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Abstract 

An adaptive network with visual inputs has been trained to balance an inverted 
pendulum. Simulation results show that the network is capable of extracting the 
necessary state information from time sequences of crude visual images. A single 
linear adaptive threshold element (ADALINE) was adequate for this task. When 
tested by simulation, the performace achieved was sufficient to keep the pendulum 
from falling. The adaptive network’s ability to generalize made this possible since 
the training set encompassed only a fraction of all possible states. 

1 Introduction 
Balancing a broom stick in the palm of one’s hand is a fairly complex task from a 
control point of view. However for those of us with a modicum of coordination it is 
a seemingly simple task. If asked how we do it, most of us would be hard pressed 
to come up with an accurate account. An analogous problem is that of balancing 
an inverted pendulum fixed to a nonstationary platform. If the task of balancing 
such a system were presented to a person in the form of a video game, that person 
would probably master the game in a short period of time. Of course to master this 
game we have available to us the most sophisticated adaptive network around, the 
human brain. 

In this paper we analyze the ability of a simple adaptive network to balance 
an inverted pendulum. There are several reasons why the inverted pendulum was 
chosen as a basis for adaptive network research. First, the inverted pendulum 
problem is a classical control problem which has been extensively studied and is 
well understood. The inverted pendulum problem is representative of many other 
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6 = pendulum angle 
0 = pendulum velocity 
x = cart position 
v = cart velocity 
F = reaction force F+ + x,v 

Figure 1: Inverted Pendulum. 

control problems and therefore an understanding of how to use adaptive networks 
to balance the pendulum will allow us to solve other control problems. By using 
simple visual images of the inverted pendulum, we can examine pattern recognition 
and vision problems as well. Finally, the complexity of the inverted pendulum is 
significant enough to make the problem interesting while still being simple enough 
to make it computationally tractable. 

2 Inverted Pendulum 
In the inverted pendulum system illustrated in Figure 1, four variables describe the 
state of the system: the position of the cart ( x ) ,  the velocity of the cart (v), the 
angle of the pendulum (8 ) ,  and the angular velocity of the pendulum (U). The force 
required to stabilize the system at time t is 

where U is a positive constant representing the magnitude of the force to be applied 
to the system and the coefficients L1, k2, k3, k4, are derived from the physical 
Characteristics of the pendulum system and optimal bang-bang control theory. 

If the cart and pendulum velocities cannot be directly measured, they can be 
estimated by the instantaneous cart and pendulum velocities which can be derived 
from the current and earlier position measurements. Equation 1 can be rewritten 
as 

Ft = U x sgn [(kl+ b ) z t  - bzt--1+ (IC3 + k4)& - k @ t - 1 ]  , (2) 

where xt-1 and Bt-1 represent the cart and pendulum positions at an earlier time, 
the coefficients kl, Icz, kg, k4 are those of Equation 1, and the time between xt  and 
z ~ - ~  and 8, and 8t-l is some small fixed interval. 
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3 Previous Work 
The use of an adaptive network to stabilize a mechanical inverted pendulum was 
first studied by Widrow and Smith[3,7,5]. They demonstrated that a network of 
one computing element, an ADALINE (Adaptive Linear Element), was capable 
of balancing an inverted pendulum if the ADALINE input consisted of the four 
state variables, each encoded with an N-bit linearly independent code, a so called 
“thermometer code”. The force produced by the ADALINE approximated that 
called for by Equation 1. The network was trained using the Widrow-Hoff LMS 
algorithm with the output of an optimal controller of the form in Equation 1 as the 
teacher. 

Barto[2] has also studied the problem of balancing an inverted pendulum using 
an adaptive network. Barto used an input code and computing unit similar to that 
of Widrow and Smith but for training he used a system based on reward/punishment 
learning. This learning algorithm was based on one devised by Widrow, Gupta, and 
Maitra[6] which they had applied to a system that learned to play blackjack. 

4 Current Work 
To model the inverted pendulum system, we replaced the the mechanical cart and 
pendulum used by Widrow and Smith with a Macintosh computer simulation and 
display. The adaptive circuits were replaced by software simulation and the en- 
coded state variable inputs were replaced with spatially quantized binary images of 
an inverted pendulum. Examples of the quantized images are shown in Figure 2. 
The images were 5 by 11 binary pixel representations of the cart and pendulum; 
65 different images were possible with 5 different cart positions and 13 different 
pendulum angles. Pictures larger than the 5 by 11 pixel image were not used be- 
cause they provided no additional information and added computational overhead. 
Smaller pictures did not provide the resolution needed. 

The actual input to the network consisted of two 5 by 11 pixel images, one 
representing the present visual image and the other representing the visual image 
at a slightly earlier time. Both images were necessary because the network had 
to derive the cart and pendulum velocities as well as their positions2. With these 
two images there were 4225 different possible input images (65 x 65) with 110 bits 
(5 x 11 x 2) each. 

2The system could be designed to work with only one image by internally reusing the current 
image with the next image with the aid of delay circuits. The end result would be the same. 
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Figure 2: Two examples of Macintosh generated pendulum and cart images. The 
pictures on the right are spatially quantized images of the pendulum and cart figures 
on the left. 

For the network to balance the pendulum, in some sense it needed to implement 
Equation 2, estimating the pendulum and cart positions multiplied by the coeffi- 
cients kl, 122, k3, and kq. Finding a set of weights to do this requires solving a system 
of M linear equations with N unknowns where M is the number of images and N 
is the number of weights or equivalently the number of bits in the input image. A 
solution that minimizes the mean-squared-error can be found iteratively by using 
the Widrow-Hoff LMS algorithm. If an exact solution exists, the LMS algorithm 
will eventually converge to that solution. There are various methods of calculating 
the least squares solution directly[4,1]. 

The LMS algorithm was first simulated using all the possible images for training. 
The learning curve shown in Figure 3 is a plot of the number of presentations of 
the entire training set versus the percentage of classification errors. The error drops 
dramatically after just a few passes through the training sequence, then flattens 
out. After 1000 passes through the training sequence, the error was 3.4%. If the 
simulation was allowed to continue, the error would have eventually reached 1.78% 
which is the error obtained from a directly calculated least squares solution. The 
weights for the solution after 1000 passes are illustrated in Figure 4. 

Next, simulations were done to determine the network’s performance when 
trained on a fraction of the total number of possible images. Training sets of various 
sizes were picked at random from the set of possible training images. Results were 
computed for four different training sets of each size and averaged. The final error 
after 300 passes, computed over all possible images, is plotted as a function of the 
training set size in Figure 5. 
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Figure 3: Learning curve. 

Figure 4: Weights for a network solution using the LMS algorithm. The top 5 rows 
correspond to the current visual image of the cart and pendulum and the bottom 5 
rows correspond to the image at an earlier time. The size of the squares denote the 
magnitude of the weights. Grey represents negative weights and black represents 
positive weights. 
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Figure 5: “Generalization” curve. 

When the adaptive network solutions were tested with the Macintosh computer 
simulation, the pendulum was successfully kept from falling in spite of the fact that 
there were a small number of incorrect responses. 

5 Future Work 
Although control of the inverted pendulum was achieved by a single ADALINE 
with visual inputs, more complicated control problems will require larger adaptive 
networks with appropriate sensory inputs. 

The long term objective of this research is to demonstrate that a human expert 
can impart learned skills to an adaptive network in complex problem environments 
for which it may not be possible to develop explicit decision rules. This objective 
leads toward a new form of man-machine interaction in which a person trains a 
machine to perform a task by having the machine “look over the person’s shoulder”, 
observing the environment and the person’s responses to the environment. After 
limited training, the machine should be able to perform the task independently of 
the person, responding correctly to almost all situations, even those not specifically 
trained on. 
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