
Abstract
A few of the well established methods of adaptive

signal processing are modified and extended for
application to adaptive control.

An unknown plant will track an input command
signal if the plant is preceded by a controller whose
transfer function approximates the inverse of the plant
transfer function. An adaptive inverse modeling process
can be used to obtain a stable controller, whether the
plant is minimum or non-minimum phase. No direct
feedback is involved. However the system output is
monitored and utilized in order to adjust the parameters
of the controller. The proposed method is a promising
new approach to the design of adaptive control systems.

INTRODUCTION
There is a great need for learning-control systems

which can adapt to the requirements of plants whose
characteristics may be unknown and/or changeable in
unknown ways. Two principal factors have hampered the
development of adaptive controls, the difficulty of dealing
with learning processes embedded in feedback loops, and
the difficulty in controlling nonminimum-phase plants.
Considerable progress has been made (see for instance
works by Powell E1, Tse and Athans [10], Nakamura and
Yoshida [8), Astrom and Wittenmark [2], [3), [4], Landau
[5), [6], Martin-Sanchez [71). However, interaction
between the feedback of the learning process and that of
the signal flow path still greatly complicates the analysis
which is requisite to the design of dependable control
systems.

In this paper we continue with the development of
an alternative approach, which was first presented by B.
Widrow and his students [14], [15], and B. D. 0.
Anderson [1], which circumvents many of the difficulties
that have been encountered with the previous forms of
adaptive control. The basic idea is to create a good
transversal filter model of the plant, then to utilize it in
order to obtain an inverse (or delayed inverse) of the
plant. This iiiverse can be used as an open loop
controller of the system. Since such a controller is
realized as a transversal filter, the stability of the system
is assured. Moreover it can be shown that, if one is
willing to allow a delay in the response of the control

system, excellent control of the plant dynamics can be
achieved, even for nonminimum phase plants.

ADAPTWE FILTERING
A schematic representation of an adaptive filter is

depicted in Fig. 1. The filter has an input u2, an output

y,, and it requires a special training signal called the
"desired response" d,. The error , is the difference
between the desired and actual output responses. The
filter is assumed to be transversal and its weights
w11 are adapted in order to minimize the expected
square of the error c,. Various adaptation algorithms can
be utilized for that purpose. Here we will employ the
LMS steepest descent algorithm of Widrow and Hoff 1111,
[12], [13).

Consider the direct modeling of an unknown plant as
shown in Fig. 2. When given the same input signal as
that of an unknown plant, the adaptive model self-
adjusts to cause its output to be a best least squares fit to
the actual plant output. With a sufficient number of
weights, an adaptive transversal filter can achieve a close
fit to an unknown plant which may have many poles and
zeros.

The inverse model of the unknown plant could be
formed as shown in Fig. 3. The adaptive filter input is
the plant output. The filter is adapted to cause its
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Fig. 1. An adaptive filter.
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Fig. 2. Adaptive modeling.

+ flj

PLANT
OUTPUT

output to be a best least squares fit to the plant input. A
close fit implies that the cascade of the unknown plant
and the LMS filter have a "transfer function" of
essentially unit value.

If the plant itself is stable, all of its poles lie in the
left half of the s-plane. But some of its zeros could lie in
the right half plane, and then the plant would be
nonminimum phase. The inverse of the minimum phase
plant would have all of its poles in the left half plane,
and there would be no problem with stability of the
inverse. The non-minimum phase plant would have zeros
in the right half plane and stability of the inverse would
be an important issue. However, it can be shown that
stable inverses for nonminirnum phase plants could
always be constructed if one were permitted noncausal
two-sided impulse responses. Furthermore, with suitable
time delays, causal approximations to delayed versions of
noncausal impulse responses are realizable. Thus, by
allowing a delay in the modeling process (as illustrated in
Fig. 3), one can obtain approximate delayed inverse
models to minimum phase and nonminimurn phase
plants. It is not necessary to know a priori whether the
plant is or is not minimum phase. However, some

knowledge of plant characteristics would be helpful when
choosing the delay and the length of the transversal
filter used for inverse modeling.

ADAPTIVE INVERSE CONTROL SCHEME
Using a stable delayed inverse, control is

accomplished as illustrated in Fig. 4. The controller is a

Fig. 4. An adaptive inverse control system.

copy of the inverse model. The command input i, the
desired output for the plant, is applied as an input to the
controller. The controller output is the driving function
for the plant. If the controller were an exact delayed
plant inverse, the plant output, assuming no noise, would
be an exact copy of the input reference command, but
delayed, i.e.,

y. =

A step change in the command input would cause a step
change in the plant output after a delay of seconds. In
order to illustrate this idea, computer simulations were
performed. A nonminimum phase plant was controlled.
Its impulse response is depicted in Fig. 5a. This stable
underdamped plant has a small transport delay. In order
to find the inverse, the scheme of Fig. 3 was used to
adapt a transversal filter having 40 weights. Since the
plant is nonminimum phase, a good (low error) causal
inverse cannot be obtained. Hence for =o, the error
power was close to the input power. However when the
delay z was increased, the error power decreased
indicating that very good plant inverses were obtained.
Figure 5b shows the error power as a function of the
modeling delay & For =26, the error power decreased
to below 5% of the input signal power. For this value of, the best plant inverse had the impulse response shown
in Fig. 5c. Connecting this as a controller in cascade
with the plant, in the manner presented in Fig. 4, the
overall impulse response was as shown in Fig. 5d. Clearly
the behavior of the entire system closely approximated
that of a pure delay. In Fig. 6b the step response of the
control system is presented, and it may be compared to
the ideal step response of Fig. fia.
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Fig. 3. Delayed inverse modeling.
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CONCLUSION
A method for adaptive inverse control has been

introduced. The technique is easy to implement and
exhibits robuAt, predictable behavior. Intensive research
has, been conducted in this area in order to enhance the
potential capabilities of the proposed approach and to
perform detailed analyses of the expected behavior. The
results of this additional research are now being prepared
for publication.
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ADAPTIVE ALGORITHM

The coefficients an and b0 are adapted accord-

ing to the well known steepest descent criteria
for recursive and nonrecursive systems [1,21.
Using the block diagram in Fig. 1 together with
the transfer function defined in Eqn. (1), we can
write the following:

= (1r2)[axk lXk 2]+(1+r2)ayk lryk2 (5)

Xk - 'k (6)

y1 = byk (7)

€kXk_Yk (8)

The subscripts denoting the stage number, 11, have
been omitted for notational simplicity. Due to the
recursive nature of k' the desired partial deriva-

tive is also defined recursively as

ak8a
(9)

= (1r2)xkl÷(1+r2)[ykl÷al]r2ak2

Using Eqns. (5-9) together with the steepest de-
scent criteria, the adaptive coefficient updates
are

ak÷l = ak Pkak (10)

bk+l = bk +

where p and are constants which determine the
rate of convergence. Note that at each iteration
we are actually updating N sets of Eqns. (5—11).

EXPERIMENTAL RESULTS

Computer simulations were performed to demon-
strate the performance of this ALE system for the
previously described example. Initial conditions
were selected to distribute three filter passbands
in a comb pattern over the frequency range from 0
to ,r/2 radians. The resulting starting points were
.26, .78, and 1.3 radians. The distribution with
respect to the a performance surface is illustra-

ted in Fig. 3. Note that the central point lies
on an extremely flat portion of the surface, where
gradient search algorithms are understandably in-
efficient.

The results of this experiment are presented
in Fig. 4. The plots illustrate the magnitude of
the gain coefficient, bn and the angle correspon-

ding to the adaptive coefficient an for each of the

three stages. Stage 1 quickly locked on to the
incoming line at 0.4 radians, as would be expected
from the initial conditions illustrated in Fig. 3.

Due to the flat surface, no signal was detected by
stage 2. Note that the gain coefficient decays to
zero as predicted. The line signal at 1.2 radians
was detected by stage 3. Note the difference in
rates of convergence from stage 1 to stage 3. This
is consistent with the shape of the performance
surface in Fig. 3, and suggests that a normaliza-
tion factor based on the signal power might provide
more uniform convergence characteristics.
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Figure 4. Experimental Results.
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