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The degradation in bearing estimation quality due Abstract- Maximum-likelihood (ML) beamformers 

can perform accurate bearing estimation by taking 
advantage of the fact that for high input signal-to- 
noise ratios, the adaptive beamwidth is much nar- 
rower than the classical Rayleigh limit. This paper 
studies the effect of random antenna element errors 
on this %uperresolution” phenomenon. The imper- 
fections considered are amplitude and phase errors 
which are constant during the period of adaptation. 
With a single input point-source signal, it is shown 
that the ML beamformer half-power adaptive 
beamwidth is degraded by array aberrations, but it is 
still several times better than that of conventional 
nonadaptive beamformers, provided the input 
signal-to-noise ratio is 0 dB or higher. A simple 
scalar formula is  presented for the ML half-power 
beamwidth in the presence of element errors for uni- 
formly spaced line arrays, and simulations are 
described which verified its accuracy to within 4%. 
Lastly, two new on-line algorithms are proposed to 
make the superresolution concept robust to array 
imperfecti 08s. 

1. INTRODUCTION 

Maximum-likelihood (ML) beamformers can per- 
form accurate bearing estimation by taking advantage 
of the fact that for high input signal-to-noise ratios, 
the adaptive beamwidth is much narrower than the 
classical Rayleigh limit of X/D radians, where X is the 
radiation wavelength and D the aperture width. The 
objective of this paper is to study the effect of imper- 
fectly known antenna elements on this superresolution 
phenomenon, by studying degradation in ML beam- 
former half-power adaptive beamwidth for a single 
source. This is the first step towards understanding 
another important problem, namely the effect of 
imperfectly known antenna elements on the ability to 
resolve closely spaced multiple sources. With a single 
input point-source signal, it is shown that the ML 
beamformer half-power adaptive beamwidth is 
degraded by array aberrations, but it is still several 
times better than that of conventional nonadaptive 
beamformers, provided the input signal-to-noise ratio 
is 0 dB or higher. This result suggests that superreso- 
lution is possible for the ML beamformer despite 
errors in the receiving elements. 

to element imperfections is a-result of bo& random 
pointing errors and an increase in half-power adaptive 
beamwidth (HPBW). A pointing error can exist when 
the value of array gain is not unity in the assumed 
look-direction. The pointing error is generally much 
less than HPBW, which means that most of the degra- 
dation in bearing estimation quality is due to increased 
HPBW, the subject of this paper. 

All element imperfections considered here are 
assumed constant during the period of adaptation. 
The signal environment consists of one narrowband 
far-field signal, no jammers, and additive white 
receiver noise. The signal and noise are both zero- 
mean, wide-sense stationary, and statistically indepen- 
dent of each other. The propagation medium is linear, 
homogeneous, and isonopic. Use of the optimal 
Wiener weighting, which minimizes mean-square error 
(MSE),  is assumed. 

Capon et al. [l] in 1967 were apparently the first 
to recognize the ML phenomenon, defined as using a 
set of weights that minimizes the output power of an 
antenna subject to a simple unity gain constraint for 
look-direction signals. 

Since that time, there has been much research on 
superresolution [2]. The result of Walach [3] is the 
one most relevant to this paper. He showed that for 
an equally spaced line array, it was possible to derive a 
simple scalar expression to predict HPBW of a con- 
verged narrowband ML beamformer. 

With respect to the “imperfect array problem,” 
several researchers in the past have noted that linearly 
constrained adaptive beamforming suffers from a 
hypersensitivizy to array imperfections when the input 
signal-to-noise ratio (SNRi) exceeds some threshold 
[4-51. Here “noise” means receiver noise. The solu- 
tion to the imperfect array problem most relevant to 
this paper is Zahm’s 161 artificial receiver noise iajec- 
tion strategy (cf. 64.2). 

In terms of implementation, ML beamformers can 
be built in several ways. One way is Frost’s [7] beam- 
former, which minimizes output power subject to a 
constant gain constraint in an assumed look-direction. 
Another way is to use an Applebaum-Chapman- 
Griffiths-Jim [8] generalized sidelobe canceller (GSC), 
which realizes the constraints by preprocessing, and 
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uses ~ n c o n s ~ a i n ~ ~  adaptat~on~ 
This paper combines the work on the superresolu- 

tion problem with the work on imperfect arrays in 
order to study the achievable 
former in the presence of rand ement gain (ampli- 
tude and phase) errors. The analysis i s  based on use 
of the GSC. Contribut~ons contained herein are: 

Extension of Walach's [3] result to imperfect 
arrays. 

discussion of the effect of random element mis- 
p l a ~ ~ e n t  on ~ P B W ~  

on-line algorithms for making HPBW of the 
rmer robust to ~m~erfections, both 
ificially ~ n j ~ t i n ~  receiver noise into a 

ML GSC. 

The outline of the paper is as follows: Section 2 
ula for ~ P B ~  in the presence of 

at degradation in HPBW 
s in a more qualitative way, and 

new algorithms which make HPBW 
tions. Section 5 considers the wide- 

the conclusions. 

2. THE MAIN RESULT 

This section will present the formula from 121 for 
PBW of the ML beamformer in the presence of ran- 

dom element gain imperfections. 
The GSC is shown schematically in Fig. 1, consist- 

ing of K elements, which ideally would all be omni- 
directional with identical amplitude and phase. A sim- 
ple model for random antenna element imperfections 
is to let each element have a random complex gain g, , 
assumed to remain constant during the period of adap- 
tation. The use of a complex gain implicitly takes into 
account random element amplitude and phase errors. 
Denoting the zero-mean random element amplitude 
error at element i by Aai and the zero-mean phase 
error by Ap, , the complex gain can be written as 

Fig. 1, Block diagram of narrowband GSC. The 
additive receiver noises following the steering de- 
lays are not shown. 

gain error. 

The adaptive beamformer with and without imper- 
fections is illustrated in Fig. 2. Ap, includes the phase 
error due to random element misplacement, which 
changes with signal direction [4], so therefore Ag, and 
g, change with signal direction. It is als 
that Aa, could be a function of signal 
example if the antenna element pattern 
omnidirectional. In the presence of errors, the b e m -  
former still adapts in such a way as to minimize MSE,  
but the fact that it is unaware o the errors corrupting 
the data causes a degradation in 

For the ~ a r r o w b ~ ~  case, presteering the array to 
a known bok-dir a ~ ~ p ~ i § ~ e d  by use of a 
phase shifter at the t of each antenna element. 
In order to steer the to the l o ~ k - d ~ r e c ~ i ~ n  eo , a 
presteering delay of i s  needed at element i. In 

resteering, a signal coming from an 
angle BS would undergo a time delay of T ; , ~  . Thus, 
with look-direction steering, the signal undergoes a 
total time delay 7, = T , , ~  - T ; , ~  at element i. 

f 

Adaptive 

Beamformer 

U 
Algorithm lo minimize MSE 

Fig. 2. Adaptive beamformer with and without 
imperfections. (a) without imperfections; (b) with 
direction-dependent imperfections. 
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Imperfections in the presteering electronics can 
also be included as part of the amplitude and phase 
error terms dui  and d p i  . 

After passing through the presteering delays, the 
signal received at each element is corrupted by additive 
zero-mean white noise, as shown in Fig. 3. This addi- 
tive receiver noise is assumed to be independent and 
identically distributed (i.i .d.) from element to element. 

Element 

i 

Fig. 3. Model of d-th receiver clime1 (i= I, .. . , K). 

The beamformer consists of 
upper is termed the desired refp 
purpose is to form the desired respon 
the primary input to the adaptive noise canceller. In 
the absence of array imperfections> t 
response branch is constrained to have a unit Hook- 
direction gain. In general, this branch is a conven- 
tional delay-and-sum beamformer, with K nonadaptive 
weights fixed in such a way that the array beamwidth 
and average sidelobe level are bot satisfactory [SI. 
This paper assumes unifoam 1/K weighting, but other 
weightings could be easily considered. 

The lower branch of the beamformer is the 
sidelobe cancelling branch. Its purpose is t? form the 
sidelobe cancelling signal Y k  by providing K reference 
inputs to the adaptive noise canceller. Y k  contains esti- 
mates of non-look-direction components in the desired 
response, so that after subtracting Y k  from dk , the 
beamformer output zk is a “cleaner” representation of 
look-direction components. Note the use aP complex 
conjugate weights I. * - k in computing yk ~ 

These weights c m  be updat y several different 
methods, for example the c 

signal biocking ma@ 
block ~ o o k - d ~ r e c t ~ ~ ~  
ling branch canpot Peam them. The preprocessor bas 

ts and K outputs. In this paper i t  is assumed 
< K. The simplest example of a preprocessor 

is  the use of adjacent element differencing, yielding 
zero gain in the look-direction (in the absence of 
imperfections). Use of the latter blocking processor 
makes the GSG behave like a ML Frost beamformer, 
as far as the Wiener so1u:ion is concerned [8]. With 
this type of preprocessor K = K- 1. 

The restrictions OH 
rank [B) = k where iK is 
62 a K x 1 vector of 0’s [$I. 

A class of signal blocking matr 
tral difference matrices is formed b 
columns of differencing, as shown i 
ally, they are written B#-*) , 
indicates the number of antenna 
superscript (r- 1) the use of a main 
st derivaiive constraint in the lo 
quantity K (the dimension of the 
tors) then becomes ( 

1 2 .a. ). 

K 

Inputs 
... K - r  

outputs 

The simplest case is the (K-1) X 
or r = 1, which is just adjacent elem 
and configures the GSC to 

In [2j it is shown that 
vious assumptions, the 
“small,” then the half- owe^ adap 

ition to all the pre-- 

t 

1 12 

where d is the id 
gain error varian 
for all i, with th 
defined as expe 
antenna elements, and the complex gain error at ele- 

the signal, respectively. 
alach [3] a broadside ~ o o ~ - ~ i r e c t ~ ~ n  

HPBW formula, as long as Bo i 

Simulations will be described which verified (2). 
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The array used in the simulations was a 10- 
element line array with half-wavelength interelement 
spacing and a broadside look-direction, as shown in 
Fig. 5. The signal blocking matrix Bd*) was used to 
configure the GSC in a ML form. SNR, was varied 
from - 10 dB to 30 dB in 10 dB steps, and at each one 
of these steps random Gaussian element gain errors 
were generated, assumed to be equally due to ampli- 
tude and phase imperfections drawn from statistically 
independent zero-mean Gaussian distributions, so that 
U: 2 U: + U; , where U: !! E,[ Aai  1 represents the 
amplitude error variance, and up = E,[ A p ; ]  the 
phase error variance. All values of Ag, having a mag- 
nitude greater than 3ug were discarded, and new 
values regenerated in their place. 

Look-dircclion Signal 

. . e .  o . . . . .  
10 9 8 7 6 5 4 3 2 1 

Fig. 5. Array geometry. 

The beamformer was adapted to minimize MSE 
without being aware of the array imperfections cor- 
rupting the data, as previously assumed. For each 
trial, a curve of array gain ys vs. signal angle of arrival 
0, was obtained, and this curve was then expanded in 
the main beam region so that HPBW could be carefully 
measured using an interpolation routine. DOUBLE 
PRECISION COMPLEX was used on a DEC VAX 
11M80. 

For SNR, 2 0 dB, the agreement between the for- 
mula and the simulated data was good. For this range 
of SNRi, the formula had a tendency to overestimate 
HPBW by roughly 4%, which could be partly or 
mostly due to small inaccuracies in the simulation 
(e.g., random number generator), but in any case is 
not a serious discrepancy. However, for SNR, = -10 
dB, the formula overestimated HPBW by a little over 
25%, which should indicate caution on the part of 
potential users. 

The reader is also urged to study the formula in 
li ht of Mayhan's [9] stressing that U: < -40 dB (Le., 
up f (dB) 4 10 loglo U:) is usually considered very diffi- 
d i t  to achieve in practice. 

4. DISCUSSION OF I~PERFECTIONS 

4.1. Degradation in Performance 

In order to see superresolution graphically, the 
array gain of a 10-element line array with half- 
wavelength spacing, a broadside look-direction, ideal 
elements, and receiver noise 60 dB below the signal 

was plotted, as shown in Fig. 6. The adaptive beam- 
former was chosen to be the now-familiar GSC in a 
ML configuration. The superresolution concept is 
clearly demonstrated by the much narrower HPBW of 
the adaptive beamformer as compared to the conven- 
tional beamformer. In fact, the measured 0.0025" 
HPBW of the adaptive beamformer as compared to 
10.13" for the conventional beamformer indicates a 
theoretical improvement in resolving ability of about 
4000! 

For the purpose of getting a rough idea of the sen- 
sitivity of superresolution to imperfections, all ele- 
ments were subjected to a random two-dimensional 
misplacement iaving a standard deviation of 

I< = 10 

i 

SNR; = on clll 

\ 

IIPBW = 10.18' 

Adaptivc 
IIPBW = O.Ofl25" 

-100 -50 0 50 I W  

Signal angle of arrival, 0, (deg ) + 

Fig. 6. Superresolution of m a y  having ideal dements. 

U? = 0.03 A (6% of the ideal interelement spacing), as 
shown in Fig. 7. These random misplacements cause a 
direction-dependent phase error at each antenna ele- 
ment. In [4], it is shown that for far-field signals, 
under the three assumptions of Ax and Ay being 
"small," statistically independent, and equal, the phase 
error variance is independent of 
U; 4 ~ ~ ( a , / A ) ~ .  

, A d  is given by 

Ideally 
placed Misplaced 

element: c; element: 0 

/' '. 
\ / c) \ 

I I 
I i+--.I 

Fig. 7. Geometry of random element misplacement. 
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In this particular simulation, only phase errors 
were assumed, so U: = U; , and is easily calculated to 
be - 14.5 dB, a rather large error. 

Once again using the weights which minimized 
MSE in the presence of the randomly generated imper- 
fections, array gain of the imperfect array is plotted in 
Fig. 8, and the widening of the adaptive beamformer 
HPBW by a factor of about 320 displays its hypersensi- 
tivity to imperfections. Even with this terrible array, 
the resolving power of the adaptive beamformer is still 
over 10 times better than its conventional counterpart. 
Unfortunately, the superresolution may be very diffi- 
cult to take advantage of, because array gain near the 
look-direction is so low. 

20 

0 

-20 t 
m -10 
h 

-0 
v 

< -GU 
C 

M 
.- 
.+ -80 
2 
4 -100 

-120 

-1.10 

Conven tiond 
IWDIV = 10.26. 

-100 -50 U 50 llN 

Signal angle of arrival, 0, (deg ) -+ 

Fig. 8. Superresolution of array having misplaced elements. 

4.2. A Simple and Effective Remedy 

A technique for restoring the robustness of ML 
beamformers to imperfections is due to Zahm [a]. His 
idea was to artificially inject receiver noise in such a 
way that the weight vector was computed based on a 
higher receiver noise level than was actually present. 
However, the artificially injected noise does not actu- 
ally appear at the beamformer output. This prevents 
the beamformer from nulling out signals very close to 
the look-direction. 

Denoting the actual receiver noise power (as 
measured at any element) by U: , and the artificially 
injected noise power .by af , the resulting equivalent 
noise power U: is just U: = u,2 + U? . ~ 

HPBW is only sensitive to the equivalent noise 
power. The same is not true of some other perfor- 
mance measures, such as output signal-to-noise ratio 
(SNR,). A complete study of artificial noise injection 
in the GSC was performed by Jablon [4-51. In the 
interest of brevity, only some of the main results will 
be summarized here, which consist of two possible 
on-line algorithms for artificially injecting receiver 
noise to make HPBW robust to element imperfections. 

The first one is an extension of Widrow and 
Stearns' [7] leaky LMS algorithm to the GSC, and also 
turns out to be a special case of Chestek's [lo] so$- 
constrained LMS algorithm. Before introducing the 
algorithm for artificial noise injection in the GSC, it is 
natural to first state the leaky LMS algorithm: 

where with reference to Fig. 1, w k  is the weight vector 
at time sample k,  (1-f) the leakage parameter, p the 
adaptation constant, ek the error signal, which for the 
GSC is chosen to be the beamformer output 
zk = dk - Yk , and u k  the state vector. The artificially 
in'ected receiver noise power then becomes 

w k t l  = ( l - t ) W k  + 2pzkak (3) 

cl = V P P )  
The GSC leaky LMS algorithm is [4-51 

where 1; is a constant (generally close to zero) which 
satisfies f > 0 . 

(4) has the effect of artificially injecting noise 
power of uf = V(2pj . The signal power as measured 
at any element is us . Denoting the input signal-to- 
equivalent-noise ratio by SERi & u,2/a: , of is chosen in 
such a way that look-direction SNR, is acceptable. In 
the look-direction, SNR, may be approximated by [2] 

(5) 
SNRiK 

SNR, 
(1 + SERi(K- 1)~:) + SERfK(K- 1)u: 

Chestek [lo] guaranteed convergence of both the 
mean weight vector and MSE by choosing p in accor- 
dance with 

(6) 
1 

3 T r  (R,,,) + l T r  (B BT) 
o < p <  

2 a  
where Tr ( e )  denotes matrix trace, and R,, autocovari- 
ance matrix. The bound (6) is easily calculable in an 
on-line implementation, since Tr (R,,,) is just the total 
input power to the sidelobe cancelling branch, and [, 
p, and B are all specified by the designer. 

The advantage of using the LMS-type algorithm 
(4) over other adaptive schemes is that the coaputa- 
tion per iteration req!ired to update the weights is 
only on the order of K complex multiplications, since 
BB is generally band-diagonal (e.g., Bdo)(Bdo))r is 
tridiagonal). Sometimes one wishes to estimate R ,, 
by other means, such as in the sample matrix inversion 
method considered by Reed et al. [ll]. Then artificial 
noise can still be injected by 

I I 
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uu is the data-dependent esti 
he data-dependent estimate o 

tificial noise is injected into the ML GSG SO 
= 10 dB, corresponding to SNR: 45 dB, 

the array gain plot of Fig. 9 results (note change in 
scale). Although a comparison of Fig.% 8 and 9 shows 
that the adaptive beamformer HPBW increased about 
40% due to noise injection, there is no question that 
for practical applications, Fig. 9 is a great improve- 
ment over Fig. 8, since the array gain near the look- 
direction has been increase e value 
as for the conventional beamformer, w h ~ ~ e  retaining 
the highly desirable low sidelobes. The resolving 
power of the adaptive beamformer is  still about 10 
times better than the conventional one. Further 

by the artificial noise. 

with the theory of artificial noise injection. 
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. Superresolution of array having misplaced 
dements with artificial noise added. 

TENSKON TO THE WIDE 

The extension to the wideband case is trivial, 
assuming that wideband adaptive noise cancelling tech- 
niques [7] are now used, which give the optimal 
Wiener weightiags as a function of frequency. The 
only differences in the wideband case are that one 
needs to keep track of the change in wavelength as a 
function of frequency (since it affects both presteering 
and any possible random element misplacement), an 
both SNR, and cr; must be interpreted as functions of 
o, which means that at some frequencies certain 
assumptions may no longer hold. 

Array imperfections su 
superresolution capabilities 
(ME) beamformers, as evide 
half-gower adaptive Beam 
imperfections do not render the s u p e ~ e s o ~ u t ~ ~ ~  con- 

robustness to array imperfections 
emendously by a r r ~ ~ ~ a ~ ~ y  injecting 

receiver noise. 
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