
Improving the Learning Speed of 2-Layer Neural Networks
by Choosing Initial Values of the Adaptive Weights

Derrick Nguyen and Bernard Widrow
Information Systems Laboratory

Stanford University
Stanford, CA 94305

Abstract
A two-layer neural network can be used to approximate any nonlinear function. T h e behavior of the hidden
nodes tha t allows the network to do this is described. Networks w i th one input are analyzed first, and the
analysis is then extended to networks w i t h mult iple inputs. T h e result of th is analysis is used to formulate
a method for ini t ial izat ion o f the weights o f neural networks to reduce t ra in ing t ime. Training examples are
given and the learning curve for these examples are shown to illustrate the decrease in necessary training t ime.

Introduction
Two-layer feed forward neural networks have been proven capable of approximating any arbitrary func-
tions [l], given that they have sufficient numbers of nodes in their hidden layers. We offer a description
of how this works, along with a method of speeding up the training process by choosing the networks’
initial weights. The relationship between the inputs and the output of a two-layer neural network may
be described by Equation (1)

H - l

y = wi . sigmoid(LqX + W b i) (1)
i=O

where y is the network’s output, X is the input vector, H is the number of hidden nodes, Wi is the weight
vector of the i th node of the hidden layer, Wbi is the bias weight of the ith hidden node, w i is the weight
of the output layer which connects the i th hidden unit to the output.

The behavior of hidden nodes in two-layer networks with one input
To illustrate the behavior of the hidden nodes, a two-layer network with one input is trained to approx-
imate a function of one variable d(z) . That is, the network is trained to produce d(z) given z as input
using the back-propagation algorithm [2]. The output of the network is given as

H - l

It is useful to define yi to be the i th term of the sum above

yi = 216 . sigmoid(wiz + Wbi) (3)

which is simply the i th hidden node’s output multiplied by w i . The sigmoid function used here is the
hyperbolic tangent function

sigmoid(z) = [ezcp(x) - ez:p(-z)]/[exp(x) + ezcp(-z)] (4)

which is approximately linear with slope 1 for x between -1 and 1 but saturates to -1 or +1 its z
becomes large in magnitude. Each term of the sum in equation (2) is therefore simply a linear function
of x over a small interval. The size of each interval is determined by wi, with larger wi yielding a smaller
interval. The location of the interval is then determined by wbi, i.e. the center of the interval is located
at z = -wbi/wi. The slope of y i (z) in the interval is approximately wiwi. During training the network
learns to implement the desired function d(z) by building piece-wise linear approximations y i (z) to the
function d(z) . The pieces are then summed to form the complete approximation.

To illustrate the idea, a network with 4 hidden units is trained to approximate the function d(z)
shown in Figure 1. The initial values of the weights w i , wi, and Wbi are chosen randomly from a uniform
distribution between -0.5 and 0.5. The values of y i (z) before and after training is shown in Figure 2,
along with the final output y(z).

Desired response
1

0.8

0.6

0.4

0.2
h

g o
-0.2

-0.4

-0.6

-0.8

-1-

Network input x

Figure 1: Desired response for first example

Improving learning speed

In the example above, we picked small random values as initial weights of the neural network. Most
researchers do the same when training networks with the back propagation algorithm. However, as seen
in the example, the weights need to move in such a manner that the region of interest is divided into
small intervals. It is then reasonable to consider speeding up the training process by setting the initial
weights of the hidden layer so that each hidden node is assigned its own interval at the start of training.
The network is trained as before, each hidden node still having the freedom to adjust its interval size and
location during training. However, most of these adjustments will probably be small since the majority
of the weight movements were eliminated by our method of setting their initial values.

In the example above, d(z) is to be approximated by the neural network over the region (-ll l) ,
which has length 2. There are H hidden units, therefore each hidden unit will be responsible for an
interval of length 2 / H on the average. Since sigmoid(wiz + Wbi) is approximately h e a r over

- 1 < w i z + wbi < 1, (5)
this yields the interval

which has length 2/wi. Therefore

- l/wi - wbi < 2 < l / W i - wbi

2/20; = 2 / H
W; = H

However, it is preferable to have the intervals overlap slightly, and so we will use wi = 0.7H. Next, wbi

is picked so that the intervals are located randomly in the region -1 < z < 1. The center of an interval
is located at

z = -wbi/wi = uniform random value between -1 and 1 (9)
and so we will set

wbi = uniform random value between -1wil and lw;l
A network with weights initialized in this manner was trained to approximate the same d(x) as in the
previous section. Figure 3 shows yi(x) along with y(x) before and after training. Figure 4 shows the
mean square error as a function of training time for both the case of weights initialized as above and
the case of weights initialized to random values picked uniformly between -0.5 and 0.5. All other
training parameters are the same for both runs. Note how after training the domain z is divided up into
small intervals] with each hidden node forming a linear approximation to d(x) over its own interval. As
expected, we achieved a huge reduction in training time.

Networks with multiple inputs
The output of a neural network with more than one input may be written as

H-1

y = V i . sigmOid(Ktx + wb;)
i=O

I11 - 22

,1/ , ~ d d e n u n i t , o u t p u ~ (befme-g)

0.4

1

0.8

0.6

0.4

0.2
h

Q O-
-0.2

-0.4

-0.6

-0.8

-1

-
-
-
-

-
-
-
-

-1 -0.8 -0.6 -0.4 -0.2 0 0

Hidden unit outputs (after training)
7

-0.6

-0.8

-41 -0.8 -0.6 -0.4 -6.2 0 012 014 016 018 !
Network input x

Netwolk output (after training)

0.6

-
-

-0.2

-0.4

Figure 2: Outputs of network and hidden units before and after training with weights initialized to
random values between -0.5 and 0.5

where X and Wi are now vectors of dimension N . We will again define yi(X) to be the i th term of the
sum in equation (11).

The interpretation of yi(X) is a little more difficult. A typical yi(X) and its Fourier transform x(U)
for the 2-input case is shown in Figure 5. Note that y i (U) is a line impulse going through the origin of
the transform space U. The orientation of the line impulse is dependent upon the direction of the vector
Wi. This motivates us to interpret as a part of an approximation of a slice through the origin of the
Fourier transform D (U) of d(z) .

Consider a slice of the Fourier transform D(U) of d(z) . This slice, which we will call Di(U), goes
through the origin of the transform space U . The time domain version of Di(U), d i (X) , is a simple
function of W / X where the Wi is determined by the direction of the slice. A 2-dimensional d(z) , its
Fourier transform D(U), a slice Di(U) , and the inverse transform of the slice d i (X) is shown in Figure 6.
Since d i (X) is a function of a single variable W / X , it may be approximated by a neural network as
shown in the previous section. The different approximations to the di (X) ' s are then summed up to form
the complete approximation to d (X) .

In summary, the direction of Wi determines the direction of the ith slice of D (U) , and the magnitude
of Wi determines the interval size in making piece-wise linear approximations to the inverse transform
of the ith slice of D (U) . The value of wbi determines the location of the interval. Finally, TI; determines
the slope of the linear approximation.

yi (x) = vi . sigmoid(W;X 4- Wbj) (12)

Picking initial weights to speed training

Just as in the case of one input, it is reasonable to expect that picking weights so that the hidden units
are scattered in the input space X will substantially improve learning speed of networks with multiple
inputs, and this section describes a method of doing so. It will be assumed that the elements of the input
vector X range from -1 to 1 in values. First, the elements of Wi are assigned values from a uniform
random distributation between -1 and 1 so that its direction is random. Next, we adjust the magnitude
of the weight vectors Wi so that each hidden node is linear over only a small interval. Let us assume

I11 - 23

Hidden unit outputs (after training) Hidden unit outputs (before training)
1 1

0.8 --...
0.6
0.4

0.2
................................

.......

h

G o
d

....... .:

-.-.- ~ - - - - -0.2
-0.4

-0.6

-0.8
--------- ---_ ...' -0.6 ..- -

.................. -.-.-.- -'

-'-I -0.8 -0.6 -0.4 -0.2 0 0' .2 0.4 ' 0.6 ' 0.8 ' 1 -1-

Network input x Network input x

0.8
0.6

Network output (before training)
1 I -

-

-0.8

-'-1 -0.8 -0.6 -0.4 -0.2 0 0' .2 0.4 ' 0.6 ' 0.8 ' 1

Network input x

-0.6

-0.8

-

-

Figure 3: Outputs of network and hidden units before and after training with weight initialized by
method described in text

0.09

0.08

-
:,

0.07 -":,

$ 0.05 -
i0.04 -

....................

Figure 4: Learning curves from training of a network to approximate d (z) described above. The solid
curve is due to the training of a net initialized as described in the text. The dashed curve is due to a net
whose weights are initialized to random values between -0.5 and 0.5

.......................................

Figure 5: A yi(X) and its 2-D Fourier transform

I11 - 24

=1

I

I ith

wix /

Figure 6: d(z) , its Fourier transform D (U) , a slice Q (U) of D (U) , and the inverse transform d i (X) of
Di (U)

that there are H hidden nodes, and these H hidden nodes will be used to form S slices, and I intervals
per slice. Therefore,

Since before training, we have no knowledge of how many slices the network will produce, we will set
the weights of the network so that S = IN- ' . Each element of the input vector X ranges from -1 to 1,
which means the length of each the interval is approximately 2 / I . The magnitude of Wi is then adjusted
as follows

H = S * I (13)

1wl.l = I (14)
= H h (15)

In our experiments, we set the magnitude of Wi to 0.7.H* to provide some overlap between the intervals.
Next, we locate the center of the interval a t a random location along the slice by setting

Wbi = uniform random number between -IWil and lWil (16)

The weight initialization scheme above was used in training a neural network with two inputs to
approximate the surface shown in Figure 7 . The function describing this surface is

d (q , z2) = 0.5 sin(nz;) sin(2nz2) (17)

A network with 21 hidden units was used. Plots of the mean square error vs. training time are also
shown in Figure 7 for the case of weights initialized as above and the case of weights initialized to random
values between -0.5 and 0.5. With the weights initialized as above, the network achieved a lower mean
square error in a much shorter time.

Summary
This paper describes how a two-layer neural network can approximate any nonlinear function by forming
a union of piece-wise linear segments. A method is given for picking initial weights for the network to

111 - 25

0 . 0 7 " . . . , . . . , . I

0.06.

0.05

I 3
-'!

decrease training time. The authors have used the method to initialize adaptive weights over a large
number of different training problems, and have achieved major improvements in learning speed in every
case. The improvement is best when a large number of hidden units is used with a complicated desired
response. We have used the method to train our "Truck-Backer-Upper" [3] and were able to decrease
the training time from about 2 days to 4 hours.

The behavior of 2-layer neural networks, as described in this paper, suggests a different way of
analyzing the networks. Each hidden node is responsible for approximating a small part of d (X) . We can
think of this as sampling d (X) , and so the number of hidden nodes needed to make a good approximation
is related to the bandwidth of d (X) . This gives us an approximate determination of the number of hidden
nodes necessary to approximate a given d (X) . Since required the number of hidden nodes is related to
the complexity of d (X) and bandwidth is a good measure of complexity, our estimate of the number of
hidden nodes is generally good. This work is in progress and full results will be reported soon.

References
[l] B. Irie and S. Miyake. Capabilities of three-layered perceptrons. In Proceedings of the IEEE Inter-

national Conference on Neural Networks, pages 1-641, 1988.

[a] D. E. Rumelhart, G.E. Hinton, and R. J . Williams. Learning internal representations by error prop-
agation. In David E. Rumelhart and James L. McClelland, editors, Parallel Distributed Processing,
volume 1, chapter 8. The MIT Press, Cambridge, Mass., 1986.

[3] D. Nguyen and B. Widrow. The truck backer-upper: An example of self-learning in neural networks.
In Proceedings of the International Joint Conference on Neural Networks, pages 11-357-363. IEEE,
June 1989.

111 - 26

