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Abstract . LR an output, and it requires a special tra1n1ng
] o : signal, . an 1nput called the "desired response."

In a control system, an unknown plant can be: The "error" is the difference between the desxred
made to track an input command signal when this response and the actual output response. The
signal is ‘applied to ‘a controller whose transfer filter is assumed to be transversal and 1s ?dapted
function ‘approximates the inverse of the plant's by the:LMS algorithm of Widrow and Hoff

transfer function: - The:controller output becomes
the driving signal for the plant. For real-time
applications, ‘the:parameters of the controller can

be obtained by an-adaptive inverse modeling /’ : S :
process applied to.the plant. If the controller % - Y
is realized as a transversa] filter whose weights ™ur >l FILTER OUTPUT
*are adapted by.‘the .LMS algorithm of Widrow and .
‘Hoff, stability of the controller can be assured NOTE:
whether’ mode11ng the inverse of a minimum phase j is the
.or a nonminimum phase plant.. ‘A random dither ® -t AR
signal can be injected to sustain the adaptation
process when sufficient ambient signal activity
is lacking. Adaptive inverse model control , , PESIRED”
promises simple, economical implementation and ' » ‘ * "RESPOHSE
robust, predictable behavior. The theory draws
from many sources, including the considerable -
body, of know]edge that exists in adaptive s1gna1 Fig. 1. Symbolic representation of an
processing. . B » adaptive transversal filter

- ‘ adapted .by the LMS algorithm.
1. Introduction : '

“There is ‘a great need for learning-control

systems which can adapt‘:to the requirements.of Do III. Plant Modeling

plants whose characteristics may be-unknown and/or . :

changeable: in unknown:ways: '~©-A principal factor To illustrate .an application of the LMS

that has hampered the development of adaptive adaptive filter and to .show by example how one.
controls is the difficulty of dealing with learning obtains. an input and a desired response in a
processes embedded in -feedback loops. - Interaction control environment,: consider the:direct modeling
betweén the feedback of the learning processes and of an-unknown plant as shown in Fig. 2. When :
that of the signal flow paths greatly complicates given the same input signal as that of .an unknown
the analysis which is requisite to the des1gn of plant, the adaptive model self-adjusts to cause dts

dependable control:systems. In-this paper we
present a new approach to:plant :control which-cir-

cumvents many-of the difficulties that have been - CONTROL. T UnkvonR ] . PLANT QUTPUT
encountered with previous forms of adaptive control. — | PLANT . —
These-techniques have been subjected to preliminary I B F & (BESIRED RESPONSE)
mathematical analysis and they have been success- ) * -ERROR S
fully tested: by -means of computer s1mu]ated contro] . E
exper‘l ments. ey Nty o ADAPTIVE
LMS ' ) . MODEL
. ADAPTIVE - = ~p
.'II . Adapt1 ve Fﬂtem ng- FILTER oUTPUT
i ¥ . st
A symbo]1c representat1on of an adaptive Ve
filter is shown in Fig. 1.~ The filter has an input, T S MODEL
: : Fig. 2. Modeling.
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output to be a best least squares-fit to the actual
plant output. - The unknown plant may ‘have both poles
and zeros, but the adapt1ve transversal filter can
only wrealize "zeros. (The-word zeros .is in- quotes
because -the. adaptive filter is-time variable and
does not strictly have a transfer function. In a
quasi-static sense, ‘the adaptive fl]ter can’be
thought to have "instantaneous zeros" corresponding
to the zeros that would exist if the weights were
frozen at their instantaneous values:) With a
sufficient number of weights, an adaptive transversal
filter can achieve a close fit to.an unknown plant
having many poles and zeros. !

} IV. Plant Inverse Modelingf

The 1nverse ‘mode]l of the unknown p]ant could
be formed as shown in Fig. 3. ‘The adapt1ve ‘Filter
input i$ the plant output. The filtér .is adapted
to cause its output to be a best least squares fit
to the plant input. A close fit implies that the
cascade of the unknown p]ant and: the LMS filter
have a "transfer function" .of essentially unit
value. Close fits have been achieved by adaptive
transversal inverse filters even- when the unknown
plant had many po]es and zeros :

V. 'Inverse Model ing Nonm1n1mUm Phase PTants

If the plant itself is stab]e Call’ of 1ts poles
lie in the left‘half of the s- p]ane But ‘some of
its zeros could lie in the r1ght ha]f p1ane, and
then the plant would be nonminimum’ ‘phase.” “The
inverse of the minimum phase plant would have all of
its poles.in the left half plane, and there would be
no prob]em with stability of the inverse. The non-
minimum phase plant would have po]es in the right
half plane and stability of the inverse would be an
1mportant issue. However, it-can be shown that
stable inverses for nonminimum phase plants could
always be constructed if one were permitted noncausal
two-sided impulse responses. Furthermore, with suit-
able time delays, causal approximations to delayed
versions of noncausal impu1se'responses are realiz-
able. Thus, by allowing a delay in the modeling
process: (as illustrated in Fig. 3) one can obtain

approximate de]ayed inversé models to Mminimum.
phase and nonminimum phase plants. 1t is not’
necessary to know a priond whether the plant is
or is not minimum phase. However, some “knowledge
of plant characteristics would be he]pful ‘when
choosing the delay A and th& length of ‘the’ trans—'
versal filter used for inverse modeling.
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INPUT ouTPUT | . FILTER
A DELAYED PLANT INPUT
| DELAY
(nssmso RESPONSE )
Fig. 3.

De]ayed 1nverse modellng of an
unknown plant. - ..

VI. The Adaptive Inverse Model Go‘tro] Scheme

. Using a stable delayed inverse, control is
accomp11shed as illustrated in Fig. 4. . The
controller is a copy of the inverse model. The
reference command, the désired output for the
plant, is applied as an input to the controller.
The controller output is the driving function for
the plant. If the controller were-an“exact -
de]ayed plant inverse, the plant output, assuming
no noise, would be an exact copy of the lnput
reference command,, but de]ayed, 1 €.,

c(t) = r(t-a)
A step change in the reference command would cause
a step change in the. plant output. after a delay of
A seconds. The idéa is illustrated by Fig. 5.
If the inverse model is imperfect but-a. good

MODELING
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CONTROLLER
ReFerence S
COMMAND | COPY OF/ : © - 7
ADAPTIVE DELAYED) o unkvonn <t DAPTIVE
“TRPOT ] PLANT INVERSE E : > oLANT | DELAYED PLANT - Fes
© - MODEL _‘,//u(t) | INVERSE MODEL -
r(t) s . )
L e e T ....._.._4—-—_,--.‘_.___7 -
COPY WEIGHTS : R
PLANT
RANDOM >
DITHER OuTPUT
Fig. 4. Adaptive inverse model control system.
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approximation to the plant.inverse, then the step - The -plant ;is being described here.in terms of a

response c(t) might appear as illustrated. The . discrete 1mpu]se response comprising the set of
ideal delayed step response is super1mposed A . coeff1c1ents a;. The structure of the p]ant (with
typical step response. of a s1mp1e feedback control drift d) is shown in Fig. 7b. The structure of the

system is sketched in Fig. 6. It is- 1nterest1ng .

to compare this response with that of the inverse

model control scheme. i o shown in F1g.f7c., Referr1ng again to F1g. 7a, thg
. mean _inverse plant model output s is seen to be

adaptive 1nverse model - (w1th its bias weight w, ) is

s

INPUT STEP, r{t) » o ; s =Wyt W
/Aj//:;/,//f“‘IDEAL DELAYED STEP-RESPONSE - o k=1
- : ‘ y » ‘ ‘ 'Y . . Y
// ©  STEP RESPONSE, c(t) "~ ° . Since the adaptive process minimizes MSE (mean
) OF ADAPTIVE CONTROL WETH - square error), the bias weight Wy will be auto-
Ej DELAYED . INVERSE MODEL 0.
: ; - : matically adJusted so that the error of inverse:
o). .. &

TIME modeling will ‘unbiased (any bias will need1ess]y
_ SIS increase MSE).. Therefore :
Fig. 5. Comparison of ideal step =
: response vs. adaptive delayed

inverse model control system
“step response.

5. =u .

Next refer to F1g 7d wh]ch shows the
control process. - Let the mean 1nput to the.
inverse plant model be ¥. = The inverse model out- -
put will be S = U which is applied to ‘the p]ant
for control. But we have already noted that U

o o B into the plant (exper1enc1ng drift d) causes a
INPUT. STEP, r(t) ' : mean plant output of ¥. MWe therefore conclude

TYNCALCmeD4ﬁ0Pc0NnmL o that an_input reference command mean value of T
s//f\q///’SYSTH4STEPRE“WNSE AT causes a mean plant output response of v, regard- .

Tess of -the amount of plant drift d.

0. e o TIME

. : .
. P : S e DELAY--
Fig. 6. Step response of a conventional
closed-1oop control system. , ! .
i L BRFT 4 Wy
S : . ——j— v avaerive
VIL. Effects of Plant Dmft S A PLANT ' e
The ‘control system of Fig. 4 appeavs to be ' * (a):Inverse modeling process ;.

open loop. Actually it is a closed-loop system,
with the loop closed through the adaptive process.
The: following is a heuristic demonstration of how >
the system can perfectly eliminate dc plant drift.’

The capability of eliminating plant drift is.

usually ‘associated with a feedback control system
having :at least one degree of 1ntegrat10n within

the .Toop.
The demonstration is outlined in Fig. 7. The PLAWT DRIFT
modeling process of Fig. 7a shows. mean value of ‘
plant -input U, mean value of plant output ¥, and (b) Plant representation, with drift N (c) gggg$£§“ﬁg§gg“
mean.value of plant inverse model output's. ‘ : adaptive bias weight
Assume “the p]ant output has a.drift d,. and the - T e R .
adaptive plant inverse model has an adaptive bias o 4
weight Wy The mean plant input together with. . .. © ‘{
the p]ant drift causes a mean plant output T ' 7 T G v
equal to ~———>1 DELAYED
wom ) e : INVERSE
— (d) The control process
r = d+u jg a. .
1 Fig. 7. Demonstration of control ‘of plant output mean -
i=1 - : . : s BL - : (dc level) in the presence of unknown plant drift.
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A number of questions remain to be answered.
For examp]e, how fast can the drift d change with-
out causing plant output bias error? How fast can
the mean-of . the dnput reference command. change yet
have the mean plant output follow without s1gn1f1-
cant error? -What, is.the effect of dynamic inverse
modeling errors upon‘syStemvperformancez,

In a control app]1cat1on, the price to be
paid for .a noncausal inverse:is a delayed control.
response. In'many cases however, this delay
would be inevitable because of dynam1c de]ays in
the plant. A controller: using: the delayed: inverse
model would: have.a precisely predictable delay in
the control response. . Furthermore, the system step
response would have very little ringing or over-
shoot... This is:confirmed in-a preliminary way by
the. computer s1mu1at1on results:of the next sectlon

VIII S1mu]at1on of ‘an Adaptxve Inverse: Model

Contro] System

The system that: was s1mu1ated is shown in
Fig.-4.. A small amplitude unbiased random dither
s1gna] is introduced: into -u(t), the plant input,
in order- to-insure- that- the adapt1ve modeling
process will continue to keep the inverse model
current; regardless of the ambient control signals
present. The.dither is necessary in many-cases to
keep -the -adaptive process "alive," but: it does
disturb: the plant: and 1ntroduce no1se 1nto the
output.s. .-
The SImu1at1ons used both a d1screte time
plant.and+a: discrete-time controller.: Many combi-

nations of plant pole and zero: locations were tried.

Typical-results are shown here. A plant having two
po]es and no zeros was simulated. - Pole locations:
in the z=plane of:this plant (#1) are shown in

Fig. 8. - Its step response is- shown in Fig. 9.
rz-pfahe !
thig} §. Location of poles of Plant #1.
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2.5

I —

0. 32 64 9%
TIME

128

Fig. 9. Step response of .Plant #1.
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The inverse of this plant had two zeros and was
easily realized by the adaptive transversal
filter which had available thirty-two weights.
The inverse impulse response is plotted in

Fig. 10. Using this inverse as a controller, the
step response of the entire system is precise, as
shown in Fig. 11.

MAGNITUDE

-

0 8 16 24 32
. WEIGHT

-1

Fig. 10. Delayed 1mpu]se response of inverse
of Plant #1.
£
oy x Py 64 9 128
TIME
Fig; 11. For Plant #1, control system step

response.

A potentially more difficult case is that of

'contr01]1ng plant #2 which has no poles and only

one zero located as.shown in.Fig. 12. This is a
nonminimum phase plant. -The delayed inverse was
formed: and .used as a controller .The inverse's
impulse response is shown in Fig. 13; the step
response of the resulting-control system is shown
in Fig. 14. In this case there was'no real = = -
difficulty in controlling a nonminimum phase: plant.




z~-plane

Location of zero
of Plant #2.

Fig. 12.
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Fig. 13. Delayed inverse impulse
response for -Plant #2.
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For Plant #2, control system
response.

Fig. 14.

¢ Many otherﬂcasesfhave been successfully tried.
Tightness ‘of control “dépends on‘ closeness of fit "
between the true inverse and‘the ‘inverse realized
by the “adaptive transversal filter. Dither signal
spectra] characteristics and numbér of weights
used ‘in:the inverse have much to do with the
closeness of fit. ‘Work-on adaptive inverse model
contro] 1s cont1nu1ng and will be reported 1n the
future: 8
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