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PATTERN-RECOGNIZING CONTROL SYSTEMS

BerNARD WipROW AND FRED W. SMITH

Stanford University, Stanford, Calif.

INTRODUCTION

‘For the past several years the properties and applications of adaptive
threshold-logic elements and means of physical réalization of these elements
have been under study at Stanford University. It is the purpose of this
paper to present an up-to-date summary of this work, and in particular, to
show how adaptive logic networks have been used in an automatic control
system.

ADALINE, AN ADAPTIVE LOGIC ELEMENT

A basic building block of the systems to be considered is an adaptive
threshold element, sometimes called an adaptive “neuron.” For the past
several years, we at Stanford University have called -this element Adaline
(adaptive linear neuron). A functional diagram of this element is shown in
Fig. 1. It includes an adjustable threshold element and the adaptation
machinery which automatically adjusts the variable weights. It has been
demonstrated experimentally and theoretically that this element can be
trained to react specifically to a wide variety of binary input signals and
that it can be trained to generalize in certain ways, i.e., to react as desired
with high reliability to inputs that it has not been specifically trained on.

In Fig. 1 the binary input signals on the input lines have values of 41

or —1 rather than the usual'values of 1 or 0. Within the neuron shown, a

linear combination of the input signals is formed. The weights are the gains
Wy, Wy, . . ., which could have both positive and negative values. The output
* signal is +1 if this weighted sum is greater than a certain threshold, and
—1 otherwise. The threshold level is determined by the setting of w,, whose
input is permanently connected to a +1 sorce. Varying w, varies a constant
added to the linear combination of input signals.
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For fixed gain settings, each of the 2» possible input combinations would
cause either a +1 or a —1 output. Thus, all possible inputs are classified
into two categories. The input-output relationship is determined by choice
of the gains wy, . .. , w,. In the adaptive neuron, these gains are set during
the training procedure. : '

In general, there are 22" different input-output. relationships or truth:
functions by which the n input variables can be mapped into the single
output variable. Only a subset of these, the linearly separable logic func-:

“tions, can be realized by all possible choices of the gains. Although this

subset is not all inclusive, it is a useful subset, and it is “‘searchable,” i.e.,

" the “best” function in many practical cases can be found. iteratively

without trying all functions within the subset. An iterative search pro-
cedure has been devised and is described below. This procedure is -quite
simple to implement, and can be analyzed by statistical methods that were
originally developed for the analysis of adaptive sampled-data systems.!

An adaptive pattern classification machine has been constructed for the
purpose of illustrating adaptive behavior and artificial learning. A photo-

_graph of this machine, which is an adjustable threshold ielement (called

“KNOBBY ADALINE”), is shown in Fig. 2. _
~ During a training phase, simple geometric patterns are 'fed to the
machine by setting the toggle switches in the 4 X 4 input switch array. All
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gains, including the threshold level, are to be changed by the same absolute
magnitude such that the analog error (the difference between the desired
meter reading and the actual meter reading) is brought to zero. This is
accomplished by changing each gain in the direction which will diminish
the error by }4;. The 17 gains may be changed in any sequence, and after all
changes are made, the error for the present input pattern is zero. The
weights associated with switches up (+1 input signals) are incremented by
rotation in the same direction as the desired meter needle rotation, the
weights connected to switches in the down position are incremented opposite
to the desired direction of rotation of the meter needle. The next pattern
and its desired output is then presented, and the error is read. The same
adjustment routine is followed and the error is brought to zero. If the first
pattern were reapplied at this point, the error would be small but not
necessarily zero. More patterns are inserted in like manner. Convergence is
indicated by gmall errors (before adaption), with small fluctuations about
stable weights. A least-mean-square adaption procedure (LMS) requires
that adaption be made even if the quantized neuron output is correct. If,
for example, the desired response is +1, the neuron is adapted to bring the
analog response closer to the desired response, even if the analog response
is more positive than 1.

Figure 2
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The iterative training routine is purely mechanical. Electronic automa-
tion of this procedure will be discussed below.

The results of a typical adaption on six noiseless patterns is given in
Fig. 3. During adaption, the patterns were selected in a random sequence,
and were classified into 3 categories. Each T was to be mapped to +30 on
the meter dial, each G to 0, and each F to —30. As a measure of performance,
after each adaptation, all six patterns were read in (without adaptation)
and six analog errors were read. The sum of their squares denoted by Ze?
was computed and plotted. Figure 3 shows the learning curve for the case
in which all gains were initially zero.

It is shown in Ref. 2 and 3 that making full correction w1th each adaption
using the LMS procedure is in effect a stable “performance feedback”
process having an adaptive time constant equal to the number of weights.
In the experiment of Fig. 3, the time constant is 17 adaptions. It is also
shown that changing each weight by the same magnitude in the appropriate
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directions is equivalent to utilization of the method of steepest descent on a
mean square error surface. A number of other steepest descent adaption
procedures have been devised by W. C. Ridgway I11¢ and C. H. Mays. ¢
These proceedures have been analyzed by Mays with regard to proofs of
converoence and bounds on the number of adaptions required for conver-
gence. The decision to adapt may be based on one of the following rules:
adapt only if the response is incorrect; or adapt only if the response is in-
correct or within a “dead zone.” If the decision to adapt is made, then the
increment size might be fixed or might be proportional to the analog error,
the difference between the analog sum and the desired output. These pro-
cedures are described in detail in Mays’ Ph.D. thesis, along with bounds on
the number of adaptions needed for convergence.

The effects of adaptive feedback in Adaline networks on their ability to
self-heal by adapting around internal defects are analogous to the effects of
feedback in amplifiers and control systems in making system performances
insensitive to gain changes and nonlinearities. P. R. Low has studied by
simulation and by analysis what he calls “defective” Adalines. One such
‘Adaline has a set of weights whose integration speeds vary over a 5-to-1
ratio. These speeds are randomly selected from a uniform distribution of
speeds. It was found that sometimes the nonuniformity in the adapt rates
hinder and sometimes help, but on the average, this wide variation among
the speeds increases the total number of adaptions required to achieve
convergence, but by only 5 percent. The resultant weight values are
essentially unaffected by this, as are the functions realizable and the
statistical memory capacity.

THE ADALINE MEMORY CAPACITY

An important question is, how many patterns or stimuli can the single
adaptive neuron be trained to react to correctly at a time? This is a
statistical question. Each pattern and desired output combination rep-
resents an inequality constraint on the weights. It is possible to have incon-
sistencies in sets of simultaneous inequalities just as with simultaneous
equalities. When the patterns (i.e., the equations) are picked at random,
the number which can be picked before an inconsistency is. created is a
random variable. As few as 4 patterns can form a nonlinearly separable set,
regardless of the pattern size.

A series of experiments was devised by J. S. Koford and R. J. Brown
where patterns containing unbiased random bits and random desired
responses were applied to Adalines with varying numbers of inputs. It was
found that the average number of random patterns that can be absorbed by
an Adaline is equal to twice the number of weights. This is one basic meas-

%
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ure of memory capacity. It was recently proven by Brown that this experi-
mental result is rigorously correct. Analytical curves showing the probability
of being able to train-in N patterns as a function of N/(n + 1) are presented
in Fig. 4. Notice the sharpening of the break point of these curves at
exactly the average capacity as the number of inputs to the Adaline
increases. »

Derivation of the capacity formula and of the curves in Fig. 4 will be
presented in a Ph.D. thesis by Brown.

MADALINE, A PARALLEL NETWORK OF ADALINES

Storage capacity in excess of that of a single Adaline can be readily
achieved by use of parallel multi-Adaline networks. Several Adalines can be
used to assist each other in solving problems by automatic load-sharing.

The configuration in Fig. 5 shows a Madaline (multiple Adalines) of 5
Adalines with parallel-connected inputs in the first layer. In the second
layer of fixed logic the Adaline outputs are connected to a majority-rule
element whose output is the system output. The “job assigner,” a purely
mechanical device, automatically decides which Adalines if any need
adaption. There are a variety of fixed-logic schemes that could be used on
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the second layer. M. E. Hoff, Jr., in his doctoral thesis,” described conver-
gent adaption procedures that can be used with all possible fixed-logic
second layers.

One procedure for training these networks is to use the ‘“minimum-
change’’ rule. Under this rule:

(%) No adaption is performed if the system output is correct. ,

(#%) If the system output is in error, a minimum number of the incorrect
Adalines are adapted. The Adalines chosen for adaption are those whose
analog responses require the least amount of change to give the proper
response. '

When adaption is performed according to the minimum-change rule,
various Adalines tend to take “responsibility’”’ for certain parts of the
training problem. Thus, this rule produces load sharing among the Adalines
by assigning responsibility to the Adaline or Adalines that can most easily
assume it.

The adaptive system of Fig. 5 was suggested by common sense, was
tested by simulation, and was found to work very well. It was subsequently
proven by Ridgway in his doctoral thesis that this system will converge on
a solution if a set of weights exists that will solve the training problem. The
essence of the proof lies in showing that the probability of a given Adaline
- taking responsibility for adaption to a.given pattern, desired-response pair
is greatest if that Adaline had taken such responsibility during the previous
adapt cycle in which the pattern was presented. The division of responsi-
bility stabilizes at the same time that the responses of the individual
Adalines to their share of the load stabilizes. In the case that the training
problem is not perfectly separable by this system, it can be shown that the
adaptation process tends to minimize error probability.

The memory capacities of Madaline structures utilizing both the majority
element and the or element have been measured by Koford. Although the
logic functions that can be realized with these output elements are different,
both types of elements yield structures with the same statistical storage
capacity. The average number of patterns that a Madaline can be adapted
to equals the capacity per Adaline multiplied by the number of Adalines.
The memory capacity is therefore equal to twice the number of weights.

OENERALIZATION EXPERIMENTS WITH ADALINES AND
- SIMPLE NETWORKS OF ADALINES

~With suitable pattern-response examples and the proper training pro-
cedures, generalizations can be trained into Adalines. The kinds of generali-
zations to be considered here are concerned with the training of Adalines to
be statistically insensitive to noise, and to be sensitive or insensitive to
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translation, rotation, and size. Adalines can be foréed to react consistently

- to a training set of patterns for all possible positions, for example, and then

they will react consistently in all positions with high reliability on new
patterns.

GENERALIZATION WITH RESPECT TO NOISE

Statistical separation of patterns consisting of a finite set of basie
“prototypes” and noisy versions of these basic patterns can be readily
accomplished by the single Adaline after training on the basic patterns
and/or samples of the noisy patterns. A new pattern would be associated
with one of the prototype classes by proximity in a Hamming distance
sense.

With the obJectlve of minimizing the probability of incorrect olaxslhca.—
tion, there is an optimum set of weights that would result from training on a

AD
AD A\ |
\ tput
Inputs AD Qu u
AD )
i Confidence
Ao | levels
553131'3& signals | | - 2 Y 08
5 parallel q/r - ASS!GNER
ADALINES
d Desired output
(octuoted during
tronng

- Oufput

SYMBOLIC REPRESENTATION

Figure 5




296 COMPUTER AND INFORMATION SCIENCES

very large sample. The effect of training on a small sample set can be
summarized with the following formula, derived in Ref. 2 and 3.

y=d D i)

The number of training samples is N, randomly selected from all possible
samples, and the total number of weights is (n + 1). The quantity M is
called the “misadjustment.” It is the per unit increase in error probability,
based on a minimum error probability attainable by training on a very
large sample. This formula leads directly to the idea that the number of
patterns required to train an Adaline to discriminate noisy patterns is
about five times (making M only 20 percent) the number of weights. The
number of training patterns required to produce this form of generalization
is of the order of twice the statistical memory capacity.

GENERALIZATION WITH RESPECT TO ROTATION OF PAT-
TERNS - -

Insensitivity to rotation by 90° is a characteristic that can be perfectly
trained into an Adaline. An experiment was made as depicted in Fig. 6 by
using the 4 X 4 KNOBBY ADALINE shown in Fig. 2. C’s rotated in all
four positions were trained-in to give the +1 response, while 7’s were
trained-in to give the —1 response in all four rotations. The initial weights
were set to zero, and during training, the minimum mean-square error
adaption procedure with an adaptive time constant of 32 patterns was
utilized. The process converged with the desired responses trained-in
precisely, and the set of weights shown in Fig. 6 resulted. Without further
training, new patterns totally unrelated to the training patterns were
inserted, and it was observed that not only were the decisions made by the
Adaline perfectly consistent for each pattern over the four rotations, but
the four meter readings (confidence levels or analog outputs) for each
pattern were identical. The reason for this is simple: Rotation ot the weights
by 90° yields an identical set of weights. Let the a-matrix represent the set
of weights (not including the threshold weight). The threshold weight
remains the same for all rotations. The superscript R represents rotation
by +90°. .

o) = o)* = [*]* = [[W"]"] -

Other training patterns and other numbers of training patterns were
used in this experiment, and in each case, after convergence, the same
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symmetry expressed in ‘Eq. (2) resulted automatically. Adaptation with a
time constant, long compared to the number of training patterns, allows
the neuron to retain responses to all the training patterns: essentially
equally. Minimization of mean-square error forces the response voltage to
each training pattern in all four rotations to be consistent even when it
might not be possible for this voltage to be precisely +1 or —1. This
forces the symmetry of Eq. (2). o

An interesting question is, how many specific responses on the average
can be trained in and yet have the neuron trained to be insensitive to 90°
rotation for all patterns. The 4 X 4 neuron has a capacity of 32 patterns.
Eight basic patterns on the average can be trained in, since each basic
pattern must be inserted in all four rotations. Another point of view on this
question was suggested by Hoff. ,The four encircled weights and the
threshold shown in Fig. 6, once chosen, set the rest of the weights when the
constraint of Eq. (2) is followed. There are 4 ‘‘degrees of freedom’’ plus the
threshold freedom. The number of basic patterns that can be discriminated
therefore corresponds to the capacity of a 4-input neuron which is 8
patterns. . . .

The same training procedure could be used to train-in a direct sensitivity
to rotation, rather than an insensitivity. The experiment was remade, with
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a ¢ mapped +1 and a T mapped —1, however with a rotated C mapped
—1, and a rotated T mapped- 41, ete., the following set of weights resulted.

—11 +9 -2 +11 0
+ 2 0 0 —9

_..9 0 0 +2 thre§hold
+11 —2 +9 —11 weight

The symmetry in the weights can be described by

. R
) =-1a)* =-[@*]* = — [ -[-"]"] )

Rotation of any input pattern by 90° causes a sign reversal in the confidence
level, and therefore an opposite decision.

GENERALIZATION WITH RESPECT TO LEFT-RIGHT TRANS-
LATION

Perfect solutions to the problem of training an Adaline to be insensitive
to left-right pattern translation exist. A solution requires the columns of the
a-matrix to be identical. On a 4 X 4 input array, there is a choice of 4
independent weights, each choice setting a row of weight values. It follows
that the statistical discrimination capacity subject to the constraint of
insensitivity to left-right translation is that of a 4-input Adaline or 8 basic
patterns. The total capacity of the 4° X 4 Adaline is 32 patterns, and this

.corresponds to the four positional possibilities for each of the 8 basic
patterns. Patterns can be placed in four positions by considering the input
pattern space to be continuous and folded over a cylinder having a vertical
axis. . , v o

By symmetry, the same training procedures apply to training for
insensitivity to up-down motion. If both left-right and up-down insensi-
tivity is desired, the only perfect solution is the relatively trivial one, all
weights in the a-matrix being equal. Discrimination is based on pattern
“area,” the number of +1 pattern bits. More sophisticated discrimination
based on pattern features other than- area has been made by using two
Adalines and an or output element in the form of a simple Madaline.

An experiment was made to train a KNOBBY ADALINE to give a sign
reversal for left-right motion and, at the same time, to give a sign reversal
for rotation by 90°. The pattern T on a 3. X 2 grid was trained in to produce
41 in the vertical left position, —1 in the vertical right position, etc. The
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following set of weights resulted. Notice the symmetries and sign alterna-
tions.

8 -5 5 —8 -2
5 -1 1 5
5 1 -1 -5

-8 5 -5 8

It was found that approximately 85 percent of new patterns would con-

sistently produce sign alternation for all possible left-right, up-down, and -

rotation by 90° motions. The remaining 15 percent of patterns would be
consistent in most situations, perhaps be incorrect in only 2 out of 16 cases.
Symmetrical patterns would be perfectly consistent.

GENERALIZATION WITH RESPECT TO PATTERN SIZE

An Adaline can be trained to be highly insensitive to pattern size. The

training procedure again requires slow minimum mean-square-error adap- -

tion. In Fig. 7, a set of “small” and “large’’ patterns is shown that comprised
examples for the training experiment. On a 3 X 3 array in the upper left
hand corner of a 4 X 4, a T and a C were inserted as shown. In the full
4 X 4 array, expanded versions of these patterns were trained-in to give
corresponding responses.’ After training, it- was found that new patterns
gave widely fluctuating analog responses. For about 90 percent of new
pattern inputs, the same binary response resulted for the small as for the
large versions, and the corresponding confidence levels were extremely close.

To be perfectly insensitive to size, the weights of an Adaline must be
such that an element of area of the small pattern “sees” the same total
weight (input patterns are thought of as continuous two-dimensional
functions and weights are thought of as continuous distribution functions)
as the corresponding area element of the large pattern that it maps into. It
can be shown that perfect solutions result when the weight function radiates
from a point and has an intensity that decays with an inverse-square law.
These general effects can be detected in the weights of Fig. 7.

APPLICATIONS OF PATTERN CLASSIFICATION PRINCIPLES
TO SYSTEMS PROBLEMS

In addition to an application to automatic control systems which will be
described in detail in the next section, the above principles have been
applied to weather forecasting, speech recognition, and diagnosis of EKG
‘waveforms. ' '

SO




- 300 COMPUTER AND INFORMATION SCIENCES

X|X X|X[X
X X
XX X
C»+li T>-
X[X|X X|X|X|X]|
X X|X
X XX
X[X|X XX

TRAINING PATTERNS

2[1[8[1]1
dEIERE
8| | [
INNE

RESULTING WEIGHTS
‘Figure 7

WEATHER FORCASTING

~ One of the highly successful applications of Adaline-type trainable
threshold networks has been to weather forecasting. This work has been
performed mainly by M. J. C. Hu, a graduate student at Stanford, with the
cooperation of Mr. H. E. Root of the U.S. Weather Bureau at the San
Francisco International Airport.

Measurements of sea-level barometric pressure at a number of pomts
around San Francisco were applied, after appropriate encoding, to the
inputs of a network of Adalines. The desired outputs to which the network
was trained was whether or not it rained during some future interval at
San Francisco. Both two-level and multilevel input Adalines have been
used for these experiments.

Consider the results, obtained from an illustrative experiment. A three-
Adaline system was used to give three separate forecasts, covering three
successive 12-hour periods in the future. One Adaline was trained to
indicate whether or not it rained from 8 a.m. to 8 p.m. on the day when the
pressure map was made (the map was made at 4 a.m.). The other two
Adalines were trained, using the same data, to forecast whether or not it
rained from 8 p.m. of the same day to 8 a.m. of the next day, and from
8 a.m. to 8 p.m. of the next day, respectively.
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The experiment utilized three types of weather information. The three-
Adaline system was trained to recognize 33 patterns of each of the following
types. -

1. Today’s 4 a.m. PST (Pacific Standard Time) Surface Pressure Map.

2. Today’s 4 a.m. PST and yesterday’s 4 a.m. PST Surface Pressure

Maps. '
3. Today’s 4 a.m. PST Surface Pressure Map and the difference between
today’s and yesterday’s pressure (dp/dt). ‘ ,
The three-Adaline system was then tested on 18 patterns from each of the
types mentioned above. The performance of the three-Adaline system was
then compared with the official forecast for those 18 days. The results are
tabulated below:

Percent Right
Today . Tonight Tomorrow
: 8 a.m.~-8 p.m. 8 p.m.~8 a.m. 8 a.m-8 p.m
Official forecast . 78 89 67
Adaline forecast using .
‘1. 4a.m. PST Map _ 72 67 - 67
2. Today’s and yesterday’s
4 a.m. PST Maps 78 78 ) 78
3. Today’s 4 a.m. PST Map
and dp/dt 78 89 83

The sucéess of this work, particularly considering that only barometric
pressure was used for generating the Adaline forecasts, has resulted in

growing interest, both at Stanford and among local meteorologists, in this
- technique.

SPEECH RECOGNITION

A small-scale, real-time, trainable speech recognition system has been
built and studied extensively by L. R. Talbert, G. F. Groner, and J. S.
Koford, P. R. Low, and R. J. Brown, with the advice of Dr. Dorothy A.
Huntington of the Speech Pathology and Audiology Department at Stan-
ford. This system consists of a microphone-input speech preprocessor,
which feeds a speech waveform of normalized amplitude into eight band-
pass filters spaced throughout the audio spectrum. The detected outputs of
these filters (proportional to spectral energy) are then quantized, digitally
coded, and sampled for application directly to a simulated Adaline network.

In a typical experiment the output of each of the bandpass filters is
quantized into four levels, and is then represented by a simple three-bit
linearly separable code (this will be explained in the next section). Ten
samples of each quantized output are then taken at equal intervals through-
out the duration of a spoken word. Thus, each spoken word is represented
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by 8 X 3 X 10, or 240, bits. k-simulated Adalines are used to provide
classification for 2* words. Thus, for recognition of the spoken digits 1 to 10,
four simulated Adalines of 240 inputs each were used.

In use, training samples of the particular voice to be recognized are first
taken, and the Adalines are trained to correctly classify these training
samples. After convergence on the training samples, new spoken samples._
can be used to test the ability of the network. After training on ten samples
of each spoken word from one individual, the network can typically classify
" new samples of the same spoken word by that individual with 98 percent
accuracy or better. If tested on a new individual, this accuracy averages
90 percent or better.

VECTORCARDIOGRAM DIAGNOSIS

Networks of Adalines have been applied with encouragingly good success
by D. F. Specht with help, advice, and data supplied by Drs. J. G. Toole
and J. Von der Groeben of the EKG Department, Stanford University,
School of Medicine to the diagnosis of heart defects from examination of
vectorcardiograms. A vectorcardiogram differs somewhat from the usual
12-track electrocardiogram in that only three sets of data are recorded, but
they are recorded simultaneously, so that significant phasé information
among them is preserved. The input patterns to an Adaline network are
formed by sampling the vectorcardiograms at 5-millisec intervals. During
training on approximately 100 sample patterns, the desired outputs were
based on an electrocardiologist’s diagnosis. The following table indicates
the sort of success which has been obtained in preliminary experiments.

Recognition Rate on the Testing Set
True Normals, %  True Abnormals, %

(27 cases) (30 cases)
Clinical EKG 95 54
Generalized adaptive approach 89 73

~ APPLICATION TO CONTROL SYSTEMS

The state of a dynamic system can be completely described at any instant
by the values of the state variables of the system. (The state variables of a
control system are such quantities as the error, the error derivative, etc.)
A control decision therefore need depend only on the present values of the
state variables. The value of each state variable can be encoded as a
sequence of binary digits. The collection of these encoded state variables
forms a pattern. Proper control of a dynamic system by an Adaline or
Madaline becomes a matter of the proper classification of the patterns
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which represent the different states of a dynamic system. Just as an Adaline
can be taught to classify patterns into two groups, it can also be taught to
control a dynamic system in a ‘“bang-bang” or +1, —1 manner.

When the state variables are encoded using what has been called a
“linearly independent code,” the task of learning control strategies is quite
natural for an Adaline.

t. The large sets of patterns representing the control strategy for all
possible regions of state space are often either linearly separable, or separ-
able with simple Madaline structures. Then umberof patterns which the
Adaline is able to correctly classify is generally a norder of magnitude or
more greater than its statistical capacity.

2. The Adaline generalizes in a known and predictable way. Namely, the
Adaline can correctly classify all the patterns of a control strategy after
learning to correctly classify only the patterns bordermg on the switching
surface. -

Because of this strong generalizing property and because of the special
interrelationships among the many patterns, the Adaline is much easier to
train than it would be for a similar number of random or near random
patterns.

THE TRAINABLE CONTROLLER

Figure 8 shows in block diagram form the general situation in which a
Madaline would be used as a trainable controller for a dynamic system.
The state variable y, . . . y» are assumed to be the system error.

The teaching controller supplies the desired output to the Adaline during
the training process. This controller could be an automatic controller or
possibly a human. The Adaline controller and the teaching controllre need
not have the same inputs, provided both receive the same or related

~ information. For instance, the Adaline controller could be receiving the
state variables as electronic signals while a human teacher could be
receiving information about the system by actually watching its motions.

For the purposes of discussion the teacher will be assumed to be rep- -
resented by a function f(yy, . . . , ym). The switching surface f(yi, . . . , yn) =
0 describes the transition where the teacher changes his reaction from
“force plus to ‘“force minus.” During the training, the Adahne analog
output f(y,, ..., Ym) is adjusted so that its switching surface f(y,, ey Ym)

= 0 is made to approximate the switching surface of the teacher.

The Adaline controller consists of an encoder and an Adaline. For
simplicity, a single Adaline is shown here in the controller; more typically a
Madaline might be used. The Adaline with its encoder is basically a
trainable function generator which forms the function f(yl, .e-,Ym). The
pattern inputs to the Adaline change continually as the state variables
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change. The encoder produces patterns by quantizing or dividing the range

- over which each of the state variables varies into a finiteé number of zones.
Each zone of a state variable y; is represented by binary number or partial
pattern. The m partial patterns make up the total pattern which represents
a particular hypercube of state space.

Figure 9 illustrates the quantization of a two-dimensional state space.
Each square in the figure is represented by a particular pattern for the
Adaline. The continuous curve f(yl,yz) = 0 represents a typlcal desired
switching surface (a curved line in this case). The jagged curve f (y; ,Y2) =0
is the switching curve that an Ada,hne controller might use to approx1mate
the teaching controller.

The system has two modes of operation: :

i. During the training mode, the teaching controller controls the
dynamic system. The adapt logic in the Adalinie continuously compares the
binary output of the Adaline with that of the teacher. Whenever they
differ, the Adaline is adapted in the direction which would make them agree.
Because the patterns change rapidly, there may not be time for a full

(90 Y SWITCH POSITION:

UP, TRAINING MODE
TEACHING. -] DOWN, ADALINE CONTROL MODE
CONTROLLER _r
DESIRED
OUTPUT
—— — - —_I
REFERENCE | ! o |svsTem
NON- DYNAMI
2 SINGULAR | ENCODER f'( he Ym" _J’ RESPON
TRANS- h ADAUNE SYSTEM
STATE FORMATION | ANALOG !
VARIABLES OUTPUT
BANG BANG
Yoo Ym L - _= -] FORCING
MADALINE CONTROLLER FUNCTION

-

Figure 8
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correction. However, the pattern is bound to recur, at which time adaption
can be continued. During the training mode the Adaline controller “watches”
the teacher zero the error after various large disturbances or initial con-
tions. .

7. During the Adaline control mode the teaching controller is not used
and may be completely removed from the system.
[}

CODING

The choice of codes used to represent the values of the state variables
largely determines how well the Madaline controller will be able to imitate
its teacher. Figure 10 illustrates two possible “linearly independent codes.”
A linearly independent code is any code which has a nonsingular partial
pattérn matriz. This matrix has the partial patterns as rows plus a column
of ones (if necessary). The partial pattern matrix for the codes of Figs. 10a
and b are respectively:

0001 1111
0010 1110
0100 1100
1000 1000

Both matrices are obviously invertible. When linearly independent coding
-is used; the Adaline will be able to exactly imitate (except for quantization

eﬁ'ects) any teacher whose function does not contain cross-product terms,

ie., terms of the form Yils, ¢ ¥ j, regardless of the number of patterns.

TEACHING CONTROLLER Y2 f<O0
SWITCHING LINE 0: TH?;‘%I;E(OOF
flyye) 20 A SWITCHING LINE

|
|

| ADALINE CONTROLLER
T SWITCHING LINE

i fy,y,)s0
; Z

re !

t>0anp >0

ON THIS SIDE OF
SWITCHING LINE

Figure 9
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The proof that an Adaline using linearly, independent coding has such
classifying power can be given by demonstrating of how the Adaline
matches its function to that of the teacher. The analysis an Adaline is
much simpler for the class of classification problems in which a decision is
based on the encoded values of state variables than for most problems. The
simplification occurs because the Adaline can be fully described in terms
of the m state variables instead of the n binary inputs, (n >> m generally).
The weights for the inputs used to encode a particular state variable are
considered not as separate entities but as a single function of the state
variable. The abilities and limitations of a single Adépline in pattern
classification and generalization become apparent. Also, the weights can
often be calculated in many seemingly complicated problems.

This new interpretation of the Adaline is for analytical purposes only.
The Adaline is trained in the usual way. The function matching to be
described goes on automatically “inside” the Adaline.

Let the schematic of the Adaline be redrawn as in Fig. 11. Only the
method of summing has been changed so as to allow the quantities f:(y,),
t = l,...,m, to be defined. The threshold weight w, is figuratively con-
sidered to be divided into m thresholds w.,, where

i Wi *;-_wo v _ )

Tl

Each partial sum f;(y;) i8 a function of only the state variable y;. The
switching surfaece for the Adaline is .

~ m
f=2fy)=0 (5)
—
Yi
A ZONE OF Yy PARTIAL PATTERNS
Yy > a . 0001 1
QA =
e > > f cooto 1o
B+
B>T >‘7 0100 100
r' -
Y>v, 1000 000
(e) (v)
Figure 10
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This function has no cross product terms and cannot approximate teaching
functions with cross-product terms. Thus, the Adaline can imitate only
teaching functions of the form

J =3 5) =0 ©

This is a consequence of encoding each state variable independent of the
others.

If the switching surface of the Adaline controller is to imitate that of the
teaching controller _f must be proportxonal to f, and furthermore, because
the y; can vary independently, each j «(y:) must be proportional to f:(y.).
(Assume a proportionality constant of one here.) Thus the coding of the
state variables into patterns can be studied by examining how a single
variable is encoded.

Consider the state variable y;. When y;isin a partlcular quantum zone
the partial sum f.(y,) (@)7- (W). The vector (@) is the partial pattern
associated with that zone, augmented by a +1 ‘‘threshold input” as its
first entry. The vector (W,) contains thewelghts associated with y;in Fig. 12.

The threshold weight w, is the first entry. If f,(y.) is to match f;(y;), then

they shonld be equal somewhere within each quantum zone. Thus:

@7 - (i) = fily)

State Encoders Partial Weights Partial

Variables Patterns Wio Sums
+lo—'@\
y A
o—-—-
: +] o0—
ol
|
L]
[ ]
[ ]
. +10—
Yom ]
»

Figure 11
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somewhere within each quantum zone. These equations (one from each
quantum zone) must have a simultaneous solution. They can be rewritten
more compactly

4] ) = () )

[A] is the partial pattern matrix described above. The (f3) is a vector con-
taining values of i(y:) at which 7 (s = fi(y). i :

When the equations [A](W;) = (f +) are consistent f i(y:) = fi(y.) is possible
and the Adaline partial sum will be able to “exactly”’ imitate the partial
sum of the teaching function, fi(y:). “Exactly”’ is meant in the .sense that
ft;(y;) = fi(y:) for at least one value of y; in each zone of y;. If eg,\ch of the
£ (ys) is “exactly” equal to its corresponding f:(y:) for all 7, then £ (y,.. .,
ym) will equal f(y1,...,ym) somewhere within each hypercube of state
space. Furthermore, the hypercube, and its pattern, will have the same
sign as f(y1,. . .,yn) at this point. (These points of equality are indicated
in Fig. 13)) '

If f«(y:) is an arbitrary function, then the only way in which the equations
[A] @) = G" +) can be guaranteed to be consistent is to choose partial patterns
so that [A] has a left inverse. To minimize the number of weights [A] must
also have a minimum number of columns. The only form of [A] which
satisfies both of these criteria is an [A] which is square and invertible.
Thus, for an arbitrary fi(y;) the partial patterns representing y; must be
such that [4] has an inverse. Then, #; = [A]ll(;‘o s) for any fi(y:). Obviously,
there are many possible [4]’s.

Y2

A
Fz-l

TYPICAL TRAJECTORY
Fz+l .
Yy
BUSHAW
SWITCHING CURVE

Figure 12
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Two possible ways of encoding the state variables have been illustrated
in Fig. 10. The “‘single spot” code of Fig. 10a is easy to analyze mathe-
matically because most of the weights would have zero coefficients. If the
threshold weight is not used, the weights are:

wy

w2 - ".
o=
Wy

The “multispot” code of Fig. 10b is illustrated because it is usually quite
easy to instrument and also because this code usually allows the weights of
the Adaline to be quite small. Other authors® have shown that, in general,
the smaller the magnitudes of the weights (after proper normalization) the
easier it will be to train the Adaline.

The use of linearly independent coding shows that it is sufficient to
guarantee that the Adaline function generator will be able to “‘exactly”
imitate a teaching function that has no cross-product terms. By a more
involved argument, it can be shown that linearly independent coding is
necessary if the Adaline controller is to have a minimum number of weights
while “‘exactly’’ imitating a teaching function with no cross terms. A proof
of necessity is hardly needed, however, when the nonstatistical capacity
of an Adaline using linearly independent coding is considered. For in-
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stance, when each of the state variables is quantized into n’ zones, there
are (n’)™ possible patterns. The statistical capacity of this Adaline is
approximately 2mn’.

Consider the valuesn’ = 5; m = 4. Then (n")™ = 625 patterns can be
correctly classified while the statistical capacity is only 2mn’ = 40. The
actual capacity in this typical case is more than an order of magnitude
greater than the statistical capacity.

AN EXAMPLE OF AN ADALINE CONTROLLER

The above ideas can best be illustrated by showing how an Adaline
controller would control the oscillatory undamped second-order system
with differential equation ; ’

ntu=F F==x1, =y @®)

The minimum-time optimum-switching curve is the well-known Bushaw®
switching curve shown in Fig. 12. This switching surface was chosen for an
example because it gives appreciably faster response than a linear switching
line, and because it is highly nonlinear.? A typical trajectory of the mini-
mum time optimum controller is also shown in Fig. 12. The optimal
controller makes no “wrong” decisions but instead moves right to the
origin with one reversal of F. A controller containing one Adaline is capable
of closely approximating the nonlinear function of the optimum controller.
The switching surface of the Adaline controller is shown in Fig. 13 with
functions f:(y,), filyy), fx(yl), and f3(y»). The weights needed to realize these
functions are shown in Fig. 14. The weights of (@) are for the “single spot”
coding of Fig. 10a, while those of (b) are for the “multispot” coding of
Fig. 10b. The porportionality constant relating f (1,y2) and f(y1,ys) is 20.

IMITATION OF FUNCTIONS WITH CROSS—PRODUCT TERMS

Previously it was shown that a single Adaline controller can imitate
“exactly’’ teaching functions which do not have cross-product terms.
Functions containing cross products can be realized in two ways. One way
would be to encode additional variables which were the desired cross- -
product terms. Another and more satisfactory approach would be to use
several Adalines together in a Madaline. Encoding additional variables has
the disadvantage that there are an extremely large number of possible
cross-product terms (even when only low-order terms are considered).
With no a priori information available to indicate which cross-product
terms are necessary, they would all have to be encoded. The operation of a
Madaline structure can be described in function-generator terms briefly as
follows: The quantizers at the Adaline outputs and the fixed logic element
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which combines these outputs perform nonlinear operations which can
_introduce the necessary cross-product terms. A Madaline does not need a
weight for every cross-product term because it can organize its total
structure in such a way as to take into account the most significant
cross-product terms while ignoring the rest. ’

The situation illustrated in Figs. 15a, b, and ¢ demonstrates the ability
of a Madaline structure to imitate a teaching function with cross-product
terms. The teaching function is a rotated ellipse with equation:

51" = 6yiyz + 5y2" — 2 =10 )

This curve was chosen as a familiar nonlinear function. Two Adalines are
used. Adaline I in Fig. 15b has the U shaped switching line which approxi-
mates the switching line of half of the teaching function. Adaline IT in
Fig. 15¢ has the inverted U-shaped switching line which approximates the
other half of the teaching function. The Adaline outputs are combined in
an or circuit. The logic of the or circuit is: both Adaline outputs —1 then
Madaline output —1 otherwise Madaline output +1. With the polarity
of the Adaline outputs as shown on the figure the or circuit causes the
interior of the ellipse to be —1 as desired. The functions approximated by
the individual Adalines can be shown to contain no cross terms.

- -
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“BROOM-BALANCING MACHINE”

To demonstrate the ideas presented thus far in this chapter a relatively
complex dynamic system with an Adaline controller has been assembled.
The dynamic system is a motorized cart carrying an inverted pendulum.
The controller for the system is required to keep the pendulum balanced
and keep the cart within certain bounds by applying a horizontal force to
the cart. An actual memistor Adaline is used in the trainable controller.
This form of physical realization of adaptive logic circuits will be explained
below. Figure 8 gives a block diagram of the dynamic system and its
controllers. The nonsingular transformation in Fig. 8 is the identity trans-
formation in this case.

The cart and pendulum system is an undamped and inherently unstable
fourth-order dynamic system. The four-state variables are the angle of the
pendulum from vertical, 8; the rate of change of angle 6; the position of the
cart, z; and the rate of change of position x. These and other relevant
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Y2
Adaline 1
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quantities are defined in Fig. 16. The linearized differential equations

-representing this system are:

..._ 3_9 _ i
0= —am®
(10)

5=%F

It is assumed that there is no damping, and that the reaction of the
pendulum motions on the cart is negligible. ’

The teaching controller being used in these experiments has a linear
switching surface of approximately

f=—206—106+ 1.0z + 1.0z (11)

. The Adaline controller contains one 24-input Adaline. The range of each
of the state variables is divided into seven approximately equal zones. The
state variables are encoded into 6-bit partial patterns using a linearly inde-
pendent code similar to the one illustrated in Fig. 10b. The controller is

taught by having it observe the teacher return the system to the origin

of state space after it has received various large disturbances.

“SELECTIVE BOOTSTRAPPING”

The Adaline controller illustrated in Fig. 8 is a trainable adaptive system,
but not a self-optimizing'one. A teacher must exist in some form to serve as
an example for the imitating Adaline. An alternative self-optimizing

m = MASS OF PENDULUM

M = MASS OF CART

£ = DISTANCE FROM PIVOT TO CM

F s DRIVING FORCE, IFl= CONSTANT
“Xy <X <Xy

J

Figure 16
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technique for the training of an Adaline controller, that of “selective
bootstrapping,” has been studied by E. C. Fraser. Using this method, the
Adaline controller is allowed to operate with the Adaline weights set to any
arbitrary initial values—thus realizing an arbitrary control function. The
performance of the system, when operating in this manner, is observed and
evaluated. When, in the judgment of the observer, the performance over
long chains of decisions is acceptable, the Adaline is adapted to reinforce
such decisions; conversely, if the performance is unacceptable, the Adaline
is adapted to reverse the decisions as they are being made. If the observer
is uncertain, no change is made in the Adaline weights. In this way, training
information is obtained directly from the performance and does not depend
on any knowledge of the dynamic system configuration. That the system
be in a stable operating condition is not a requirement of this technique
since information about a system’s performance can be obtained even
though it is at the moment unstable. This is similar to a person trying to
balance a broom on his finger; even though he may drop it (the system
undergoes an unstable runaway), he learns something from the experience
which aids him to do a better job the next time. Of course, systems to which
this technique is applicable must be such that they can be stopped and
restarted whenever the output gets out of bounds (i.e., the broom falls over).

Tt can be shown that, for second-order systems at least, when this
technique is employed, the system will converge to a stable configuration
if the performance evaluations of the observer are correct greater than 50
percent of the time. For higher-order systems this limit may be somewhat
higher. The average rate of convergence is related to the observer’s
performance and is maximum when he is 100 percent correct and becomes
zero when he is 50 percent correct. For values less than 50 percent, the
system tends toward unstable configurations.

Experimental evidence has been collected to verify the. convergent
properties of this technique. In experiments conducted with computer-
simulated systems it was found that an observer familiar with control
system theory, but ignorant of the plant configuration, would consistently
produce training sequences leading to stable system configurations. The
observer was found to range from 55 to 62 percent correct in his evaluations.

REALIZATION OF ADAPTIVE CONTROL CIRCUITS
BY MEMISTORS

In large networks of adaptive neurons it is imperative that the adaptive
processes be fully automated. The structure of the Adaline neuron and the
adaption procedures used with it are sufficiently simple, that it has been
possible to develop electronic automatically ‘adapted neurons which are
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, rehable contam few parts, and are suitable for mass production. In such
neurons it is necessary to be able to store weight values, analog quantities

which could be positive or negative, in such a way that these values could
. be changed electronically. - ,

A new electrochemlcal circuit element called the Memistor (a resistor
. w1th memory) ‘has been devised by B. Widrow and M. E. Hoff for the

realization of automatically adapted Adalines. The Memlstor provides a .

-~ single variable gain element. Each neuron therefore employs a number of
; Memlstors equal to the number of input lines, plus one for the threshold.
A Memistor consists of a conductive substrate with insulated connecting
leads, and a metallic anode, all in an electrolytic plating bath. The con-
ductance of the element is reversibly controlled by electroplating. Like the
transistor, the Memistor is a 3-terminal element. The conductance between

~two of the termma,ls is controlled by the time integral of the current in the -

third terminal, rather than by its instantaneous value, as in the transistor:
‘Reproducible elements have been made which are continuously varlab]e,
_which vary in resistance from 50 to 2 ohms, and cover this range in about
15 sec with several tenths of a milliampere of platmg current. Adaptation is
‘accomplished by direct current, while sensing is accomphshed nonde—
structively with alternating current.

g Although the Memistor is still an experimental device, it is in limited

ommermal production. Figure 17 shows how they are made, 21 at a time
on a common substrate. Each cell has a volume of about 2 drops. The entire
_ unit is encapsulated in epoxy.

The broom-balancer has been controlled by an adaptive machine called
Madaline I, containing 102 Memistors. This machine was constructed
hastily over a 1}4-month period. The Memistors were not tested before
installation in the machine, and some were defective when first made. A
number of wiring errors existed; some weights were adapting to diverge
rather than converge. There were a number of short circuits, open circuits,
cold solder, joints, etc. This machine worked very well when first turned on,
and has functioned with very little attention over the past year and a half.
After several weeks of experimentation the individual weights were checked.
Twenty-five percent of them were not adapting. Yet the machine was able
to adapt around these internal flaws and was able to be trained to make
very complex pattern discriminations. Self-repairing control systems are a
very real and vital possibility.
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