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Abstract

A new adaptive process, called "bootstrap learning," has been developed
for use with linear threshold logic elements. Such elements are generall&
trained by supplying input-pattern signals and tﬂe corresponding desired
binary responses (decisions). Often, however, the desired responses to
gpecific 1nput patterns are not known. In this situation, ‘bootstrap adapta-

- tion can be used to train the element by der1v1ng desired responses from’
‘actual responses evaluated in the 11ght of the performance quallty resulting
from a series of. such actual responses.

One example of the appllcation of bootstrap adaptation is found in the

"fgames without being given any information other than whether it has won or

jflost each game, a single threshold element can adapt its parameters in such a
'way as‘to play the game with close to an Optlmal strategy. An analytical

' eXpresSion has been derived for the time of convergence, and'hes been checkedbﬁ
Dby experiment,

Bootstrap edaptation is slower than conventional adaptation, since
:1 ‘adaptation with respect to each individual pattern is not always'effected in

- the correct direction;b HoWever,fbootstrap sdaptation can be used where con-
‘ventional methods are not appllcaole. It is possible that its use will allow

convergent adaptation of threshold 1og1c networks of complex configurations, j5~”

‘dynamic control system switching surfaces are being studied.
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"BOOTSTRAP LEARNING' IN THRESHOLD LOGIC SYSTEMS

Bernard Widrow

Introduction

The purpose of this paper is to describe research on a new kind
of adaptive process involving linear threshold logic elements. By means
of this new process, called "bootstrap adaptation,” an adaptive logic
element learns what is required of it solely through the receipt of
favorable or unfavorable reactions resulting from the application of an
overall performance griterion to the outcome of a series of decisions
made by the element.
Adaptive linear threshold logic elements ("Adalines'") and other
forms of adaptive systems have been under study at Stanford University1’2’3’4
for the past several years. Training (weight-adjusting) algorithms have
been developed for threshold logic elements and networks of such elementsz’s’s’s.
‘Useful results have been obtained in many areas, including the design of deviceg

for the physical realization of adaptive circuits ’

, and applications of
adaptive pattern-recognition techniques to speech recognition, weather
forecasting, diagnosis of heart conditions by eiectrocardiogram, énd relay
contactor ("bang-bang'") control systemss’g.

Until recently, fhreshold elementg in the above applications have
been used only as trainable pattern-ciassifying systems. When these
elements are trained, for each array of input signals (input pattern),lai
desired response (representing the pattern claés) is gpecified. This

kind of process may be called "learning with a teacher". The present

+



paper is concerned with the analysis of adaptive processes wherein the
desired responses cannqt be supplied for each input pattern. Applications
for such adaptiye processes, called "learning without a teacher", may

arise in certain sequential-decision processes, in pattern generation
processes (the inverse of pattern classification), and possibly in con-
vergent adaptation.procedures for multilayered and more generally-=connected

networks of adaptive threshold elements.

Conventional Adaptation Processes for Threshold Elements

In order to understand the process of learning without a teacher,
it is convenient to begin by summarizing the process whereby an adaptive
threshold element learns with a teacher. Figure 1 shows a functional [}ig. 1
diagram and schematic symbol for an adaptive threshold logic element.
The diagram indicates the terminology used and the input-output relationﬁ
th | ‘ . : th
ships. The zero input signal is always +1. Thus the zero ~ weight

w controls the threshold partitioning level. Before adaptation, an

0

analog error € (defined as the difference between the analog sum ]

and the desired binary response d) exists for each input pattern.f The

Jth input pattérn would have an analog error of

e Ldaw - s = aW - [X(@ - W] . )

A leastQmean-sduare error (LMS) adaptation procedure developed by

Widrow and Hoffz’? causes the weights to relax automatically toward a set
N .
~ that minimizes'the function x ez(j) when training is performed on a
. ' j=1 .
finite group of N training patterns; or toward a set that minimizes



2
the mean-square-~error function € for a continuous nonrepeated flow
]
of input training patterns derived from a large statistical population.
th
On the i adaptation cycle, the change in the weight vector in adapting

on the jth battern is made to be

e

. - by - '
AMi = (HII) e(d) X , ‘ (2)
where n+l is the total number of weights‘(including wo), aﬁd by
is a coefficient which determines‘the fraction of the analog error that
is corrected with éach adaptation.  Thus A controls the rate of adap-
tation.

After édaptatioh, the new, (i+1)St value of the weight vector is

£

- —_> e d .
Wo =Wy +4% (3)

It should be particularly noted that during the LMS training process, adapta-
tion is always performed upon the presentation of a new pattern and its
desired response, even when the quantized output response, the decision q,

1,2,3

agrees with the desired response. It has been shown that when binary

input signals are mutually uncorrelated and are also uncorrelated with ~ d,
the weight values undergo noisy geometric (exponential~like) transients in
relaxing toward optimal values. These transients are such that the "time

constant” of adaptation I is

I = (n+1)

- adaptation cycles . ) ‘ 4)



A "learning-curve" plot of mean-square-error, MSE, versus the number
.'of adaptation cycles for the uncorrelated input-signal case is also a
noisy exponential. The MSE‘in.this case can be shown to be equal to a
constant plus a component which is proportional to the squaré of the
magnitude of the difference between the weight vector and the LMS-optimal
weight vector. The magnitude of this weight difference relaxes with time
constant I' The square of this magnitude relaxes with time constant

I'/2. Therefore the time constant of the MSE 1earnihg curve is given by

(n+1) PR 1P
Pmse = 5% adaptations . (5)

Bootstrap Adaptation

It is a straightforward process to present an adaptive threshold
element with an input pattern, and to adapt it toward producing the

desired response, as described in the preceding section. The question is

what to do when an adaptive element is connected to an environment providing

a stream of input patterns, but the desired response for each input pattern

is not known and/or not supplied to the adaptive element.

One possibility would be to connect the binary output of the threshold

element to the desired-output input terminal, as shown in Figure 2(a).

Under this plan, the adaptive element assumes when a new pattern is applied

that-its own binary output is the correct desired output. It adapts its

weights accordingly, applying the LMS algorithm, or some other algorithfns’6

. .

which has been designed into its adaptation machinery, Figure 1(a). The

tendency here is to maintain the binary responses that already exist (i.e.,

[Fig. 2.



- adaptation. Now, whenever a new input pattern is applied, adaptation takes

responses established by the initial weight settings), although some pattern
responses (s-values) close to the threshold may reverse during this process.’
In a sense, the adaptive element has the attitude "don't bother me with the

facts, my mind is made up". Let this procedure be called positive bootstrap

adaptation.

An alternative means of supplying the desired response from the output

gignal is shown in Figure 2(b). Here the output signal goes through an

inverter which forms its complement. The inverted output is then taken as

the desired output. Let this form of adaptation be called negative bootstrap

place to change the analog output s(j) a certain amount in the direction
which moves it closer to a binary output (+1 or =1) which is itself |
opposite to'the actual binary'output q(j). A sustained application of
negative bootstfap adaptation will eventually .cause all weight values to
approach zero, which will neutralize fheveffects of initial weight conditions.
A threshold element adapting this way would have the attitude, "everything I
dolis wrong."

Neither positive nor negative bootstrap adaptation is as useful in
itself as is the combination of these methods illustrated inkFiéure 3. [%ig. 3
In this configuration, two kinds of input information are again required |
to produce an_adaptation: the input pattern X(j)‘ and a bootstrap control
signal b(j);' When “b(J) is positive (switch up in Figure 3), positive

bootstrapping takes place; when b(j) is negative (switch down) negative

bootstrapping is performed. Let this process be called selective bootstrap .

adaptation.



The kind of information-supplied as b(j) in Figure 3 will
be quite different in practice from that supplied as d(j) vin Figure
1. The b(j) signals are more qualifative than specific. If some
external evaluator indicates that thg present decision or chain of
decisions (whatever these decisions actually may Be) appear to produép
satisfactory performance in accordance with a pre-arranged criterion,
a positive signal is applied to 'b(j);_otherwise a negative signal
is applied. Selective bootstrap adaptation may ﬁé thought of as learning
with a critic, as_p?posgd to learning ﬁith a teacher. The critic is

qualitative. The teacher is specific;

Application of Bootstrap Adaptation to Simulated Blackjack Play

In order to make the idea of selective bootstrap adaptafion clearer
and to stimulate ideas for its application, an example will be bresentedf
relating to the playing of the game "blackjack" or "21". It has been
found that using selective bootstrap adaptation, a single threshold element
ié able to learn to play this game very well without knowing the rules or
the objectives of the gamelo. All that is needed is the knowledge, at the
end of each game, of whether the game was won or lost.. |

In thevgame of blﬁpkjack or 21, the objeétive of the player is to
draw a series of cards from the dealer such that the values of these cards
sum to less than 21, yet come closer to 21 than the sum of the cards drawn
by the dealer. Whoever goes over zi loses. When a card is offered to the
player, he has the choice of drawing or not drawing ("hit" or "stick"). He

‘mast make a binary decision. The dealer has no choice. He performs a
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purely mechanical function, pléying a fixed house strategy. Thus it was
possible to simulate the dealer by means of a computer which "dealt" using

a random-number generator. The computer did all score keeping, and periodically
typed out the performance of the 'player', an adaptive threshold element
(Adaline) , which it also simulated. The'game of blackjack was simplified

by removing all special features such as "splitting pairs,” "doubling down,"
‘etc. Blackjacks were counted.

Figure 4 shoﬁs how the simulated Adaline was able to fepresent the [%ig. 41
player in the blackjack game. The first card drawn by the dealer is face |
up, so the deciéion made by the player is based on the dealer's card showing,
and the sum of the face values of the cards in the player's hand. These
data, together with an indication of how the ace is to be counted, consti- .

. tuted the variable inputs to the Adaline. The variables ﬁere encoded as shown in
| Figure 5. Notice that the different States of a variable are represented byi [Fig.v5
binary code words which are algebraically linearly independent.

The adaptive "player" began making decisions with a given set of initial
weights. During each game, several "hit" or "stick" deéisions were auto-
matically made. For each state of the game'(input‘pattern), the decision
made by the "playér"‘wasvrecorded by the computer. At the end of the game,
the computer noted whether the 'player' won orhlost{ If the "pla&er" won,
either by luck or by good strategy, the b(j)v coﬁtrol switch shown in Figure
4 was placed in the up position and the same patterns were repeated. Thus
adaptation was effected in directiohs which assumed the actual decision
responses were the desired responses. If the Adaline lost, its performance

was considered unsatisfactory (poorer than average), and the b(Jj)

.



switch was placed in the down position, thus adapting the element in directions
which assumed the actual decision responses were the opposite of the desired
responses. Adaptation was performed onlyvat the end of each game, and then
%the patterns from that game were discarded. Only the weight values required
.long-term storage. |

It has been demonstrated by Fred W, Smith10 that a single fixed-weight
threshold element can realize the optimal "basic blackjack strategy" of
Thorpell. When the value of the dealer's face card is encoded in a linearly
independent binary code8’9, and when the sum of tﬁe cards dealt to the player'
is also encoded in this way, the binary patterns representing the states
of the game, together with the associated/binary decisions (hit or stick)
corresponding to the Thorpé optimal strategy, véonstitute a linearly
separable set. Yet they represent a nonlinear discriminant function.

Thus through the éncoding procedure, such a function is made perfectly
realizable by a single threshold ldgic element. The.étrategy needed to play
the game of blackjack is related to that required for the "bang-bang" (con-
tactor) control of a variety of dynamic systemss’g. In both cases; binary
decisions must bg made based on the values of sévefal analog or multilevel
state variables.

The optimal strateg& for the simplified géme described earlier, assuming
the player has no knowledge of cards previously played (or eqﬁivalently, where
“the dealer shhffleé before each game), is presented in Figure 6. It should [%ig. 6
. be noted that.eVen when plajing with the optimal strategy'for.this simplified
game, the‘piayer wili lose at a certain small average rate. Tpe adaptive }

- player must learn to minimize its losses.



The 1egrning process described above used selective bootétrap adap=-
tation (positive bootstrap for a win, negative bootstrap for a loss), and‘haé
several unique features. Learning was not directed by a teacher along each
step of the way. The effects of individual decisions could not bé uniquely
evaluatgd. They all had a statistiéal effect on a final outcome based on
a composite of fhe quality of the responses to a series of patterns (states)
which were for all practical purposes selected at random. In addition,
games were somefimes won when playing with poor strategies and games were

sometimes lost when playing with excellent strategies. The net result is that

not always did adaptation on a given pattern proceed in the proper direction.
Consequenfly, the selective bootstrap learning process takes place at a slower
rate than conventional learning with a teacher. The purpose of the analysis

to follow is to predict the rate of learning of the bootstra§~process.

Analytical Example: Modeling a Noisy Unknown System

In order to make an analytical study of the. performance and rate of
learning possible when selective bootstrap adaptation is practiced, the
modeling of an unknown noisy memoryless system having many binaryiinputs

and a single binary output by means of an adaptive threshold element will be

- examined.

The modeling configuration is shown in Figure 7. The input—signal [%ig. 7
pattern vectors are supplied at discrete times; all systems are considered to
'be'sampled—data systems. _It will be assumed that the input patterns are selected
in random sequence. The difference between the adaptive-model output and the
actual output of the noisy ynknown system (i.e., the "right" éutpuf) is a

form of error signal el(J).” When the cost associated with el(j) averaged

e



over the present error sample and past (D-1) error samples is lower than

the long-term cost average, positive bootstrap adaptation is effected with
regard to the present input pattern vector, using the switch b(j) to con-
trol the desired-output input. When performance averaged over the D error
samples is poorer than the long-term average, negative bootstrap adaptation
is indicated. The cost function could be of a very general nature, but for
purposes of this study, it will be assumed that all errors el(j) are
equally costly. I;e., the ""best" performance is taken to be that which
produces the miﬁimum number of errors. The long-term performance average
should be taken over a number of samples many times greater than D, and
should be continually ﬁp—dated to track improvements in performance resulting
from the adapfation process.

In order to analyze the effects of the bootstrapping operation described
above, it is postulated'that there exists a statisticﬁlly optimal model
which is alsolindicated in Figure 7, This model is deterministic, since
a given input pattern will produce a given output. It produces an output
called "optimal" in the sense that an error ez(j), defined as the difference
between its dutput and that of the unknown noisy system to be modeled, is
of minimum expec£ed cost, This optimal model does not exist physically
and is drawn with dotted lines to qenote this. It is postulated for analyt-
ical purposes only. When its output agrees with the’output of the adaptive
element, the latfer output is said to be an optimal output. When the output
of the adaptive element agrees with the output'of the unknown noisy system
being modeled, the adaptive-element oﬁtput is said to be a right output.

The distinction between right and 0ptima1 decisions cén perhaps be
visualized more clequy in the cbntext of statistical prediction of station-
ary time series. An optimallpredictor always makes optimal decisions (by

definition) which are not always perfect (i.e., not always right).



Analysis of Selective Bootstrap Adaptation Applied to Modeling an Unknown

Noisy System
in a group of D decisiohs made by the adaptive threshold~element
mode} of Fig. 7, it is likely that some will be optimal and right (O-R), '
some will be optimal and wrong (0-W), while some will be antioptimal
and right (A-R), and some will be antiopt;mal and wfong (A-W) . These
four are the only poésibilities. Arrayed in a group, these kinds of decisions

might occur as follows:

D of these : | X

(0-R) , (A-W) , (A-W) , (0-R) , (0-W) , (A-R) , (O=R) , ... ... , (A-W)

o~

Let the probability of (O-R) be pl,’ the probability of (0-W)
be P, the probability of "(A=R) be Py, and the probability of kA-W)
be p4. A sketch of the joint probability density“for a single decision
as a function of the.number of right and the number of optimal decisions

is shown in Fig. 8a. This function is . ' [%ig. 8

Bl(g,h) = plﬁ(}-g,l—h) + p26(1-g;1+h) + p36(l+h,l-g) + p4(1+h,14g) , (&)
where h - iS‘the axis of right-wrong decisions and g 1is the axis of
pptimal—antioptimal decisions. Note that a unit two-dimensional delta
function is defined tp have a unit volume.

The joint probability density VPD(g;h), a‘functibn of the number
of right and the number of optimal decisions in a chain of D decisian,
is sketched in Figure 8b. The value of the g parameter is the sum of
the‘number of optima; decisions minus.the number'of‘antioptimal déciSions;

the ‘value of the "h_‘.parameter is the sum of the number of right decisions,

Y




minus the number of wrong decisions. Assume that the decisions in the
vsequence are statistically unrelated (independent),{Assumption L]. It then
’follows ﬁhat_the joint probability-density function for a chain of ’D
decisions is a prold convolution of the density function for a single

.

decision,

P (g,h) = P, (g,)* P, (.g,m)* ... * P (g,h) , ()
W -
D of these

‘The independénée assumption follows‘from the assumption that input patterns
occur in random sequence. In many situations,.fhe independence assumption
will either bé precise or at least reasonable.

In order to derive an ékpression‘for the time constant of the boot=
strap learning pfocess to cdnverge tqward an optimal solution, it is
necessary to derive an expression for the probébility p of adapting
in the optimal direction. The probability of adapting in the antioptimal

direction is q = (1-p). if the bootstrap adaptation process is to be

luseful, it is important that the criticgl parameter {p-q) be greater

than zero. To calculate P, a certain kind of moment will have to be
evaluated for‘the discrete joint probability density PD(g,h). + In order

tb simplify this moment calculation, it will be assumed that ‘ D is
sufficiently‘large so'that » PD(g,h) could be replaced for purposes of
moment calculation by a tWOfdimensional gaussian density function,[Assumption
2). The justificatidn for,tﬁis is the Central Limit Theofem.' Thé paramefers

»~ SRR :
of a gaussian approximation function PD(g,h)‘ “will be chosen to have the same

ygo i



mean values as PD(g,h), the same variances, and the same correlation

coefficient.

The first step is to find the means, the variances, and the covariance

of the simple density function Pl(g,h) sketched in Figure 8a.

means are

®1
i

Py * Py " Py TPy
| h = p1 + p3 -,p2 - p4 .
The variance along the g-axis is

2 6. 2
agz 2 g - (g

[}

The variance along the h-axis is

2 A o
oy = 4(py+pg) (Pytpy) -

The covariance is L

ghz 2an- @M®

il

_13-’

+p.+p. +p, - @2
pl p2 p3 p4‘ g

,4(P1fpz)(p3+p4) .

Pty Py Pyt @B

4p py ~ 4PyP, C

The

(8)

9)

(10)

(11)

(12)



The correlation coefficient is

N S pPp4 - pzp3

np>
8

(13)

2. 2\E
(og + °h> \/(pl+p2) (pg+p,) (py +pg5) (py+p,)

These parameters can now be easily calculated for the probability

density 'PD(g,h),;,The mgans.of this density‘funcfion are
Dg and Dh | (14)
where D is the number of decisions in the chain. The variances are
Dogz and Do 2 . (15)
The correlation coefficient is the same as in equation 13.
The estimating density ;b(g,h) will have parameters as determined by

expressions 13, 14, and 15. Accordingly, this bivariate normal density can

be written as

-~ . . - 2 S ) - - - 2 . .

P (g,h) = 1 exp ——1 (g-gD) "_  2p(g-gD) (h-hD) _ (h-hD) 16)
ZTTDGgGh 1 P : 2 (1 -pP ) Do'g Dog o'h Dch

A plan-view sketch of PD(g,h) contours is shown in Figure 9, : [%ig. 9

According to the previously stated rules of adaptation, positive
bootstrapping will be effected when measured perfdrmance is better than

average, i.e., when the number of right decisions in the chain of D

3



decisions exceeds the long-term average number of right decisions. It is
imﬁlicitly assumed that on the average, each decision in a chain of D
decisions has equél expected effect upon measured performance,[Assumption 3].
Eveﬁfs where positive bootstrap adaptation takes place (h > Dh) are
therefore indicated by the shaded afea in Figure 9. The unshaded area
represents all othef events, where negative bootstrap adaptation takes place
(b < Dh).
Consider all chains of.events where performance js better thaﬁ average.
Let the probability of such chains be represented by P(h > Dﬁ); The
probability of cﬁains with below-averagé performance is P(h < Dh) = 1-P(h >‘Dﬁ).
It follows that once the joint density PD(g,h) 15 represented by}the gapssian

”~

density PD(g,h),

P > DR) = f / P,(g,h) dg dh
=00 Dl-l.
= P(h<Dh) = 3} ' Qa7)

Consider enly chains with above-avgrage‘performance. Among these chains,
all of'which will experience positive bootstrap adaptation, the expected number

. of optimal deciéions minus the expected number of antioptimal decisions

is given by
. o] <)
- 1 . : ~
' E[g]h > Dh] = i fvg dg f PD(g,h) dh (18)
s B ‘P(hA> Dh) 45 ,  ~ S

Dh
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For the chains with below~average performance, all of which will experience
negative bootstrapping when adapted, the expected number of antioptimal

decisiohs minus the expected number of optimal decisions is

E[-glh < Dh] = f -g dg/ PD(g,h) dh R (19)
P(h < Dh) oo o ‘

=0

With positive bootstrapping (h > Dﬁ), adaptation in the optimal
direction takes place for patterns producing optimal threshold-elemeﬁt
decisions; the exﬁected number of optimal adaptations minus the éxpected
number of aptioptimal adaptations is given by éxpression 18. With negative
bootstrapping (h < Dh), adaptation in the optimal direction takes
place for patterns producing antioptimal threshold—elément decisions; the
expected number of optimal adaptations minué the expected number of anti-
optimal adaptations is accordingly given by expression 19. The average
(over all h) number of optimal adaptations minus the.avgragé number of

antioptimal ddaptations is

(p=q)D = E[g|h > Dh] P(h > Dh) + E[-g|h < Dh] P(h < Dh)
o i ‘ © ‘  _ ) DE '
= / g dg PD(g,h) dh - f g dg / PD(g,h) dh
) 0 e 5 Dﬁ » .
= f g dg | / PD( g)n) dh - f : #D(g,h) dnf . (20)
=00 _ DE f; o ; =00 ) . . ’ '

After some algebraic manipulation, the following simple expression for‘(p—q)

-15“0



results:

2p0
P g

V21D

(p-q) = ° (21)

The expressions for og and p, equations 10 and 13, may belsubsti-

tuted in equation 21 to give

4 (plp4 - p2p3)

J 2D (p,+p,) (py+p,)

(p-q)-=- v (22)

Equétion 22 is a precise relation for (p-q), based on Assumptions 1,2,
and 3.
The next step is to find the probabilities pl, Py, p3, and Py They

can be related to physicalbprocesses by using the following expressions:

o

p, = PO,R) = P(R|O) PO (23
p, = PO,W) = P(W|0) P(0) o (249)
py = P(A,R) = P(R|A) P(A) (25)

(26)
p, = P(ATW) = P(W[A) P(A) '

Let the probability of drror of the optimal model (Fig. 7) be

designatied as P Thus, the minimum achievable error probability is P

0 0
The decisions of the adaptive model will in general not always agree

with the optimal décisions-—i.e., those that woﬁld be made by the optimal

model if it existed. It will b; assumed, however, that in responding to

the input patterns where the two modélsrdo aéiee, the probability of these

decisions being wrong is the same as the probability of all optimal decisions

B
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being wrong.[Assumption 44. Accordingly, the probability of an optimal

decision made by the adaptive element being wrong is
PW[O) =P . ‘ 27

The probability of an optimal decision made by the adaptive element

being right is therefore
PRRIO) = =P . (28)

‘Assume that the probability of an antioptimal decision being a right
one is the same for input patterns where the adaptive-system outputs are
antioptimal,as for 511 possible input_patterns.[Assumption 57}; Completely
antioptimal deeisions Would result from the inversion or complementation
of the output signals of the optimal system. Accordingly, the probability
of a decision being right, given that the decieion_ie antioptimal; 15

P(R[A) = P(W[0) = (29)

PO.
Also,

P(W[a) = P(R|O) = (1-P) . : o (30)

Let a dimensionless quantity M' be defined to be the difference

). . r-..

between the error probability P(W) of the threshold element and Po,h'wfq';ffff”ﬁ-.

normalized with respect to_ P0

P(W)

>

. (@31

-18-



POD = Py(LAI') = P(A)(1-2B) + P (32)

0

Adding equations 24 and 26 and making use of equations 27,: 30,. and 32:.

p M’

P(A) = 1-P(0) = 9

NPT . (33)
‘ (1-2P()

The probabilities 'pl,pz,ps; and p4 may now be found by substituting
equations 27,28,29,30, and 33 into equations 23,24,25, and 26. The quantity
(p-q) may then be found by substituting the expressions for‘-pl,pz,ps, and

p, into equation 22. The result is

(am'y/ P [1-P,(4+4") +P  (4+2M") ]

. (39)

(p=q) = o
>

Varp (1-2P0)\/1+M'-PO(5+6M'HM'2) + P02(8+12M'+4M'2)-P03(2+2M')

Equation 34 follows precisely from equation 22, based on the additional
assumptions 4 and 5. already ﬁentioned.
Equation 34 simplifies greatly in the important practical case of small

PO (approximately 0.1 or less) and small M' (approximately 0.5 or less):

(p-q) & 9 i .‘ L (35)

Effects of (p-q) Upon Rate of Adaptation

With reference to the modeling situation of Fig. 7, the analysis'just
presented indicates that the adaptive threshold system will self-adapt toward

forming a best IMS fit to the optimal model of the noigy unknown process as

- -10-



long as (p-q) > 0. To see why this is so, consider for example a situation
wherein (p-q) = 0.2. On the average, in 10 adaptations 6n a given pattern,

6 will be in the optimal direction and 4 will be in the antioptimal direction.
The net result is a preponderance of 2 aqaptations out of 10 in the optimal
direction, If all the magnitudes of the weight increments among the adapta-
tion cycles were equal (they are not equal for the LMS procedure), the rate

of learning in this case would be two tenths as great as when learning
directly wifh a teacher. In general, time constants of.the learning curve
would be the corresponding values for 1éarning with a teacher, multiplied by
the factor 1/(§-q). It has been found by experiment that use of this factor
allows one to make reasonabiy close estimates of learning-curve time constants
for bootstrap 1earﬁing with LMS adaptation and with other ad;ptation processes

6
that do not use exactly equal weight~increment magnitudes.s’ The validity

 of the use of this factor will be assumed. [Assumption 6.]

Application to Blackjack Situation

The functions indicated in Fig. 7 might be considered analogous to the
blackjack situation in the following way: The statistically optimal model
could be assumed to generafe decisions corresponding té':ithe optimal’strategy
of Thorpe. The noisy unknown memoryless system might be viewed 'as a ficti-
tious system that generates winning decisions based on perfect knowledge of
past, present, and future cards to be drawn. It generates the "right" decisions,
from the standpoint cf winning each game as it is‘played;‘while the optimal

strategy (having only probabilistic knowledgekof how the cards are to be

drawn) generates only statistically "optimal"’decisions. The threshold element

outputs represent the actual decisions of the adptive Adaline player, which
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are sometimes right, sometimes wrong, sometimes opfimal, and sometimes
antioptimal,

The cost evaluation for blackjack is especially simple. When the game
is won, performance is obviously better than long-term averagé. When the
game is lost, performance is poorer than 1ong-te¥m average.-'Thé chain of
D decisions whose performance is to be averaged by the "win or lose"
'criterion represénts‘the pumber of decisions per game. The averagek D is
about 4 decisions per game.

The minimum error probability P, of “the optimal system may be estimated

0
in the following manner: The Thorpé'optimal strategy for the simpliﬁied game
wins 49.5 percent of the games. In the majority of games played, three
right decisions are made first, The fourth and last decision is the critical
one, and this deciéion is right roughly half the time (correspondingvto‘the
winning gameé). Therefore P0 is assumed to be 1/8. [Assuﬁpfion.?.]
defined by equation 31 and appearing

The quantity M' Ain equation 35 is a normalized measure of the departure
in performance of the aQaptive system from that of the optimal system. This
quantity can be estimated for blackjack by subtracting the minimum rate of
‘loss of the optimal system (50.5 percent) from the rate of loss of the
‘gdaptive s&stem and dividing this difference by the minimum raﬁe of loss.

The quantity (p~g) may be estimated by inserting Py = 1/8 and D =4

into formula 35.

M'
2w

By Assumption 6 and formula 5, the time constant of fhe»LMS processqwith

(p-q) £ (36)

~ bootstrap adaptation is
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r _ _(m+1) _ (m+1)
mse 20 (p-q) ~ '
bootstrap

(37)

Since the total number of weights of the Adaline player is (n+l) = 21 and

since there are 4 adaptations per game on the average,

37.
B0

rmse

bootstrap

adaptations

m

(38)

©
W

’i

- games

E

Formula 5 is based on the asumption that the individual input signals 
to the Adaline player are uncorrelated. Formula 38 is therefore based on

the assumption in addition to Assumptions 1 through 7.

Experimental and Theoretical Results

A series of computer-simulated experiments was made to check the
assumptions made in deriving equatiéns 37 and 38. Expefimental learning
curves for two diffgrent rates of adaptation are shown in Figures 10 and 11
with A = 0.4 and M\ = 0,04, These plofs present functions which are related
to error probability rather thén to mean-square error, However, it is pointed
out in references 2, 3, 4 that under conditions abp;icable here, the error
probability is approximately proportional to the meanssquare error, and that
the time constant of a mean;square-error learning curve is approximately
equal to that of an error-prébability learning curve.,

‘Formula 38 therefore indicétes that the learning curves of Figures.io
and 11 should be variable—time-constant exponentialé. " The more closely‘the
average performance appro#ches the optimal, the smaller»is M* andvthe lafger

is the time constant;j  These plots appear to have such properties. :Each |

- -22-
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poinf in Figures 10 and 11 represents a time and ensemble average over
10,000 games, The averaging is necessary and provides a performance evalua-
tion with a standard deviation of error in mean of approximately 1/2
percent.

Measurements of time constants can be made directly‘from Figuré 10
corresponding to A= 0.4, Initially, the percentage of games won is 22
percent, and therefore M' = 0,56, From formula 38, the theoretical time
constant is 41,5 games, Taking the initial slope from Figure 10 gives an

_gstimated time constant of approximately 50 gamés. As this learning curve
crosses the level of 35 percent won, ‘M' = 0.3 and the theoretical time
constant is 77.5'Agames. By experiment, this turns out to be apprqximately
100 games. The asymptotic level of this 1earning’curvq>used in estimating
the time constant, is not as high as the‘Thorpe optimal level, Space does
not permit an examination of the value of this asymptotées; It can be-stated,
however, that the larger 'X, the faster is the adaptation process and the
lower is the asymptotic‘performance level.

. According to formula 38, the 1earning curve with A\ =‘0.04, Figure 11,
should be ten times slqwer than the curve with A\ = 0f4. By experiment, this
vfurns out to be almést precisely so.

When one qonsiders the number of assumptions that were méde in deriving
the simple formula 37, one might expect to predict only‘the oider of, |
magnitude of the learning-curvé time constant. A number. of experiments have

shown, however, that this formula is surprisingly'apcurate.'

Current and Future Research
Preliminary studies have been made with some success toward the develop-

ment of adaptation algorithms'for multilayered networks of adaptive threshold

-23-
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elements using the selective’bootstrap principle. If performance observed
at a set of output terminals is "better than average, ' everybelement in the
net receives positive bootstrap‘adaptation._ If output~terminal performance
is poorer than average, then all elements receive negative bootstrap adapta-
tion, It is conjectured that formula 37 willvbe usable in predicting the
rate of adaptation-in‘such networks, Instead of decisions being made in a
chain over time, here they are made simultaneously, in a chain over space.

The ultimate of jective of this research is to develop efficient adaptation

algorithms for adaptive threshold-element networks of arbitrary configuration,

which are capable of realizing“decisioﬁ functions»which are not linearly

) separabie.‘
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