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Abstract - An  adaptive  pole-zero  filter  comprised of a 
bank of  bandpass  filters is presented. The  bandpass 
filters  permit  the  adaptive  filter  to  be  realized  in  a 
parallel form of first-order  sections. Simple 
monitoring of the  filter poles during  adaptation is 
therefore possible so that stability can be  ensured. 
This  paper  focuses on bandpass  filters which are 
implemented by a  frequency-sampling  structure;  the 
use of other types of bandpass  filters is briefly 
discussed. An  application  in  system  identification is 
described and computer  simulation  results are given. 

INTRODUCTION 
Most  adaptive  pole-zero  filters discussed in the 

literature have been  direct-form  realizations [1,2]. 
Recently, a parallel-form adaptive  pole-zero  filter 
implemented in the  frequency  domain  was  introduced 
[3,4]. The  frequency-domain  adaptive  pole-zero  filter 
(FDAF) uses a discrete  Fourier  transform ( D m )  to 
split  the  input signal into several  (approximately) 
orthogonal  signals.  These signals are  then 
independently  filtered by a bank of adaptive  first-order 
filters  which  permit  simple  monitoring of the  adaptive 
filter poles without  the  large complexity generally 
required by direct-form  realizations. 

The  DFT of the  FDAF essentially operates  as a 
bank of bandpass filters. This  interpretation is easily 
seen  when  a  frequency-sampling  structure is  used to 
implement  the  DFT [5].  It turns out that the bandpass 
filtering is fundamental  to  the  operation of the  FDAF. 
Consequently,  other types of bandpass filters could be 
used so that the  FDAF can be generalized  to a class  of 
parallel-form  adaptive  pole-zero  filters.  We will refer 
to this class of adaptive  filters as bandpass adaptive 
pole-zero  filters. 

BANDPASS  ADAPTIVE  POLE-ZERO  FILTER 

Filter  Description 
The  bandpass  adaptive  pole-zero  filter (BPAF) is 

comprised of a bank of N bandpass  filters as shown  in 
Fig. 1. Each  bandpass  filter is nonadaptive and each 
has a different  transfer  function  denoted by Fk(z) .  
Observe  that  the  input  signal x ( n )  is split into N 
signals uk(n)  by the  bandpass  filters.  The  signals uk(n) 
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are  then  filtered by a bank of adaptive  subfilters 
H k ( n , z )  to  produce N intermediate  output  signals 
yk(n ) .  The intermediate output signals are added to 
give the overall  filter output y ( n ) ,  which is compared 
with  the  desired  response d ( n )  to generate an error 
signal e ( n ) .  An  adaptive  algorithm uses this error  to 
adjust the coefficients of the adaptive  subfilters 
H k ( n , z )  so that  the  mean-square-error  (MSE) is 
minimized. 
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“1 
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RESPONSE d(n)  

Fig. 1. Bandpass  adaptive  pole-zero  filter. 

The  adaptive  subfilters are  comprised of a single 
pole and a single zero as follows: 

where {ak  ,bk , ck }  are  the adaptive  coefficients. Since 
each Hk(n   , z )  has only one pole,  it is simple  to  monitor 
the adaptive  filter poles for stability. If a  pole 
attempts to move  outside  the unit circle, the adaptive 
update  for  that  pole is simply ignored. The  update of 
all stable  poles can be  performed  however so that  the 
algorithm  is less likely to lock  up [2]. 

The  purpose of the  bandpass filters is to separate 
the  energy of the input  signal into N approximately 
nonoverlapping  frequency bins. As a result, the 
signals uk(n)  are  (approximately)  orthogonal so that it 
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is possible to adjust the coefiicients of the adaptive 
subfilters  independently of each other  and still  have 
satisfactory  convergence of the  adaptive  algorithm. In 
effect,  the  bandpass  filters  transform  a  wideband 
adaptive  filter  into  several  narrowband  adaptive  filters 
which operate independently to minimize the common 
error e (n). 

If a  frequency-sampling (FS) structure is used to 
implement the bandpass  filters,  then Fk(z) is given by 

where WN= ej2=IN. The  transfer function of (2) is 
comprised of N zeros  equally  spaced  around  a circle of 
radius p; a pole at z = $WN exactly cancels one of 
these  zeros. As a  result, each bandpass filter 
(theoretically) has a  finite  impulse  response.  The 
radial  contraction  coefficient 93, where Q<$<l, 
insures  that  the  bandpass  filter  pole  (and  zeros)  lie 
inside the unit circle so that (2) is stable. The angular 
shift  factor k,, where -1/2 c: Bo I 1/2, rotates  the 
frequency bin centers so that  no bin centers  lie on the 
real axis. This  permits all of the coefficients 
{ a k , b k , C k }  to  be complex  valued (see [4] for  further 
details). 

The frequency  response I F k ( d " )  I 2  of (2) is 
shown  in Fig. 2 for N = 8 ,  K=k ,=O,  and three  different 
values  of p. For ease of comparison, each curve has 
been  normalized by the corresponding area of 
I F k ( e j w )  1'. From  the  figure,  we  see  that decreasing 
the radial  contraction  coefficient f% increases the 
overlap  between  frequency bins. This in turn increases 
the correlation  between  the  signals u k ( ? t )  so that  the 
adaptive  algorithm will generally  converge more 

If we  assume  that x(.> is a  white  random ~ ~ Q = S S  
with  unit  variance,  then the magnitude of the 
correlation  coefficient  between the signals uk(n) and 
q(n) is  given  by 

k + k ,  

slowly. 

Equation (3) is plotted  in Fig. 3 for Ik-el= 1 and three 
different  values of N. As expected, the correlation 
between  frequency  bins  increases as f5 decreases 
toward  zero.  Furthermore, I P k l  I becomes more 
sensitive to changes in p as N is increased. Typically 
p would  be  chosen  close to  one so that p is nearly 
zero; a possible exception to this is discussed later  in 
this  section.  Nevertheless,  varying p can be  a useful 
means of controlling the  amount of correlation to 
observe  the  effect on convergence of the adaptive 
algorithm.  Some  results of this are given in the system 
identification  application  section. 
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Fig. 2. Bandpass filter frequency  response 
for a) p = 9 9 ,  b) p = .9Q, c) p = 5 0 .  
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Adaptive  Algorithm 
The  adaptive algorithm  is  shown in Table 1. The 

superscripts * and H refer to complex conjugate  and 
conjugate  transpose, respectively. Observe  that  the 
signal ~ ( n )  is common to all bandpass  filters as given 
by (2). The matrix R k ( n )  is the Hessian  matrix for the 
kth subfilter;  it is initialized to 61, where S is a scalar 
approximating the power of uk(n) and I is the identity 
matrix. The scalar a controls the algorithm 
convergence rate;  it is generally chosen so that 1-a is 
close to one. A more  complete description of the 
adaptive  algorithm can be  found  in [4,6]. 

Imperfect  Pole-Zero  Clancelatiol~ 
When implementing (2), we cannot  expect  perfect 

pole-zero cancelation. As a consequence, the impulse 
response  corresponding to (2) is actually infinite. This 
could be  undesirable since a significantly long  impulse 
response  might  adversely  affect the convergence rate 
of the adaptive  algorithm. If we  assume  that p of the 
numerator of (2) is replaced by p+ L where E is  the 
deviation  from p,  then the impulse  response of (2) is 
(approximately)  given by 

+ E pn-1 s(n-N) , 

where s(n )  is the unit  step  function. The  first term of 
the right side of (4) has finite  duration  and 
corresponds to the impulse  response of (2) if exact 
pole-zero cancelation were possible. The second  term 
of the  right  side of (4) has infinite  duration  and is 
introduced by the pole-zero mismatch. Observe 
however  that  this  term is proportional  to L. Since c is 
typically much less than  one,  we would  expect  little 

effect  from  imperfect  pole-zero  cancelation,  except 
possibly for  large N and for f3 very  close to the unit 
circle. Thus, it may be  desirable to choose p 
somewhat less than one (e.g., p = 0.90). The time 
constant T for  the decay of the  infinite  part of the 
impulse  response is approximately  given by 
T = W(1- p). Choosing p = 0.90 results in T = 10 
iterations  as  opposed to 7 = 100 iterations for 
p = 0.99. 

Extensions 
From  the  previous discussion, it is  clear that  other 

types of bandpass filters could be used in the BPAF. 
For example,  bandpass  filters  with less overlap  would 
result in the signals uk(n) being less correlated so that 
the adaptive  algorithm  would  converge more rapidly. 
Employing  such  filters  would  undoubtedly require 
more complexity. There is consequently  a  tradeoff 
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between  the  algorithm  convergence rate  and  the 
complexity  of the bandpass  filters. 

There is also a modeling issue which  may be  a 
consideration  in some applications. It was shown in 
[3] that  the FS structure  permits  the  BPAF to model 
an arbitrary  rational  system.  This  property, which 
would  be  important for example in system 
identification  applications, is obviously not satisfied by 
all types of bandpass  filters. 

One family of bandpass  filters which does  satisfy 
this  property is based on the Lagrange structure [SI, of 
which the FS structure is a special case. The  transfer 
function of a Lagrange-type  filter is comprised of N 
arbitrarily-placed zeros and a  pole which cancels one 
of  these  zeros.  This  structure  would be useful, for 
example, if it is known  a  priori  that the spectrum of 
d ( n )  is concentrated in  some  region I w \  C wc. In this 
case, it  would be  more efficient to use  bandpass  filters 
based on  the Lagrange  structure  instead of those based 
on the FS structure. 

APPLICATION  IN  SYSTEM  IDENTIFICATION 
In system  identification, the desired  response 

signal and the adaptive  filter  input  are often msumed 
to be generated  as  follows [7]: 

d(n)  = G(z)x(n) + v(n) , (5) 

where x(.) and v (n)  are zero-mean,  mutually 
uncorrelated  signals,  and G ( z )  is the system to  be 
identified. The particular  system to be identified was 

K(1-0.85~-'+0.36~-~)(1+  1.39z-'+0.64~-~) 
G ( z )  = (1-0.87z~1+0.25z-2)(1+0.75~-'+0.56z-2) 

(6) 
which  has four complex  poles at p 1 , 2  = 0.50Lt30°  and 
p3,4 = 0.75L%12Oo, and  four zeros at 
z1,2 = 0.60Lt45" and  z3,4 = 0.80Lk150". The input 
signal was a  real  white  random  process  and  the 
constant K was  chosen  such that  G(z)x(n) had unit 
variance. The additive noise signal  was also a  real 
white  random process with  a  variance  of The 
adaptive  algorithm of Table 1 was used with the 
following  parameters: a = 0.01, N = 4, 8 = 0.25, 
ko = 0.5, and  three  different  values  of @. They were 
@ = 0.50, 0.90, and 0.99. 

Fig. 4 displays the MSE learning curves obtained 
by averaging I e(.) 1 over 200 independent  simulation 
runs. Only the curves for p = 0.50 and 0.90 are 
shown  since the curve for p = 0.99  was nearly 
indistinguishable from  that of p = 0.90. Observe  that 
the curve for p = 0.90 decreases rapidly to  the noise 
floor of -40 dB,  converging  (approximately) by 
iteration 2000. On the  other hand, the  curve for 
p = 0.50 converges  more slowly. This  slower 
convergence is due  to  the increased correlation 
between  frequency  bins  as  shown in Fig. 3. 
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Fig. 4. MSE learning curves. 

CONCLUSIONS 
We have  presented  a  parallel-form  adaptive pole- 

zero  filter which  is  comprised of a  bank of bandpass 
filters (Fig. 1). A frequency-sampling  structure was 
used to implement the bandpass  filters,  although  other 
types of bandpass  filters are possible. There generally 
is a  tradeoff  between  the complexity  of the  bandpass 
filters  and  the  convergence  rate of the adaptive 
algorithm. The bandpass  adaptive  pole-zero  filter is 
always stable  and,  when using a  frequency-sampling 
structure,  it  demonstrates  rapid  convergence in system 
identification  applications (Fig. 4). 
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