A FREQUENCY-DOMAIN ADAPTIV E POLE-ZERO

FILTER WITH APPLICATIONS

John J. Shynk * Richard P. Gooch ** Bernard Widrow *

*Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

Abstract - An adaptive pole-zero filter implemented in
the frequency domain is described. The filter structure
is shown to be a parallel combination of first-order
sections which permits simple monitoring of the filter
poles so that stability can be ensured. . Applications in
system identification and adaptive array processing are
discussed and computer simulation results are given.

INTRODUCTION

Over the last several years, adaptive pole-zero
filtering has become an important area of research.
The majority of adaptive pole-zero filters discussed in
the literature have been direct-form realizations [1,2],
although one exception to this is the cascade form
introduced by David [3]. Unfortunately, almost all of
these adaptive pole-zero filters have problems related
to algorithm instability and slow convergence to the
optimal solution. These problems have been severe
enough to prevent the widespread use and acceptance
of adaptive pole-zero filtering even though there are
many applications for which a pole-zero filter could
provide significantly better performance than an all-
zero filter having the same number of coefficients.

Recently, the authors have introduced an adaptive
pole-zero filter implemented in the frequency domain
which appears to be quite robust [4]. The structure is
similar to parallel-form filter realizations and as such
is less sensitive to finite-precision effects (than direct
forms) and is amenable to hardware (e.g., VLSI)
implementation. In addition, the structure permits
simple monitoring of the transfer function poles
without the large complexity generally attributed to
stability checking and projection of unstable poles.

FREQUENCY-DOMAIN ADAPTIVE
POLE-ZERO FILTER

The frequency-domain adaptive pole-zero filter
(FDAF) is displayed in Fig. 1. Observe that the filter
takes a discrete Fourier transform (DFT) of the
tapped-delay-line (TDL) output vector at each instant
of time to split the input signal x(n) into N
orthogonal * signals uy(n). Each complex signal u,(n)

the signals u,(n) are only approximately orthogonal since

_—
* Precisely speaking,
The amount of overlap can be

their spectra have a small amount of overlap.
reduced by increasing N and by windowing [5].

CH2331-7/86/0000/0299$01 .00 © 1986 IEEE

299

”Applied Signal Technology, Inc.
1185 Bordeaux, Suite D
Sunnyvale, CA 94086

is then independently filtered by a first-order subfilter

~comprised of a single pole and a single zero. Each

subfilter is denoted by its z-transform as

bi(n) + cx(n)z !
1- dk(n)z‘}

.Hk(n’z.) = (1)

where {ay(n) , by(n) , ci(n)} are adjustable
cocfficients. The outputs of all subfilters are added to
generate the overall adaptive filter output y(n). The
output signal y(n) is then compared to the desired
response signal d(n) to generate an error signal e(n)
that is used by an adaptive algorithm to adjust the
filter weights to minimize the mean-square of the error

(MSE).
x(n) x(n-1) x(n-2)

N-POINT DISCRETE FOURIER TRANSFORM

INPUT
SIGNAL
x{n)

x(n-N+1)

Ugin) u, (n) Un.y (P)
Ho(n,z) , ’ Hy(m,z) Hy-y(n,2)
z
OUTPUT
SIGNAL
ERROR _ y(n)
COMPLEX e(n)
— ADAPTIVE
ALGORITHM Y)
byin) + ¢y (n)z”
Hy(n,z) = 200K _),
1- ak(n;z
’ DESIRED :
RESPONSE
d(n)

Fig. 1 Frequency-domain adaptive pole-zero filter.

The parallel structure of this filter has several
advantages over the direct form of conventional pole-

zero adaptive filters. Because the poles {a;(n)} appear
explicitly in the first-order subfilters Hy(n,z), it is
possible to directly monitor their trajectories during
adaptation so that potential instabilities are easily
prevented. If one pole attempts to move outside the
unit circle, the adaptive update for that pole is simply
ignored. Alternatively, an unstable pole could be
reflected back inside the unit circle (e.g., by forming
its minimum phase equivalent [5]). The update of all
other stable poles is performed however, thus insuring
a change of the filter state for the next update so that
the algorithm is less likely to lock up [2].

It is possible to implement the TDL/DFT structure
using a fast Fourier transform (FFT) algorithm.
However, since the TDL/DFT structure is essentially a
bank of bandpass filters, a more efficient
implementation is to use a frequency sampling (FS)
structure [S] such as that shown in Fig. 2. The FS
structure has a computational complexity of order N
per sample compared to order N log N of the FFT
approach. Referring to Fig. 2, the comb filter
1 - zV has N zeros equally spaced around the unit
circle, one of which is canceled by a pole at z = W§,
where Wy = ¢/2™N. Thus, the k™ bandpass filter is

centered at o = 2wk/N with an approximate
bandwidth of 2w/N.
FREQUENCY
SAMPLING
REALIZATION
V.4
1-z-N un(n)
|_z_| ° Holn.z)
INPUT QuTPUT
SIGNAL H .4 SIGNAL
x(n) 12N | () y(n)
wyet | Hy(nz) E\ !
4V
12N 1 uy,(n)
1wl Hy-1(n2)
.............. ERROR
COMPLEX e(n)
ADAPTIVE
ALGORITHM .
. -1
HM,,,M"’%
1-a,(n)z-
DESIRED g(n)

RESPONSE

Fig. 2 Frequency-sampling realization of the FDAF.

We can therefore view the TDL/DFT as a means
of converting a wideband adaptive filter into several
narrowband adaptive filters which function somewhat
independently of each other to minimize the common
output error e(n). Each subfilter H «(n,z) modifies the
spectrum of u;(n) in such a way that the spectrum of
y(n) attempts to match that of the desired response
d(n). If the spectrum S,(z) of d(n) is rational and the
order of the denominator polynomial of §,(z) is less
than or equal to 2N, then the FDAF can exactly match
54(z). In other words the FDAF can exactly model an
arbitrary rational system of order N. Details of this
are given in [4].

300

Note however that both the TDL/DFT structure
and the FS structure have two bins centered on the real
axis so that, if x(n) is real, then ug(n) and uy,,(n)
will be real. It turns out that the adaptive algorithm
used to update a subfilter will not generate complex
coefficients if the subfilter input is real.
Consequently, the FDAF would require a DFT with
order greater than N to exactly model an N order
system that has no real poles.

It is possible to overcome this problem by using a
generalized DFT in place of the standard DFT. In this
case, the inputs to the subfilters are given by

W) = L5 xa-m @)

m=0

where —1/2 =< k, < 1/2. Equation (2) corresponds to
the usual DFT where the frequency index has been
shifted by the possibly noninteger-valued k,. This
form of the DFT is more desirable since the bin
centers can be shifted arbitrarily around the unit circle.
In particular, k, can be chosen so that no bin centers
lie on the real axis. ‘

The adaptive algorithm used to update the filter
coefficients is a modified form of the recursive Gauss-
Newton algorithm [6]. The coefficient update
expression for each subfilter is given by)

8. (n+1) = 0,(n) + aR{(n+D¥x(r)e’(m) , (3)

where the superscript * denotes complex conjugate and
the scalar a is a constant that controls the algorithm
convergence rate. The coefficient vector 0,(n) is

defined by ; , r
o) = (@), b, am) . @
and the signal vector Y (n) is given by

W = (-1, 4w, se-0) ©

with elements formed by filtering the subfilter input
and output signals by the pole polynomial of (1), i.e.

(6a)

ym) = ye(w) + ai(m) -1

il

uf(n) = u(n) + ai(n) uf(n—1) . (6b)

The matrix R,(n+1) is the Hessian matrix and is
computed as follows:

Rin+D) = (1-a) Ri(n) + sl , (1)

where the superscript H refers to conjugate transpose.

Because the DFT outputs uy(n) are orthogonal, it is
possible to adapt the coefficients of each subfilter
independently of the other subfilters, and still have
satisfactory convergence of the adaptive algorithm.
Consequently, the full N x N block Hessian matrix can
be replaced by an N x N block diagonal matrix where
cach block has rank three and corresponds to the
Hessian matrix for each subfilter (i.e., Ry(n) of (7)).
This permits calculation of the inverse Hessian to be
accomplished by inverting N (3x3) submatrices.

It is important ‘to note that the Hessian matrix
could be left out of the update (3) altogether in order
to reduce the algorithm’s computational complexity.
Unfortunately simulations have shown that this
reduction in complexity occurs at the expense of
slower convergence.

The initial coefficient values are generally chosen
to be zero and the initial Hessian matrix is given by
R(0) = 81, where I is the identity matrix and 8 is a
scalar chosen to approximate the power of u,(n).

APPLICATION IN SYSTEM IDENTIFICATION
In system identification, the desired response
signal and the adaptive filter input are often assumed
to be generated as follows:

d(n) = G(z) x(n) + v(n) ®

where x(n) and v(n) are zero-mean, mutually
uncorrelated signals, and G(z) is the system to be
identified. ’

A system identification example where G(z) had
poles close to the unit circle was presented in [4].
There we demonstrated that the FDAF performed
remarkably well under extremely difficult conditions.
In this section, we present results showing the MSE
and the trajectories of the filter poles during
adaptation.

The particular system G (2) to be identified was

K(1-.9:71)(1-.81:-2)
(1=.71271425:72)(1+ .75 1+ .56z72)

G(:) =
e ©)

which has four complex poles at P12 = 0.50L+45°
and p;, = 0.75.+120°, and three zeros at
712 = 0.90,+90° and z; = 0.90. The input signal
x(n) was a real white noise process and the constant X
was ‘chosen such that G(z) x(n) had unit variance,

There was no additive noise v(n). The specific FDAF-

parameters ‘were ‘a =01, N = 4, 8 =025 and
ko =.0.5. Instead of updating the coefficients
independently as. given by (3), they were updated
simultaneously using the full block-matrix
generalization of (7).

301

MSE learning curve and Fig. 3b

shows the pole trajectories during adaptation. These

curves were obtained

by averaging the results of 25

independent computer . simulation runs. The

trajectories of only two poles are sho
other two poles are sim
those shown. Three lo

WD since thc
ply the complex conjugates. of
cations have been marked on

each trajectory for comparison with the MSE learning
curve. Observe that the MSE essentially converges to

zero (i.e., less than -120 dB) by ite
the poles converge
the MSE decreases

ration 4000 and that
to those of G(z). Also note that
quickly to -40dB by iteration 1000,

even though the poles are not close to convergence.

o]
By 1
R
M,
o oM i 2
W,
r »
o
=
w
w
=
-80°
4120 . ; . i
.0 1000 2000 3000 4000
ITERATION
(a)

Z-PLANE

®

Flg.

3 (a) MSE learning curve and (b) pole trajectories.

Between iterations 1000 and 1500 the trajectory of
pole a, changes direction toward ‘the corresponding
pole of G(z); during this change, the MSE
convergence rate is’ somewhat reduced. Beyond
iteration 2000, the MSE again decreases quickly as the
poles converge toward the ideal values to give zero
MSE. - Although:‘not shown here; the coefficients
{b.(n) , cx(n)} have also converged to those predicted
by the partial fraction expansion of [4] where the DFT
of (2) has been used. = . i o

"APPLICATION IN ADAPTIVE

ARRAY PROCESSING
A constrained array processor operates in an
environment where a desired signal is incident upon
the array from a known direction while ‘several
interference signals are incident from other unknown
directions. The objective of the constrained processor
is to minimize the response of the array in the
direction of the interference signals while leaving the
response in the look direction unaltered or fixed at a
specified value [7]. Such an adaptive array can be
reconfigured into a structure consisting of a fixed
preprocessor operating on the array signals, followed
by an unconstrained adaptive processor [8]. This
reconfiguration ~ transforms the linearly-constrained
adaptive array problem into the simpler problem of
unconstrained multichannel adaptive filtering. One

such reconfiguration is shown in Fig. 4.

PREPROCESSOR I MULTICHANNEL
: | ADAPTIVE FILTER
| }
| ARRAY
: » | dtn) @ ouUTPUT
M | ‘ +
o I -
| y(n)
o . xan)
> l B1(2)
. xa(n)
> T Ba(z)
° A~
‘ s
|
. |
S l
|
o—1 !
.
Xm-1(N)
> I Bu-1(2)
o——"
SENSORS |
|

Fig. 4 A lincarly constrained array proccssor
using unconstrained minimization.

The basic idea behind the structure is to remove the
look-direction signal from the adaptive array filter
inputs x,(n) through xj_,(n) and then add it back into
the array output by summing all of the sensor signals.

The look-direction constraint is thus ensured to. be
fixed (at onc) regardless of the state of the array
filters B,(z) through By, _,(z). Interference signals on
the other hand appear in the x,(n) and d(n) inputs and
can therefore be canceled from the array output by
appropriately adapting the filter weights.

Conventional array processing uses all-zero. digital
filters for the array filters {B;(z)}. It can be shown
however, that the optimal broadband array weighting
for a linearly-constrained array contains a set of pole-
like resonances [9]. This naturally motivates the use
of pole-zero filters instead of the usual tapped-delay-
line (all-zero) filters. I ;

Fig. 5 shows an adaptive pole-zero array
processor using the FDAF where, for convenience, the
fixed preprocessor of Fig. 4 has not been shown.

ARRAY
OUTPUT.
d(n) + e(n)
®
x1(n) FREQUENCY BIN 0O -
——————————————— y{n)

. Z

Xu(n) FREQUENCY BIN L-1
____________ =3
1

i fyaln)

Bia(2) 1

ToLl® Um0 o S |
Bl |OFTws ‘ : Z 1+a.427 ||
Lo iBu1.(2) =
UM-1,L-1 1
S S —— IR |

302

yo(n)

o -

Fig. 5 Frequency-domain adapﬁvé pole-zero
: array processor.

Observe that each input signal x;(n) (k = 1,..., M—1)
is first processed by a DFT to produce L orthogonal
output signals u,(n) (m =0,...,L—1). The DFT
signals {u;,(n)} are then grouped by frequency bins
and filtered by a bank of M—1 all-zero digital filters
with transfer functions

(10)

Bim(z) = bimo+ bimiz™'

where {bmo » bim1} are the adaptive coefficients. The
outputs of the filters are then summed and filtered by
a single-pole filter ~with - transfer function
V(1 + a,z ') to produce the intermediate output
signal y,,(n). The overall output y(n) is ‘obtained by
summing these intermediate signals, which is then
subtracted from d(n) to give the array output: e(n).
An adaptive algorithm similar to that of (3) is then
used to update the adaptive coefficients.

We now present simulation results comparing the
signal-to-interference ratio (SIR) convergence curve of
the array processor of Fig. 5 with that of a
conventional array processor of similar complexity. A
wideband interference signal with 50% relative
bandwidth was generated by passing white noise
through a fourth-order Butterworth filter having a
normalized frequency of w, = #/2 rads and a
bandwidth of /2 rads. This signal impinged upon an
array consisting of two sensors (M = 2) separated by a
distance equivalent to one-half wavelength at the
signal’s center frequency. The bearing angle of the
interference signal was chosen to be 20° off the look
direction with a power level 20 dB above that of the
look-direction signal. There was no thermal noise.

The tap spacing for all arrays was also.chosen to
be one-half wavelength at the signal’s center

frequency. The FDAF was comprised of four poles -

(L = 4) and four zeros (M = 2) for a total of nine
coefficients. In order to be of similar complexity as
the FDAF, the filter of the all-zero array was chosen
to have nine feedforward coefficients. The recursive-

least-squares (RLS) algorithm was used to adapt the
all-zero array and (3) (generalized in an obvious way)

was used to adapt the pole-zero array.. The time
constant of both adaptive algorithms was set at 100
samples (i.e., @ = 0.99) and the Hessian matrices
were initialized to the identity matrix times the known
signal power. : ,

Fig. 6 shows the SIR convergence curves resulting
from averaging 500 independent computer simulations.

20
10 ‘
POLE-ZERO ARRAY
e WAL ps s LR Ui o
g g s]
z v y \
ot ALL-ZERO ARRAY
A
-10 /v\"*
-20 . :
0 1000 2000 3000
ITERATION

Fig. 6 SIR convéggéiii:c curves of the pole-zero
and the all-zero array procéssors.

Notice that the convergence rates of the all-zero and
pole-zero arrays are comparable, however the
converged SIR of the pole-zero array exceeds that of
the all-zero array by about 8 dB. Thus, the FDAF
generates a better approximation of the optimal
weighting than an all-zero array.

303

A more complete description of the FDAF array
processor and additional simulations are given in [9].

CONCLUSIONS

A frequency-domain adaptive pole-zero filter
(FDAF) has been discussed. As a result of the parallel
structure, the filter is always stable and is less sensitive
to coefficient quantization (than direct forms).
Furthermore, the filter can model an arbitrary rational
system.. Computer simulations were presented
demonstrating that the poles of the FDAF converge to
those of the system being identified (Fig. 3).
Application of the FDAF to array processing was also
discussed, and computer simulations were presented to
show that the FDAF performs significantly better, in
terms of increased SIR, than conventional all-zero

adaptive array processing (Fig. 6).

REFERENCES

[1] B. Widrow and S.D. Stearns, Adaptive Signal
~ Processing, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1985. :

C.R. Johnson, Jr.,, “Adaptive IIR filtering:
Current results and open issues,” IEEE Trans.
Inform. Theory, vol. IT-30, no. 2, pp. 237-250,
Mar. 1984. '

R.A. David, “IIR adaptive algorithms based on
gradient search techniques,” Dept. of Elec.
Engin., Stanford Univ., Stanford, CA; Aug. 1981
(Ph.D. dissertation). ‘

J.J. Shynk and R.P. Gooch, “Frequency-domain
adaptive pole-zero filtering,” Proc. IEEE, vol. 73,
no. 10, pp. 1526-1528, Oct. 1985.

L.R. Rabiner and B. Gold, Theory and Application
of Digital Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1975.

J.J. Shynk, “A complex adaptive algorithm for
IR filtering,” IEEE Trans. Acoust., Speech, Signal
Proc., in review.

O.L. Frost, HI, ““An algorithm for linearly
constrained adaptive -array processing,”” Proc.
1EEE, vol. 60, no. 8, pp. 926-935, Aug. 1972.

[2]

B3]

(4]

(51

(6]

71

[8] L.J. Griffiths and C.:W. Jim, ‘“An alternative
approach to linearly constrained adaptive
beamforming,” - IEEE Trans. Antennas and

Propagation,
1982. ,
R.P. Gooch and JJ. Shynk; “Wideband adaptive
array processing using pole-zero digital filters,”
IEEE Trans. Antennas and Propagation, Special
issue on adaptive array processing, to appear Mar.
1986. - S

vol. AP~30, no. 1, pp. 27-34, Jan.

(9]

