hidden units was used. Plots of the mean square error vs. training time are also 
shown in Figure 7 for the case of weights initialized as above and the case of weights initialized to random 
values between -0.5 and 0.5. With the weights initialized as above, the network achieved a lower mean 
square error in a much shorter time. 

Summary 
This paper describes how a two-layer neural network can approximate any nonlinear function by forming 
a union of piece-wise linear segments. A method is given for picking initial weights for the network to 
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decrease training time. The authors have used the method to initialize adaptive weights over a large 
number of different training problems, and have achieved major improvements in learning speed in every 
case. The improvement is best when a large number of hidden units is used with a complicated desired 
response. We have used the method to train our "Truck-Backer-Upper" [3] and were able to decrease 
the training time from about 2 days to 4 hours. 

The behavior of 2-layer neural networks, as described in this paper, suggests a different way of 
analyzing the networks. Each hidden node is responsible for approximating a small part of d ( X ) .  We can 
think of this as sampling d ( X ) ,  and so the number of hidden nodes needed to make a good approximation 
is related to the bandwidth of d ( X ) .  This gives us an approximate determination of the number of hidden 
nodes necessary to approximate a given d ( X ) .  Since required the number of hidden nodes is related to 
the complexity of d ( X )  and bandwidth is a good measure of complexity, our estimate of the number of 
hidden nodes is generally good. This work is in progress and full results will be reported soon. 
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