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Abstract

This article describes technologies and strategies proposed for the development of prosthetic de-
vices which would be directly interfaced to the nervous system. A chronic neural interface device
is under development which should permit the establishment of permanent bidirectional commu-
nication with peripheral nerves in ¢ human limb. An Artificial Neural Network would be used
to interpret the neural signals and drive a prosthetic limb in the case of an amputation. For
nerve repair in an intact limb, the neural network would be used to reroute misdirected signals
into appropriate neural channels. Design considerations for the neural interfaces and supporting
circuitry are discussed along with information processing strategies. It is intended that a fully
integrated prosthetic device should be capable of adapting to the individual needs of the patient
to provide a natural user interface.

1 Introduction

This article describes an ongoing project which is concerned with the development of neural inter-
faces to the human nervous system. Silicon based interfaces, perforated by arrays of via holes, are
implanted between re-apposed ends of deliberately severed peripheral nerve fascicles. Regenerating
axons grow through the holes and become physically isolated and spatially fixed with respect to
the microelectrodes adjacent to each via hole. This should allow for permanent access to neural
signals at or near the level of individual axons. An artificial neural network can then be used to
interpret and process the information contained in the neural signals. To our knowledge, this is the
first attempt to directly link biological neural networks to artificial neural networks. The artificial
neural network, controlled by the central nervous system (CNS), would form a natural extension
to the peripheral nervous system.

This article begins with a description of the silicon based neural interface itself, which is being
developed by two of the authors (Kovacs & Rosen). The emphasis of this paper, however, is on
the systems level considerations in designing a complete prosthesis and the role of neural networks
in adapting the prosthesis to meet the individual needs of a patient. Two applications will be
discussed. The first, is concerned with the use of interfaces to redirect neural activity in an intact
arm so as to aid in the recovery of a severe nerve injury. The second deals with full limb prosthesis in
the case of an amputation. A more comprehensive paper which addresses such issues as fabrication
techniques, power dissipation, and biological feasibility, can be found in [1].

2 The Stanford/VA Neural Interface

This group has been working on a direct neural interface for peripheral nerves for several years under
Veterans Administration funding !. The goal of this work is to develop, largely by modification
of existing commercial technologies, a microelectronic neural interface which will permit direct,
chronic connection of electronic circuitry to the human nervous system.

!Veteran’s Administration Rehabilitation Research and Development (RR&D) Merit Review Grant B003
Hentz/Rosen “Towards Better Methods of Nerve Repair and Evaluation”



In order to achieve this goal, a microelectronic neural interface capable of repeatably sensing and
stimulating action potentials in small groups or individual axons of peripheral nerves is under devel-
opment. While a number of investigators have experimented with implantable nerve-regeneration
type recording devices using semiconductor materials (2, 3, 4, 5, 6, 7, 8], this group would be the
first to attempt chronic access at resolutions approaching individual axons, in addition to the use
of active electronics in the implant itself.

Figure 1: Drawing showing re-apposed ends of a peripheral nerve held against a microelectronic neural
interface in a surgical coupler. Regenerated axons through the via holes in the silicon (not to scale) are
shown in the cut-away view. (Reprinted with permission from [13].)

The current device, consisting of a silicon chip perforated by an array of via holes, will be held
between the re-apposed ends of a deliberately severed peripheral nerve fascicle in a limb stump
utilizing a surgical coupler (as shown in Figure 1). It has been shown experimentally [9] that
for 8 to 12 pm via holes, individual regenerating axons will grow through the holes and become
physically isolated and spatially fixed with respect to microelectrodes adjacent to each via holes.
This arrangement will thus form a stable interface between the microelectronic circuitry on the
neural interface device and the axons.

The present approach is to provide an individual neural interface for each fascicle of a major
nerve. The design of monofascicular interfaces requires the use of approximately a 1 mm? surface
area for the microelectrode array corresponding to each fascicle. The microelectrodes will be
arranged in a two-dimensional grid at densities approaching those of the axons in peripheral nerves
(1-2,000 axons per mm?) to maximize access to the information present. The intimate contact of the
microelectrodes with the axons should provide for good signal selectivity between microelectrodes.

Details on the development of specialized microelectrodes, surgical couplers, and fabrication
processes, along with other technical and biological considerations can be found in earlier papers
(see Kovacs et al [11, 12, 13, 14, 15]). It should be noted, that care was taken to utilize only
processing techniques which are compatible with commercial CMOS fabrication so that the final
arrays can be produced in a timely and inexpensive manner.

2.1 Preliminary In-Vivo Studies

A section of a blank neural interface (without microelectrodes or active microelectronic circuits)
fabricated using a plasma etching technique [16] is shown in Figure 2. The blank neural interfaces
were mounted in polycarbonate or resorbable GTMC (Glycolide Trimethylene Carbonate) surgical
couplers and interposed between the surgically severed ends of rat and monkey nerves.



Figure 2: SEM (scanning electron micrograph) view of a section of a plasma etched blank neural
interface (no microelectrodes). These via holes are approximately 12 um in diameter.

Figure 3: SEM view of monkey axons which have regenerated through via holes in a preliminary version
(without microelectrodes) of the neural interface. (magnification = 1060X) Reprinted with permission
from [12].



Using functional, electrophysiological and histological techniques, it was demonstrated that
viable axons had regenerated through the via holes (see Figure 3).

2.2 Current Status of Neural Interface Research

Further work on the neural interface has been carried out, with the goal of incorporating the ele-
ments required to form a functional interface [11]. Passive neural interfaces (with microelectrodes
but without active microelectronic circuitry) have been fabricated and implanted in the peroneal
nerves of Sprague-Dawley rats [17]. Preliminary studies indicate that both recording and stimu-
lating with the neural interface is possible [11]. Current work is focused on determining the degree
of selectivity for each microelectrode site. As well, active neural interface prototypes have been
fabricated which incorporate microelectronic circuitry to permit time-multiplexing of the neural
signals in order to reduce the number of connections to and from the neural interface [13].

3 Nerve Repair

One of the originally envisioned applications for the neural interface deals with nerve repair in
an injured arm. In a severe arm injury, it is often possible to surgically reattach main nerve
bundles at the fascicle level. However, as individual axons regenerate a sort of scrambling occurs
when the axons grow back to the “wrong” locations. The result is a severe functional limitation
in an otherwise intact hand [21]. While therapy may result in increased usage, the process is
time consuming and never complete. The use of neural interfaces, however, should allow one to
electronically intercept misdirected efferent (motor) and afferent (sensory) neural impulses and
reroute them into appropriate channels, thus “descrambling” the signals and providing increased
recovery after a severe nerve injury. In order to block the original signals, two neural interfaces
for each fascicle will be required (see Figure 4). Since fascicles contain both afferent and efferent
signals each interface must be capable of either recording “incoming” signals or initiating “outgoing”
signals.

Re-routing
> Circuitry
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Figure 4: Diagram illustrating two neural interfaces being used for nerve repair. Two interfaces are
used to reroute misdirected neural signals. The original signals are blocked between the two interfaces.

In order to learn the proper mapping from input microelectrode to output microelectrode, the use
of a “neural network” is proposed. The network must be bidirectional to accommodate both efferent
and afferent signals. Furthermore, both the input and output of the network must correspond to



the firing rates of axons. The difficulty with this problem is that there is no way to gain access to
a desired response for the output of the network as would be required to train a traditional neural
network. There is only a desired response for the hand as a whole, not for individual axon signals. In
order to overcome these problems, a new algorithm, based on a variety of neural network techniques
has been developed which appears to solve the mapping problem for a one-to-one descrambling.

The problem of rerouting axons is analogous to the classical linear assignment problem. We
wish to assign N input axons to N output axons (N people to N tasks). The assignment can be
made based on a cost matriz, C, whose coefficients, ¢; j, give the cost, or gain in performance, of
assigning input axon ¢ to the output j. As will be shown, C corresponds to learned information,
with the coefficients being somewhat analogous to the synaptic weights in a neural network. To
formulate the assignment it is also necessary to define an assignment matriz, T. The coefficient
t;; = 1 if input axon ¢ is actually assigned to output j, else t; ; = 0. T is a sparse matrix since
there is a single 1 in each row and each column. An optimal assignment is made by minimizing the
cost function
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There are many classical linear programming algorithms to solve this problem. However, C
may also be used directly to determine the weights for a Hopfield network [18] which may then
be used as an efficient method to find a “good” solution. What makes the assignment problem
difficult is that we are never given the cost matrix. Initially there is no knowledge of how individual
axons are to be assigned. This is similar to a case of the traveling salesman problem in which the
distances between the cities, the C matrix, is initially unknown. Only the total path length after
a trial journey to the cities is known. From this, the salesman is expected to learn the best path.
Learning is reflected in the proper formulation of a cost matrix.

First define the following parameters: Let E be the average error in the hand’s performance
over the training period. Let Ej be the instantaneous error for a given volitional command. Then
¢ = Ex — E is a semi-quantitative measure of how well the hand performs for a given command
relative to past performance. Basically, €k, can be thought of as a subjective measure of how well
the hand is currently performing. Also define z; as the average impulse frequency or firing rate
along input axon ¢ during the course of the current command.

The rule for adapting the elements of the cost matrix can now be defined as follows:

(cij)e+1 = (cij)e + (Acijk ()
(Acijk = perziti; (6)

The form of this learning algorithm is similar in nature to the LMS algorithm which is used in
almost all neural networks. Individual cost coefficients are adapted in proportion to the strength
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Figure 5: Learning curve for axon descrambling simulation.

of the input; the greater the input the greater its contribution to the total output error. Unlike
LMS, which adapts each output neuron with respect to an individual error, all coefficient are
changed in proportion to the total error. This is necessary since the desired output for each axon
is unavailable. In summary, we adapt the individual cost coefficients associated with the current
assignment in proportion to the total output error and the input strength at each axon. In this
way, the cost matrix is adapted to reflect the overall performance of the current assignment. The
complete sequence of training would proceed as follows: '

1. Start with a random cost matrix.

Use a Hopfield Net to form an initial assignment matrix.

Based on the assignment matrix electronically reroute the axon signals.
Have the patient give his hand a command (i.e. make a fist).

Based on the error adapt the coefficients of the cost matrix.

Based on the new cost matrix use the Hopfield Net to find the new assignment matrix.

N ek b

Go to step 3.

This procedure would continue until a suitable level of performance is achieved. This algorithm
is intuitively motivated. A proof of convergence is unknown and possibly intractable considering
the qualtitative nature of the error used for adaptation. While it will be years before the algorithm
can be fully tested on human patients, a learning curve for a computer simulation with 25 axons is
shown in Figure 5. The simulation assumed a worst case situation in which all axon signals were
taken to be uncorrelated. For 25 axons there are approximately 1.551 x 10?5 possible reroutings.
A complete descrambling was achieved in under 900 attempts.



4 Limb Prosthesis

In an amputation, rerouting neural activity as explained above will be of little use to the patient.
In this case, the interfaces can be used to establish direct communication to a limb prosthesis (i.e.
a mechanical hand) 2. '

Interfaces which could presently be applied chronically in a limb prosthesis application can not
provide access to anything but gross averages of neural activity. Current techniques utilize mechani-
cal command signals from unaffected tissues (e.g. shoulder movement) or electromyographic (EMG)
signals from isometric contraction of muscles to control prosthesis movements. Problems commonly
cited with respect to myoelectric prostheses include lack of reliability of the EMG electrodes (e.g.
susceptibility to faulty operation in the presence of perspiration), the need to concentrate con-
stantly on the muscles used to maintain a grip, and the lack of any shear (slippage) force feedback
[19, 20]. As well, inconsistent placement of the electrodes can make the requisite signal processing
extremely difficult [20]. In fact, old-fashioned, purely mechanical ”claw” devices, which provide
rudimentary proprioceptive feedback via their shoulder harnesses (Bowden cables), are preferred
by many patients over more modern myoelectric prostheses [19]. The problems with these systems
are all a result of limitations in the available interfaces between the patient and the prosthesis.

An ideal interface should allow for use of the limb via both the normal efferent (motor) and
afferent (sensory) neural channels. Furthermore, since the ensemble behavior of the axons in pe-
ripheral nerves is what allows, for example, the fine motor control of the hand, it is clear that a
successful interface must provide simultaneous access to the information carried in small groups or
ultimately individual axons. All these requirements should be met with the current neural interface
under development.

4.1 System Overview

The nature of the signals utilized by the peripheral nervous system to control various hand motions
are both complicated and case specific. Thus, in order to utilize the thousands of signals available
from the interfaces, it will be necessary to have an adaptive system capable of both utilizing the
information content available in the signals and learning how the signals can be used to control
an existing and fixed mechanical prosthesis. These requirements will be met through the use of
artificial neural networks. Thus the majority of the burden involved in training will be placed on
the prosthetic device themselves, rather than the patient.

A block diagram of a complete prosthesis system is shown in Figure 6, followed by an artist’s
conception of such a system shown in Figure 7. For efferent signals, following the neural interfaces
and prior to the neural network, it would be necessary to perform some feature extraction to
reduce the overall data rate of the system. This is performed in several stages. Initial feature
extraction would consist of demodulating the neural signals from each microelectrode site on the
neural interface into numerical representations of their effective axonal firing rates. Within the
stump, these demodulated signals would be multiplexed into a common signal and then transmitted
to the external prosthesis hardware via a telemetry system 2. Following this, an adaptive feature
extractor would be utilized to cluster signals into functionally similar groups and then form an
average demodulated signal for each feature signal. This additional data reduction is necessary to
reduce the complexity of further processing. Finally, downstream from the feature extractor, an

2For the remainder of this discussion a “prosthesis” will refer to a full artificial limb prosthesis

3Suitable telemetry systems for bidirectional transmission of data in this application appear to be achievable with
present technologies. For example, the simultaneous transmission of data and power via high-frequency electromag-
netic coils has been demonstrated in prosthetic applications [10]
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Figure 6: Block diagram of a directly interfaced prosthesis system. Signals to and from the neural
interface for each fascicle are routed by 1/O controllers which either demodulate or stimulate as appro-
priate for each microelectrode site. The data for each fascicle flows through a global multiplexer prior
to the implanted transceiver. (Each transceiver is depicted as separate transmit (TX) and receive (RX)
blocks.) Broken areas denote transcutaneous transmission of information. For the efferent channel,
demodulated neural signals are processed by a feature extractor, followed by a neural network used to
control the robotic limb. Information from transducers in the robotic limb is mapped onto the afferent
channel by a neural network sensory mapper to provide feedback.

Figure 7: Artist’s conception of a directly interfaced below-the-elbow limb prosthesis.



adaptive neural network in the prosthesis would carry out the interpretation of the neural command
signals and the control of the mechanical systems of the prosthesis.

For afferent information, signals would be processed in a similar manner, but in a reverse
direction. Signals from transducers in the prosthesis would be mapped onto the appropriate sensory
channels using a second adaptive network. The outputs of the adaptive network would consist of
numerical representations of the desired stimulation rates at the microelectrodes. Signals from
this network would then be multiplexed into a common signal and transmitted into the stump.
This information would be demultiplexed and routed to the appropriate microelectrode sites to
determine their stimulation rates.

4.2 Training Methodology

The following technique could be used to establish a basic set of neural command patterns with
which to train the control of the prosthesis and to simultaneously sort axons into afferent or efferent
groups. The patient would be asked to mimic, with his or her "phantom” hand, a predefined set
of motions which could be presented using a computer-generated representation of a hand. Several
records of the neural firing patterns (demodulated as explained below) corresponding to each motion
would be stored for later use in ”off-line” training of the feature extractor and neural network control
system. It may also be useful to have the patient carry out a set of hand motions with a normal
hand (if present) using a device such as the “data glove” * to directly measure the joint angles and
positions in the state space of the hand. This would allow some of the motions to be defined by
the patient to better suit his or her individual needs. In order to separate afferent from efferent
axons, the axonal signals which showed no consistent electrical activity during these tests would
be classified as afferent. The individual microelectrode sites corresponding to them could then be
defined as sites for stimulation if the prosthesis is to be equipped with sensory input transducers.
The process for incorporating sensory capability in the prosthesis will require a separate procedure.
While the characteristics of the transducers on the prosthesis itself will be known, sorting out the
different classes of afferent fibers (tactile sense, proprioception, pain and temperature sense) is likely
to be a much more arduous task. The major difficulty would be that the user, when presented with
various stimuli would somehow have to report his or her perceptions to the sorting algorithm. A
proposed method for training sensory information into the prosthesis which also utilizes a neural
network will be presented in a later section.

5 Feature Extraction
5.1 Initial Data Reduction: Demodulation

Since the information contained in the peripheral nervous system is encoded using pulse-frequency
modulation and recruitment ®, only the presence and rate of occurrence of individual action poten-
tials would need be detected in efferent signals. Axon firing rates for normal levels of excitation fall
within the range of 5 - 100 action potentials per second [26] with a conservative upper limit of 500
Hz. If each microelectrode site was equipped with a simple circuit for registering the occurrence
of an action potential signal (threshold detection) between sampling intervals, it could be assumed
that scanning the array at 500 Hz would provide all of the necessary information. This is in con-
trast to the sampled recording of action potential waveforms, which have frequency components
extending out to approximately 10 KHz and hence require a higher sampling rate.

*The data glove is a device worn on the human hand and is used for measuring joint angles [25].
®*Recruitment refers to increasing the number of active motor units.
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Figure 8: Graph showing the decrease in net data bandwidth with increasing number of encoding bits
used to store the frequency of action potentials at a given microelectrode site.

In considering efferent data reduction, one can observe that the action potential frequency
may be relatively high for each axon, while the rate of change of this frequency with changing
commands for desired motions will generally be much lower. These commands (symbols) have a
low data rate due to the relatively long mechanical time constants of the musculoskeletal system.
6 If one attempts to perform a repetitive simple hand motion, such as tapping the index finger
against a tabletop as rapidly as possible, the maximum rate is a few Hertz. Thus the number of
action potentials over a given sampling interval could be converted to a numerical or demodulated
representation of the average firing rate without undue loss of information. The output data rate
for each microelectrode site would then be the product of the number of data bits used to specify
the firing rate and the reciprocal of the sampling interval. Mathematically, this is expressed as,

DRyow
DRdemod =N ('2"1{,"_'_1)

(7
where DRgemoq is the demodulated data rate, N is the number of bits used to specify the firing
rate of the demodulated signals, and DR, is the raw data rate. A plot of this function is shown
in Figure 8. The cost of adding encoding bits is both one of increased power dissipation and of
increased real estate usage on the integrated circuit. The benefit in terms of reduced bandwidth is
clear. .

In order to estimate the total efferent bandwidth for the system, one first needs to consider the
total number of axonal signal sources. Referring to the intraneural (fascicle) maps of Sunderland
[22, 23]. it can be seen that the radial nerve is divided into 8-10 fascicles near the elbow. The
ulnar nerve is divided into approximately 13 fascicles, and the median nerve into approximately
14, at this level. Thus roughly forty monofascicular neural interfaces would be required, for a total
of 40,000 microelectrode signals. Assuming that half of these are efferent, with each site being
sampled at 500 Hz, and a 5-bit symbol sample rate of 16 Hz, the system data rate would be only
1.6 Mbits/s (versus the raw signal data rate of 10.2 Mbit/s). For a slower-responding prosthesis

8And perhaps by bandwidth limits of the cerebrum and cerebellum which evolved concurrently and presumably
without needless excess speed.



with an 8-bit encoding and a 2 Hz symbol sample rate, the system data rate would be only 320
Kbits/s (roughly a 60-fold reduction).

The demodulation of the action potential stream, from each microelectrode site, into its re-
spective numerical signal strength could be accomplished by several methods. One such method
would use what amounts to frequency counters for each axon. Either digital counters or analog
charge-integrators could be utilized for this purpose. The digital counters would simply count ac-
tion potentials over a given sampling period (each would require a comparator or the multiplexed
output of a shared fast comparator for its clock). Each counter would be interrogated and then
reset for the next sampling period. Another method, suggested by Franz [19], consists of the se-
quential storage of bits corresponding to the individual action potentials as time sequences for each
microelectrode site 7. Encoding logic could quickly scan the time histories for each site and output
the desired numerically encoded rate value.

In a two-way neural interface, afferent information would be conveyed to the PNS as low-data-
rate commands to stimulation circuitry located in the neural interface. This information would
be encoded by a sensory mapper which would map signals from transducers in the prosthesis into
pulse-frequency modulated signals for stimulation.

To minimize the problem of power dissipation into the neural tissue, the inclusion of the de-
modulation and telemetry functions in the circuitry of the neural interfaces would be avoided.
The demodulators would be implemented in separate, synchronized companion chips, located in
less thermally sensitive areas. The outputs from the microelectrode sites’ demodulators would be
scanned sequentially at the appropriate sampling intervals and routed to the telemetry circuits.
Relatively high-power circuits could be located in such areas as alongside blood vessels or attached
to bone. The implanted telemetry circuits could also be affixed to bone in order to facilitate heat
dissipation if necessary.

5.2 Efferent Signal Clustering

In the normal neuromuscular system, thousands of functionally similar axons innervate a single
group of muscle fibers to regulate its overall contraction. While individual signals could be applied
directly as input to the neural network, this would be an unnecessary complication. From an
engineering standpoint, we are interested only in the total muscular force level. It should thus be
possible to perform massive data reduction by clustering the individual microelectrode site signals
into functionally similar groups. The average firing rate within each cluster can then be used as
a single representative signal for that cluster. The average of the demodulated signals from each
cluster will henceforth be referred to as a feature extracted signal.

Ideally we would want only one feature extracted signal corresponding to each muscle in the
hand. However, it will probably be necessary to have several feature extracted signals for each
muscle to account for such factors as motor neuron size and recruitment order. This corresponds to
simply grouping the individual axons into finer clusters. The number of necessary feature extracted
signals will ultimately be determined by both the physiology of the human hand and the dexterity
capabilities of the prosthesis mechanism to be used. This data reduction subsystem is shown in
Figure 6 in relation to the overall prosthetic system. It is estimated that this subsystem will enable
a reduction in data by roughly two orders of magnitude.

The time histories of the axon firing rates, recorded from the patient as previously described,

"The memory required per neural interface, based on the above estimates, is less than that of the now obsolete 64
K-bit dynamic RAM memory. Thus, for all forty fascicles a 2 M-bit RAM would be sufficient. (For 1,024 sites per
neural interface and a 10 Hz sampling rate of the microelectrode time sequences, 64 storage locations per site would
be adequate with a 500 Hz maximum action potential rate.)



will comprise a set of training vectors for the clustering algorithm. The dimension of the input
vectors is extremely large corresponding to the sampling period and interval over which the time
histories are recorded. The number of signals corresponds to the number of efferent microelectrode
sites. The goal is to cluster the sites into groups which are highly correlated. This clustering can
be performed in many ways, using a traditional approach such as the Linde-Buzo-Gray (LBG)
algorithm [27] used in vector quantization, or a neural network approach such as Kohonen’s self
organizing feature maps [28].

After training, the microelectrode signals will be clustered into groups which have similar time
histories. Thus the axons should be functionally grouped according the various muscles that they
originally controlled. It is important to note that the adaptive process by which the clusters are
determined is performed only once and off-line, using a computer. Once the appropriate cluster
for each axon site is identified, the information is used to program the actual feature extraction
subsystem. The programmed subsystem merely needs to average the firing rates from each axon site
within each known cluster during normal operation. This average firing rate for the cluster forms
the feature extracted signal which can then be used as input to the next stage of the prosthetic
system, the neural network.

A possible hardware implementation for the feature extractor would entail the use of digital logic
to compute the feature extracted signals. Each microelectrode site would be assigned a numerical
mapping address corresponding to the cluster into which it had been classified. As the demodulated
outputs from the microelectrode arrays are scanned by the feature extractor circuitry, the mapping
addresses could act as pointers to summing registers into which each demodulated output would
be added. These cluster sums, normalized by the number of microelectrode signals within each
cluster, would represent the feature extracted signals at the end of each scan through the array.
With such an implementation, the off-line adaptation of the feature extractor would merely produce
a look-up-table of mapping addresses. These mapping addresses could then be downloaded into a
non-volatile memory structure within the feature extractor to enable its operation.

More sophisticated feature extraction methods have also been considered but appear to be
impractical. In EMG analysis, for example, signals are often modeled as ARMA (auto-regressive
moving-average) processes [29]. One then uses a Bayesian classifier based on the parameters of the
ARMA model to map neural commands onto a limited number of control sequences. Unfortunately
this method is usually limited to on/off control with the intensity (force or velocity) being regulated
by signal power. Also, extracting the ARMA parameters cannot be done on-line. A short time
window of data must be stored and then processed. This results in unavoidable time delays.
Furthermore, an EMG measures muscular activity which is based on an ensemble of neural activity.
It is thus naturally amenable to stochastic analysis. Since we are working at a higher resolution
than EMG signals, we would require a more sophisticated stochastic model for feature extraction.
However, stochastic models are not a feasible option when considering the number of microelectrode
sites involved. In addition, they do nothing to reduce the total number of distinct signals in the
system.

6 Efferent Neural Network Interface

In the prosthetic system, the neural network would act as the bridge between the neural signals
and the actual robotic hand. It can be considered as the intelligent interface between man and
machine. Its function is to interpret the microelectrode signals and drive the robotic hand so as to
make the use of the prosthesis transparent to the patient. To the patient, controlling the prosthesis
should seem the same as controlling the original hand.

The training of the neural network will be done completely off-line using computer models of
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Figure 9: Block diagram of a proposed neural network based prosthesis controller.

the neural network and signal recordings made while the patient mimics desired hand movements.
The patient’s hand motions are sensed using a data glove whose outputs are used to form a desired
response for the neural network. Once the neural network computer model is trained, the values of
the synaptic weights can be downloaded to the actual neural network hardware. The customization
of the prosthetic system for the individual patient should then be complete. However, additional
training cycles may be necessary to emphasize certain motions to achieve fine motor control.

Prior to describing in detail the design of the neural network, it is necessary to briefly discuss how
the CNS uses axons to control a limb. Simplistically, agonist and antagonist muscle contractions
determine tendon tensions resulting in joint torques which ultimately determine limb position.
Muscular activity is, of course, directly related to neural activity. The multiple axons associated
with a single muscle regulate its contraction. A muscle is typically modeled as a simple second order
dynamic system. A static hand and arm position corresponds to an equilibrium point in both neural
and muscular activity. During the course of a movement the CNS specifies a virtual trajectory [30].
A point along the virtual trajectory corresponds to what the limb position would be, given that
the current neural activity specifies an equilibrium point. The virtual and true trajectories are
related through the inherent inertial and viscoelastic properties of the limb and muscles. (In other
words, the virtual trajectory is the control input to a dynamic system, the output of which is the
actual trajectory.) The underlying principle which dictates the necessary virtual trajectory control
is believed to be a simple smoothness constraint on the limb trajectory [30].

It is thus clear what the neural network must accomplish. The network is provided with a
set of neural recordings (the feature extracted signals) which contain information about the virtual
trajectory, and the corresponding desired true trajectory (taken from data glove measurements). In
order to control the robotic hand, the neural network must be capable of extracting and internally
learning the original hand dynamics. In addition, it must be capable of compensating for the fixed
dynamics of the robotic hand as it learns the proper control of the prosthesis. With the above in
mind, we now propose two methods of implementing the neural control system.

6.1 Neural Control System

The first system shown in Figure 9 is attractive in its simplicity. A single feedforward layered
neural network is used to both interpret the feature extracted signals and drive the robotic hand
(RH). The output of the neural network corresponds to input levels for the various actuators
which directly control torques or tensions in the mechanical hand. Training can be accomplished
using a variation of the backpropagation through time algorithm [31]. This is a non-linear control
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Figure 10: Block diagram of a neural network as configured for non-linear system identification to form
an emulator for the robotic hand.

problem similar to the Truck-Backer-Upper problem ® with some important differences. First of
all, the inputs to the system are not simple command step functions, but complicated neural inputs
which contain virtual trajectory information. In fact, it is somewhat misleading to think of the
neural network as a controller. The CNS is the actual controller. The neural network is more of
a dynamic precompensator to the mechanical system which insures the CNS control signals are
properly interpreted. Furthermore, during training a desired response is available throughout the
entire trajectory. This is in contrast to many control problems which only specify an end point.
Thus, to properly adapt the network, it is necessary to use both the instantaneous trajectory error
and prior gradients accumulated while brackpropagating through the system from previous time
steps.

This training algorithm also requires a model of the robotic hand. This is necessary since the
known desired response occurs at the output of the mechanical hand and not at the output of
the neural network. In order to formulate the appropriate desired response for the output of the
network, one needs the Jacobian transformation which relates small changes in the neural network
output to small changes in the mechanical hand output.

In general, detailed modeling (e.g. coriolis, centrifugal, and mass matrix terms) for existing
robotic systems are not readily available. As an alternative, one can form a neural network emulator
of the RH. Using a neural network in a non-linear system identification mode is illustrated in
Figure 10. One can then use backpropagation through the emulator to form the necessary desired
response for the neural network.

6.2 Neural Interpreter System

As an alternative to the above approach, which requires the modeling of the RH, a second system is
proposed which involves decoupling of the interpretation of axon signals from the low level control
of the RH (see Figure 11). This allows one design of the neural network interpreter virtually
independent of all robotic hand modeling considerations.

Existing robotic hands normally utilize low level control systems (LLCS). The LLCS for the
Utah/MIT Hand [33] includes 16 variable-loop-gain position servos to operate the finger joints

8The Truck-Backer-Upper problem is a non-linear control problem in which a neural network is trained to back a
truck up to a loading dock [32].
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Figure 11: Block diagram of the multi-level scheme for the neural network prosthesis controller.

and 32 variable-loop-gain tension servos. For example, as input to the LLCS one can specify
independently a specific joint angle. The LLCS is designed to insure that the desired angle is
achieved.

Achieving higher level control of the RH using a LLCS can be accomplished via teleoperation
(i.e. a human operator using a data glove). A simple linear transformation can be used to map
anthropomorphic joint angles from the data glove to robotic joint angles for input to the LLCS.
This transformation (referred to as the anthropomorphic/robotic or A /R transformation) is easily
found by performing a least-squares fit over a predefined set of anthropomorphic hand poses with
the desired robotic hand poses 2 [34].

Returning to the prosthetic system of Figure 11, it would now be necessary for the neural
network to act only as an interpreter whose outputs correspond to the joint states of the anthro-
pomorphic hand. Since the desired hand states that must be recorded for training the prosthesis
may be taken directly from a data glove, there is now a one-to-one correspondence between the
measurements taken and the desired output of the neural network. The neural network can then
be adapted using backpropagation without the need for a model of the RH to be controlled. Note,
backpropagation through time is still required due to the state feedback from the output of the
neural network. Once trained, the output of the neural network feeds into the A/R transformation
which produces inputs for the LLCS that ultimately drives the RH.

Thus it would be possible to initially train the prosthetic system without any need for an
actual robotic hand and/or model. It is important to note, however, that the neural network must
be trained on trajectory information so as to be able to extract the original hand dynamics. If
one merely trains static mappings from neural activity into desired joint angles then one is in
essence training the network to learn equilibrium points. In this case, during actual trajectory
formation, the network’s output will correspond to the virtual trajectory rather than the actual
desired trajectory. This could, in fact, be desirable if the composite LLCS and RH dynamic
system could be made to correspond to actual human hand dynamics. In this case the virtual
neural trajectory formed by the CNS would be transformed into a virtual joint trajectory by the
neural network which would then be transformed into the actual trajectory by the LLCS and RH.
Unfortunately, it would be incorrect to assume that the mechanical prosthesis could be designed
to match the dynamic properties of a human limb.

Initially, it is more reasonable to assume that the dynamics of the LLCS and RH are fast enough

°A transformation which includes both joint angle and joint stiffness will probably be desirable. This will require
further research in order to implement.



to be ignored. In this case, without appreciable mechanical time constants, the neural network
output must be made to correspond to the actual trajectory. This resulting inability to adaptively
specify the overall dynamic characteristics, including robotic dynamics, is a minor drawback to this
scheme. The patient’s own ability to compensate for a “mismatch” in dynamics will need to be
studied. However, it is evident that a person can easily compensate for fluctuations in dynamics in
the natural hand as demonstrated by the ease with which we can manipulate objects.

It may appear from Figure 11 that control of the prosthesis is essentially being performed in an
open loop fashion. Feedback does occur, however, both visually and through the afferent pathways.
Even in the natural hand no feedback occurs internal to the hand itself.

7 Afferent Neural Network Sensory Mapper

The mapping of signals from transducers in the prosthesis onto the afferent neural channels would
be controlled by a neural network based sensory mapper. The prosthesis could readily be equipped
with transducers for tactile sensation, force, joint angle, temperature, and other sensory modalities.
Utilizing such transducers would require the assignment of their output signals to neural pathways
of the appropriate sensory modalities and perceived locations on the prosthesis.

The input to the neural network corresponds to the transducer outputs whose characteristics
will be known. Forming the desired response for the network, however, will require the knowledge
of the sensory modality with which each afferent microelectrode site is associated. The process
of sorting out the various sensory modalities will likely prove to be a more difficult task than
the utilization of the efferent information. Fortunately, the biological organization of the PNS is
such that the fascicles are somewhat distinct in terms of dermatomes, muscles, tendons and joints
innervated. Utilizing fascicle function maps such as those of Sunderland [22, 23] and Jabaley, et al
[24], the fascicles could at least be tentatively identified and this information utilized to speed their
initial classifications (or to coordinate the global functions of simple prostheses) using techniques
described below. Thus the gross somatotopic location of each neural interface would likely be known
as the nerve and perhaps the fascicle into which each interface were implanted would be known at
the time of surgery. A proposed method for determining the modality and perceived location of
each afferent microelectrode site involves a process of systematic stimulation as outlined below.

Initially the perceived locations of the entire group of afferent sites on each neural interface
would be verified by their stimulation en masse. The patient would report the location at which
the sensation appears. At this point, low-resolution areas of perceived sensation, or fascicular
dermatomes, would be known and may well prove adequate for initial prostheses. The subdivision
of each fascicular dermatome into higher-resolution regions and perhaps distinct sensory modalities
could subsequently be attempted.

Stimulation of small groups of microelectrode sites, in numbers chosen such that they are at
or slightly above the perceptual threshold, should allow the patient to indicate more precisely the
locations of the perceived stimuli. While it is presently unknown if distinct modalities could be
resolved in this fashion, future experimentation will undoubtedly yield a better understanding of
how this could be accomplished. Currently one can only speculate about what the patient would
actually perceive under stimulation. The only reports of such work known at this time [35, 36],
indicate that only “tingling sensations” were described under gross stimulation of nerves.

Regardless of the ultimate resolution at which stimuli could be delivered to the patient, a neural
network sensory mapper would be required to correctly distribute signals from the transducers on
the prosthesis to the neural interfaces. The neural network inputs would be the transducer signals
and the outputs would be numerical values representing the stimulus intensity required at each
microelectrode site. These numerical outputs would be transmitted transcutaneously, as shown



in Figure 6, and converted to pulse-frequency modulated streams of stimulus current pulses by
implanted circuitry.

In order to train the neural network sensory mapper, one could use the stimulation intensities
at each microelectrode site associated with perceived sensory locations and modalities (determined
as described above) for the training set of desired outputs. The corresponding inputs would be
derived from thé known characteristics of the transducers used. Given this training set, the feed-
forward neural network could be trained to form an appropriate mapping from transducers to the
microelectrode sites. Initial training could be done off-line, with fine tuning carried out with the
interaction of the patient.

8 Additional Applications for Neural Network Interfaces

Additional uses for the neural interfaces and processing circuitry would be abundant. Once the
prosthesis interface is established, the processing circuitry could be trained for alternative devices
which could be connected to the patient. Thus the neural interface and associated circuits would
constitute an extremely versatile man/machine interface.

Control of mechanical devices could be accomplished without the mechanical lag of the hand.
For example, the control surfaces of an aircraft could be directly mapped to hand motions. Sensory
ranges could be compressed or expanded to suit many applications. Microscopic manipulations,
such as those of microsurgery, could be mapped into perceived macroscopic motions. New sense
modalities could also be introduced. For example, radiation could be sensed using the appropriate
transducers and mapped into temperature sensations. It should be noted that since information is
bidirectionally transmitted into and out of the neural interfaces in a form suitable for telemetry,.
remote operation would also be inherently possible in these and other applications.

In addition, these devices will allow for a great deal of basic science research which should
answer fundamental questions regarding the nature of neural information conveyed by the PNS.

9 Conclusion

This article has presented an overview of the neural interface technology under development by
this group. Also presented was the use of such interfaces in nerve repair as well as proposed
implementations for direct neural network interfaced hand prostheses. Naturally, other types of
limb prostheses could eventually be realized using similar approaches. In order to achieve the goal
of realistic and cost-effective devices, an active effort is being made to avoid the use of expensive
and esoteric materials and fabrication processes.

The effort to realize such a prosthesis is a long-term, multidisciplinary project. It is expected
that it will be on the order of a decade before clinically useful devices can be produced. In the
meantime, it is hoped thaf some of the technologies developed in the course of the overall project
will find uses in rehabilitation and basic science research.
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