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Two forms of the LMS adaptive algorithm will
be discussed here, the "usual" algorithm based on
the method of steepest descent [1-5], and an ideal-
ized algorithm hased on Newton's method. These
algorithms will be considered from the points of
view of: (a) rate of convergence, (b) efficiency
of statistical performance.

Speeding up a given adaptive process generally

requires that the adaptive parameters (weights, etc.

)

take values based on averaging over less input data.

The. result is increased parameter noise and reduced
average system performance. When using a specific
algorithm, there is generally a tradeoff between
speed of convergence and average statistical per-
formance.

Two algorithms may be compared with each other
when applied to the same adaptation task by adjust-
ing their rates of convergence to cause the same
effective parameter noise. As such, the more effi-
cient algorithm converges faster. Effective para-
meter noise is that attribute of the noise that
causes loss in system performance.

Referring to the literature [1-5], the steepest

desqent version of the LMS algorithm is
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The th-mode of the mean square error learning
curve has a time constant given by
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It is seen that increasing the convergence factor
u speeds up the adaptive process by causing the
adaptive time constants to be reduced. However,
to insure stability in the mean, p must be kept
within the bounds .

>u >0
max

where Amax is the largest-eigenvalue of the input

correlation matrix R. After adaptive transients
die out, noise in the weights causes, on the
average, an increase in mean square error over the
theoretical minimum mean square error. The mis-
adjustment M has been defined [1-5] as the dimen-
sionless ratio of the average excess mean square
error to the minimum mean square error. For the
steepest descent LMS algorithm,
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Increasing p speeds up the adaptive process but
increases the misadjustment.

" A "Newton's method" version of the LMS
algorithm premultiplies the instantaneous gradient
estimate 2€jxj by the inverse of R. The algorithm
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The scaling constant Aav (the average of the

e
eigenvalues) has been included for convenience.

It can be shown that premultiplication by R"] .
causes each adaptive step to be taken not along the
maximum gradient but instead in the direction

toward the minimum of the mean square error per-
formance surface, toward the bottom of a quadratic
bowl. The effect is very much like application of
steepest descent when all eigenvalues are equal.

The eccentricity of the performance function is
eliminated by Newton's method. The only drawback

is that Newton's method as specified by (5)

which is generally not available. The

unavailability of R'] is often the reason for using
an adaptive process in the first place. An attempt
to perform an algorithm 1ike equation (5), only

requires R

using an R'] estimated from input data, has been
reported by Griffiths and Mantey [6]. We shall
focus our attention on equation (5), realizing that
such an algorithm, a true Newton's method version
of LMS, is a mathematical idealization. It can be
shown to have the following properties. Instead of
there ‘being-a number of time constants of the mean
square error learning curve equal to the number of
weights (as with conventional LMS), there is a
single time constant given by

N R (6)
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The misadjustment of algorithm (5) is given by

n/ 1
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M = u trace R = (7)

The bounds on u for convergence in the mean are
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Comparing the two algorithms, we make their
u-values equal in order to have equal misadjust-
ments. Immediately we see that the stable range of
u for steepest descent is smaller than for Newton's
_ method when there is eigenvalue disparity. Since
these algorithms are generally operated with small
p to maintain small M, this is not necessarily
disadvantageous for steepest descent. However,
when the eigenvalue spread is extreme, steepest
descent may be forced to operate with a very small
value of p in order to maintain stability. Under
such circumstances, steepest descent would be
stability bound rather than misadjustment bound.

With equal u, it is interesting to compare the
Newton's method time constant (6) with the steepest
descent time constants (2). It is clear that some
of the steepest descent convergence modes are going
to be faster while some are going to be slower than
the Newton's method mode. Initial conditions will
determine the relative strengths of the various
steepest descent modes. If we compare areas under
the learning curves in order to compare "learning
times" of single mode exponential curves with multi-
mode curves (as is done in Fig. 1), it can be shown
that when misadjustment bound, the learning time of
steepest descent averaged over random initial con-
ditions is identical to the learning time of Newton's
method. However, one should realize that the worst
case learning time for steepest descent will be
worse than that for Newton's method by a factor of

Amax/Aave‘

The behavior of the steepest descent LMS
algorithm has been analyzed in detail in [4] with
a simple form of nonstationary input that results
in the quadratic mean square error function under-
going a random vector displacement. The motion of
the bottom of the bowl is first order Markov. Mis-
adjustment results both from noise in the weights
and from the weights dynamically lagging behind the
bottom of the moving mean square error bowl. It is
shown that the total misadjustment is minimized
when the rate of adaptation is adjusted (by choice
of u) so that both components of misadjustment.are
equal. A similar analysis has been made for LMS
Newton, and it has been found that the value of u
that optimizes steepest descent also optimizes
Newton's method and that both algorithms yield the
same misadjustment for the same p. The conclusion
is that if the steepest descent algorithm is mis-
adjustment bound rather than stability bound,
steepest descent gives-identical performance in a
statistical sense to Newton's method with simple
nonstationary inputs.

The Newton's method version-of the LMS
algorithm is about as efficient as an algorithm
can be, -from the standpoint of statistical perform-
ance. For a given number of weights and for a
given level of misadjustment, the number of data
samples seen and consumed in the convergence pro-
cess of LMS Newton is about as small as nature
will permit. Justification for this comes from
study of adaptive behavior when learning with a
finite number of data samples.

It is shown in Appendix A of reference [4]
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thgt when training an n-weight adaptive system with
N independent data vectors, the expected misadjust-
ment is

M o= D o= number of weights
N number of training samples °

(9)

This result was first reported in [1]. It is
independent of algorithm, as long as the algorithm
is least squares. A few simplifying assumptions
were made to arrive at such an elegant and simple
result. This formula has been tested extensively
by computer simulation and has been found to be-
quite accurate for misadjustments of 25% or less.
‘Misadjustment formula (9) may be compared
with that of LMS Newton (7). The comparison cannat
be exact however, because (9) applies to learning
with finite data while (7) applies to a steady flow
learning process. Actually, (9) applies to steady
flow learning with a uniform moving-average window
while (7) applies to steady flow learning with an
exponential moving window. Reconsider equation
(7). It can be written as

n . (10)
mse
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One can read this as "misadjustment of LMS Newton
equals the number of weights divided by the number
of training samples," if one considers that an
exponential process essentially settles within four
time constants and that any input that has occurred
more than four time constants ago would have negli-
gible effect on the weights. We conclude that LMS
Newton has the misadjustment of a fundamental least
squares process. No adaptive process could have

a lower misadjustment than (9) or (10). No more

“"information" (in the common English sense) can be

squeezed from a given amount of data.

We now know that the Newton's method version
of LMS is as fine and efficient as an adaptive
algorithm can be. Unfortunately it cannot be

implemented unless one perfectly knows R']. With-
out such knowledge, one can only approximate LMS
Newton. In application to adaptive FIR digital
filters, perhaps this or something approximating
this is done by the adaptive lattice-filter
algorithms that have appeared during the last half
dozen years or so. It remains to be seen.

With extreme eigenvalue disparity, stability
may be of limiting concern rather than misadjust-.
ment. To achieve maximum convergence speed with LMS
steepest descent, p would be set to ]/Amax’ causing

the slowest mode to have a time constant of

Amax/4xmin adaptations. Operating steepest descent

at full speed, the misadjustment would be
M = trace R/AmaX > 1. LMS Newton, doing the same

job, could be pushed much faster. Maximum speed
would be achieved by setting u to half its upper
stable limit, i.e. p =1/2 Aave; giving theoretical

(no gradient noise) convergence in one iteration.
As such, its misadjustment would be M = n/2. A

- 100 weight filter, for example, would have a mis-

adjustment of 50. v
In most engineering applications, a misadjust-:
ment of 1 would be considered very high. The
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FIG. 1. LEARNING CURVES FOR HEWTON’S METHOD AND THE
METHOD OF STEEPEST DESCENT (S-D)
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adaptive solution then gives twice as much mean
square error as the Wiener solution, i.e. 3 dB more
mean square error. Only when the minimum mean
square error of the Wiener solution is zero or.very
small would high misadjustment be acceptable.

Input noise precludes this situation however.

In most engineering applications, a misadjust-
ment of about 10% would be satisfactory. As such,
neither LMS steepest descent nor LMS Newton would
be pushed anywhere near to the brink of instability.
Speed of convergence would then be misadjustment
limited rather than stability limited, regardless
of eigenvalue spread.

It is safe to say that the steepest descent
version of the LMS algorithm is the simplest, most
widely used, and most widely understood of all
adaptive algorithms. With all eigenvalues equal,
its performance is identical to that of LMS Newton.
With eigenvalue disparity, its average speed of
convergence and statistical efficiency and perform-
ance with nonstationary inputs is identical to that
of LMS Newton, except that its worst case conver-
gence rate is poorer.

When dealing with an input signal buried in
noise, the eigenvalue spread is slight and one can
be assured that LMS steepest descent will perform
as well or better than any other algorithm. When
the input is noise free or only slightly noisy and
when the input signal is narrow-band with a highly
peaked spectrum, eigenvalue disparity could be
large or extreme. Under these circumstances,
opportunities may or may not exist to better the
performance of the steepest descent form of the LMS
algorithm.

References

[1] B. Widrow and M. E. Hoff, "Adaptive Switching
Circuits,” in 1960 WESCON Conv. Rec., pt. 4,
pp. 96-140.

[2] B. Widrow, P. Mantey, L. Griffiths, and
B. Goode, "Adaptive Antenna Systems," Proc.
IEEE, vol. 55, pp. 2143-2159, Dec. 1967.

[3] B. Widrow et al., "Adaptive Noise Cancelling:
Principles and Applications,” Proc. IEEE,
vol. 63, pp. 1692-1716, Dec. 1975.

[4] B. Widrow, J. M. McCool, M. G. Larimore, and
C. R. Johnson, Jr., "Stationary and
Nonstationary Learning Characteristics of the
LMS Adaptive Filter," Proc. IEEE, vol. 64,
no. 8, pp. 1151-1162, August 1976.

[5] B. Widrow and J. M. McCool, "A Comparison of
Adaptive Algorithms Based on the Methods of
Steepest Descent and Random Search," IEEE
Trans. on Antennas and Propagation, vol. AP-24,
no. 5, pp. 615-637, Sept. 1976.

[6] L. J. Griffiths and P. E. Mantey, "Iterative
Least-squares Algorithm for Signal Extraction,"
in Proc. Second Hawaii Int. Conf. System
Sciences, Western Periodicals Co., pp. 767-770,
1969. )

242



