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Abstract. Adaptive control is seen as a two part problem, control of plant dynamics and control of
plant noise. The parts are treated separately.

An unknown plant will track an input command signal if the plant is driven by a controller whose
transfer function approximates the inverse of the plant transfer function. An adaptive inverse
identification process can be used to obtain a stable controller, even if the plant is nonminimum phase.
A model-reference version of this idea allows system dynamics to closely approximate desired
reference model dynamics. No direct feedback is used, except that the plant output is monitored and
utilized in order to adjust the parameters of the controller.

Control of internal plant noise is accomplished with an optimal adaptive noise canceller. The canceller

does not affect plant dynamics, but feeds back plant noise in a way that minimizes plant output noise
power.
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INTRODUCTION

This paper presents a very brief description of a means of
using adaptive filtering techniques for solution of adaptive
control problems. The emphasis of this paper is on sys-
tems concepts rather than mathematic analysis. A full
paper by B. Widrow and E. Walach is in preparation which
will address the issues more completely.

Many problems in adaptive control can be divided into two
parts: (a) control of plant dynamics, and (b) control of
plant noise. Very often, a single system is utilized to
achieve both of these control objectives. The approach of
this paper treats each problem separately. Control of plant
dynamics can be achieved by preceding the plant with an
adaptive controller whose transfer function is the inverse of

that of the plant. Control of plant noise can be achieved by ,

an adaptive feedback process that minimizes plant output
noise without altering plant dynamics.

ADAPTIVE FILTERS

An adaptive digital filter, shown in Fig. 1, has an input, an
output, and another special input called the ‘‘desired
response.’”” The desired response input is sometimes called
the ‘‘training signal.””

The adaptive filter contains adjustable parameters that con-
trol its impulse response. These parameters could, for
example, be variable weights connected to the taps of a
tapped delay line or to internal points of a lattice filter.
There are many ways to configure such a filter.

The adaptive filter also incorporates an ‘‘adaptive algo-
rithm’” whose purpose is to automatically adjust the param-
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FIG. 1 AN ADAPTIVE FILTER

eters to minimize some function of the error (usually mean
square error). The error is defined as the difference
between the desired response and the actual filter response.
Many such algorithms exist, a number of which are
described in the textbook by Widrow and Steamns [1].

For the purposes of this paper, the adaptive filter may be
considered to be like the one shown in Fig. 1a, an adaptive
tapped delay line or transversal filter. With fixed weights,
this is a linear finite-impulse-response (FIR) digital filter
having a transfer function with only zeros, no poles in the
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finite z-plane. This will be the basic building block for the
adaptive systems to be described below.

DIRECT PLANT IDENTIFICATION

Adaptive plant modeling or identification is an important
function. Figure 2 illustrates how this can be done with an
adaptive FIR filter. The plant input signal is the input to
the adaptive filter. The plant output signal is the desired
response for the adaptive filter. The adaptive algorithm
minimizes mean square error, causing the model P to be a

best least squares match to the plant P for the given input

signal and for the given set of weights allocated to P.
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FIG 2. DIRECT IDENTIFICATION

INVERSE PLANT IDENTIFICATION

Another important function is inverse plant identification.
This technique is illustrated in Fig. 3. The plant input is as

before. The plant output is the input to the adaptive filter.

The desired response for the adaptive filter is the plant
input in this case. Minimizing mean square error causes
the adaptive filter P~ to be a best least squares inverse to
the plant P for the given input spectrum and for the given
set of weights of the adaptive filter. The adaptive algo-

- rithm attempts to make the cascade of plant and adaptive
inverse behave like a unit gain. This process is often
called deconvolution.

-
{7

_ /

ERROR 7, <
PLANT PLANT =
INVERSE +

FIG. 3 INVERSE IDENTIFICATION

For sake of argument, the plant can be assumed to have
poles and zeros. An inverse, if it also had poles and zeros,
would need to have zeros where the plant had poles and
poles where the plant had zeros. Making an inyerse would
be no problem except for the case of a nonminimum phase
plant. It would seem that such an inverse would need to
have unstable poles, and this would be true if the inverse
were causal. If the inverse could be noncausal as well as
causal however, then a two-sided stable inverse would exist
for all linear time-unvariant plants in accord with the
theory of two-sided Laplace transforms.

A causal FIR filter can approximate a-delayed version of
the two-sided plant inverse, and an adaptive FIR filter can
self adjust to this function. The method is illustrated in
Fig. 4. The time span of the adaptive filter (the number of
weights multiplied by the sampling period) can be made
adequately long so that the mean square error of the optim-
ized inverse would be a small fraction of the plant input
power. To achieve this objective with a nonminimum
phase plant, the delay A needs to be chosen appropriately.
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FIG. 4 DELAYED INVERSE IDENTIFICATION

The choice is generally not critical.

The inverse filter is used as a controller in the present
scheme, so that A becomes the response deldy of the con-
trolled plant. Making A small is generally desirable, but
the quality of control depends upon the accuracy of the
inversion process which sometimes requires A to be of the
order of half the length of the adaptive filter.

A computer simulation experiment has been done to illus-
trate the effectiveness of the inversion process. Figure 5a
shows the impulse response of a nonminimum phase plant
having a small transport delay. Figure 5b shows the
impulse response of the best least squares inverse with a
delay of A =26 sample periods. The error power was less
than 5% of the plant input power. Figure 5¢ is a convolu-
tion of the plant and its inverse impulse response. The
result is essentially a unit impulse at a delay of 26, with
small “‘sidelobes’” elsewhere.
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FIG. 5 (CONT'D) A PLANT AND ITS DELAYED INVERSE

A model-reference inversion process is shown in Fig. 6. A
reference model is used in place of the delay of Fig. 4.
Minimizing mean square error with the system of Fig. 6
causes the cascade of the plant and its ‘‘model-reference
inverse’’ to closely approximate the response of a model M.
Much is known about the design of model reference sys-
tems [2]. The model is chosen to give a desirable response
to the overall system. Some delay may need to be incor-
porated into the model in order to achieve low error.

o————»‘ P
S ERROR %
PLANT INVERSE %

MODEL~
NV
L1

FIG. 6 MODEL-REFERENCE PLANT INVERSE

Thus far, the plant has been noise free. Plant noise creates
difficulty for the inverse modeling schemes of Figs. 3, 4,
and 6. The noise will bias the inverse solutions. Wiener
filter theory tells why: Plant output noise goes directly into
the inputs -of the adaptive filters, biasing the input covari-
ance matrices of these filters.

To avoid this problem, the scheme of Fig. 7 can be used.
A direct modeling process yields . Wiener filter theory
shows why P is unbiased: The plant noise does not affect
the input to P and therefore does not influence its covari-
ance matrix. The noise is added to the desired response of
P, ie. to the plant output. But the plant output noise is not
correlated with the plant input. The result is that for the
adaptive filter, the plant noise does not affect the
crosscorrelation between the desired response and the adap-
tive filter input. Therefore, the Wiener solution for # is
unbiased.

Now using an exact copy of P in place of P, an off line
process is shown in Fig. 7 which calculates the model
reference plant inverse. The off line process can run faster
than real time, so that as P is calculated, the model refer-
ence inverse is immediately obtained. ,
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FIG. 7 MODEL-REFERENCE INVERSE OF NOISY PLANT

ADAPTIVE CONTROL OF PLANT DYNAMICS

Now having the plant inverse, it can be used as a controller
to provide a driving function for the plant. This simple
idea is illustrated in Fig. 8. Error analysis for this structure
has been done and will be presented in the paper by
Widrow and Walach. Many simulation examples have
been done, with consistent good results. The idea works.
The plant must be stable, and the plant zeros should not be
very close to the jw-axis in the s-plane (analog) or to the
unit circle in the z-plane (digital), otherwise a very long
inverse filter would be required.
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FIG. 8 DYNAMIC CONTROL OF NOISY PLANT

ADAPTIVE PLANT-NOISE CANCELLING

The system of Fig. 8 only controls and compensates for
plant dynamics. The noise appears at the plant output una-
bated. The only way that the plant output noise can be
reduced is to obtain this noise from the plant output and
process it, then feed it back into the plant input. The sys-
tem shown in Fig. 9 does this. :

In Fig. 9, an exact copy of P is fed the same input signal
as the plant P. The output of this P copy is subtracted
from the plant output. Assuming that P has a dynamic
response- essentially identical to that.of the plant P, the
difference in the outputs is a close estimate of the plant
noise. This noise is filtered by Q and then subtracted from
the plant input. The filter Q is generated by an off line
process that delivers new values of Q almost instantane-
ously with new values of P.
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The filter Q is the best inverse (without delay) of P, essen-
tially the best inverse of P (without delay). The *‘synthetic
noise’’ should have a spectral character like that of the
plant noise. It will be shown in the Widrow and Walach
paper that the noise cancelling system of Fig. 9 adapts and
converges to minimize the plant noise at the plant output.
As such, it is an optimal linear least squares system. There
is no way to further reduce the plant noise.

The system of Fig. 9 appears to be a feedback system.
However, if P is dynamically the same as P, the transfer
function around the loop is zero. The transfer function
from the “‘control signal’’ input-point to the “‘plant out-
put’’ point is that of the plant alone. Thus, the noise can-
celler does not affect the plant dynamics. )
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FIG. 9 ADAPTIVE NOISE CANCELLER
FOR NOISY PLANT

Figure 10 shows results of a computer plant noise cancella-
tion experiment. The plant in this case was minimum
phase. Almost perfect noise cancellation is possible with a
minimum phase plant, and this is evident from the experi-
ment.

ADAPTIVE INVERSE CONTROL

The system of Fig. 11 combines all of the parts, allowing
control of plant dynamics and control of plant noise. The
entire system is called ‘‘adaptive inverse control.”’

In Fig. 11, dither noise is used in the plant identification
process to obtain A. This should be done in cases where
the plant input signal is not persistent or is otherwise

unsuitable for plant identification. Also in Fig. 11, one can
see a ‘‘panic button’’ for breaking the noise cancelling
feedback. Emergency conditions could develop if the plant
P suddenly underwent massive changes in dynamics. Its
model Z would require time to catch up, and in the
meanwhile the whole noise canceller could go unstable.
Pushing the panic button saves the situation, and releasing
it as soon as P converges to P causes plant noise cancelling
to be resumed.
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FIG. 11 ADAPTIVE INVERSE CONTROL

CONCLUSION

Methods for adaptive control of plant dynamics and for
control of plant noise have been described. For their
proper application, the plant must be stable, and the plant
zeros should not be extremely close to the jw-axis of the
s-plane or the unit circle of the z-plane. An unstable plant
could first be stabilized with feedback, then adaptively con-
trolled. The feedback approach could also be used to move
plant zeros if required. Proper design of such feedback is a
subject of current research.
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