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A. Introduction

Adaptive data -processing systems which can be
trained to classify complex digital and analog patterns
have been under development over the past several
years. Methods of adaptation, convergence rates,
statistical memory capacities, and generalization
capabilities have been studied for single threshold
elements (Adaline) and for certain networks of adap-
tive threshold elements (Madaline). In addition,
simple Adaline networks have been used successfully
in recognition of speech,in weather forecasting, in an
automatic control system, and in diagnosis of electro-
cardiographic waveforms. The inherent ability of
adaptive neural nets to generalize, i.e., to extrapo-
late a means of behavior from a very limited amount
of training, has been absolutely essential in making
these applications possible.

B. Adaline and Madaline

A basic building block of the systems to be con-
sidered is an adaptive threshold element, sometimes
called an adaptive "neuron." For the past several
years, we at Stanford University have called this ele-
ment Adaline (adaptive linear neuron). A functional
diagram of this element is shown in Figure 1. It
includes an adjustable threshold element and the adap-
tation machinery which automatically adjusts the
variable weights. It has been demonstrated experi-
mentally and theoretically that this element can be
trained to react specifically to a wide variety of binary
input signals and that it can be trained to generalize
in certain ways, i.e., to react as desired with high
reliability to inputs that it has not been specifically
trained on.

In Figure 1, the binary input signals on the input
lines have values of +1 or -1, rather than the usual
values of 1 or 0. Within the neuron shown, a linear
combination of the input signals is formed. The
weights are the gains w;, Wo, ..., which may have
either positive or negative values. The output signal
is +1 if this weighted sum is greater than a certain
threshold, and -1 otherwise. The threshold level is
determined by the setting of W whose input is per-
manently connected to'a +l source. Varying w
varies a constant added to the linear combination of
input signals.

For fixed gain settings, each of the 2" possible
input combinations would cause eithera +l ora -1
output. Thus, all possible inputs are classified into
categories. The input-output relationship is deter-
mined by choice of the gains w, ...,w,. In the adap-
tive neuron, these gains are set during %he training
procedure.
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In general, there are 22 different input-output

relationships or truth functions by which the n input
variables can be mapped into the single output variable.
Only a subset of these, the linearly separable logic
functions, can be realized by all possible choices of the
gains. Although this subset is not all inclusive, itis a
useful subset, and it is "searchable, " i.e., the "best"
function in many practical cases can be found iteratively
without trying all functions within the subset. An itera-
tive search procedure has been devised and is described
below. This procedure is quite simple to implement,
and can be analyzed by statistical methods that were
originally deviloped for the analysis of adaptive sampled-
data systems.

An adaptive pattern classification.machine has been
constructed for the purpose of illustrating adaptive
behavior and artificial learning. A photograph of this
machine, which is an adjustable threshold element
(called "KNOBBY ADALINE"), is shown in Figure 2.

During a training phase, simple geometric patterns
are fed to the machine by setting the toggle switches in
the 4 x 4 input switch array. All gains, including the
threshold level, are to be changed by the same absolute
magnitude such that the analog error (the difference
between the desired meter reading and the actual meter
reading) is brought to zero. This is accomplished by
changing each gain in the direction which will diminish
the error by 1/17. The 17 gains may be changed in any -
sequence, and after all changes are made, the error
for the present input pattern is zero. The weights
associated with switches up (+1 input signals) are incre-
mented by rotation in the same direction as the desired
meter needle rotation, the weights connected to switches
in the down position are incremented opposite to the
desired direction of rotation of the meter needle. The
next pattern and its desired output is then presented,
and the error is read. The same adjustment routine is
followed and the error is brought to zero. If the first
pattern were reapplied at this point, the error would be
small but not necessarily zero. More patterns are in-
serted in like manner. Convergence is indicated by
small errors (before adaption), with small fluctuations
about stable weights. A least mean square adaption pro-
cedure (LMS) requires that adaption be made even if
the quantized neuron output is correct. If, for example,
the desired response is +l, the neuron is adapted to
bring the analog response closer to the desired response,
even if the analog response is more positive than +1.

The iterative training routine is purely mechanical.
Electronic automation of this procedure will be dis-
cussed below.

The results of a typical adaption on six noiseless
patterns is given in Figure 3. During adaption, the
patterns were selected in a random sequence, and were
classified into 3 categories. Each T was to be mapped
to +30 on the meter dial, each G to 0, and each F
to -30. As a measure of performance, after each
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adaption, all six patterns were read in (without adap-
tion) and six analog errors were read. The sum of
their squares denoted by Je“ was computed and
plotted. Figure 3 shows the learning curve for the
case in which all gains were initially zero.

It is shown in References 2 and 3 that making full
correction with each adaption using the LMS procedure
is a stable "performance feedback™ process having an
adaptive time constant equal to the number of weights.
In the experiment of Figure 3, the time constant is 17
adaptions. It is also shown that changing each weight
by the same magnitude in the appropriate directions
is equivalent to utilization of the method of steepest
descent on a mean square error surface. A number
of other steepest descent adaption procedures have
been devised by W. C. Ridgway III, 4 and C. H. Mays,
These procedures have been analyzed by Mays with
regard to proofs of convergence and bounds on the
number of adaptions required for convergence. The
decision to adapt may be based on one of the following
rules: adapt only if the response is incorrect; or adapt
only if the response is incorrect or within a "dead
zone." If the decision to adapt is made, then the in-
crement size might be fixed or might be proportional
to the analog error, the difference between the analog
sum and the desired output. These procedures are
described in detail in Mays' Ph.D. thesis, © along with
bounds on the number of adaptions needed for conver -
gence.

The effects of adaptive feedback in Adaline net-
works on their ability to self-heal by adapting around
internal defects are analogous to the effects of feed-
back in amplifiers and control systems in making
system performances insensitive to gain changes and
nonlinearities. P. R. Low’ has studied, by simulation
and by analysis, what he calls "defective' Adalines.
One such Adaline has a set of weights whose integra-
tion speeds vary over a 5 to 1 ratio. These speeds
are randomly selected from a uniform distribution of
speeds. It was found that sometimes the non-uniformity
in the adapt rates hinder and sometimes help, but on
the average, this wide variation among the speeds in-
creases the total number of adaptions required to
achieve convergence, but by only 5 percent. The
resultant weight values are essentially unaffected by
this, as are the functions realizable and the statistical
memory capacity. !

An important question is, how many patterns or
stimuli can the single adaptive neuron be trained to
react to correctly at a time? This is a statistical
question. Each pattern and desired output combination
represents an inequality constraint on the weights. It
is possible to have inconsistencies in sets of simul-
taneous inequalities just as with simultaneous equal-
ities. When the patterns (i.e., the equations) are
picked at random, the number which can be picked
before an inconsistency is created is a random variable.
As few as 4 patterns can form a nonlinearly separable
set, regardless of the pattern size.

A series of experiments was devised by J. S.
Koford and R. ]J. Brown where patterns containing
unbiased random bits and random desired responses
were applied to Adalines with varying numbers of
inputs. It was found that the average of random

patterns that can be absorbed by an Adaline is equal to
twice the number of weights. This is one basic measure
of memory capacity. It was recently proven by Brown
that this experimental result is rigorously correct.
Analytical curves showing the probability of being able
to train-in N patterns as a function of N/(n+l) are
presented in Figure 4. The total number of adaptive
weights is (n+l), including the threshold weight. Notice
the sharpening of the break point of these curves at
exactly the average capacity as the number of inputs to
the Adaline increases.

Derivation of the capacity formula and of the curves
in Figure 4 will be presented in a Ph.D. thesis by Brown.

Storage capacity in excess of that of a single Adaline
can be readily achieved by use of parallel multi-Adaline
networks. Several Adalines can be used to assist each
other in solving problems by automatic load-sharing.

The configuration in Figure S5 shows a Madaline
(multiple Adalines) of 5 Adalines with parallel-connected
inputs in the first layer. In the second layer of fixed
logic the Adaline outputs are connected to a majority-rule
element whose output is the system output. The "job
assigner, " a purely mechanical device, automatically
decides which Adalines, if any, need adaption. There
are a variety of fixed logic schemes that could be used
on the second layer. M. E. Hoff, Jr., in his doctoral
thesis® described convergent adaption procedures that
can be used with all possible fixed-logic second layers.

One procedure for training these networks is to use
the "minimum change" rule. Under this rule:

i) No adaption is performed if the system output is
correct.

ii) If the system output is in error, a minimum
number of the incorrect Adalines are adapted. The
Adalines chosen for adaption are those whose analog
responses require the least amount of change to give
the proper response.

When adaption is performed according to the mini-
mum change rule, various Adalines tend to take "respon-
sibility" for certain parts of the training problem.

Thus, this rule produces load sharing among the Adalines
by assigning responsibility to the Adaline or Adalines
that can most easily assume it.

The adaptive system of Figure 5 was suggested by
common sense, was tested by simulation, and was
found to work very well. It was subsequently proven by
Ridgway in his doctoral thesis? that this system will
converge on a solution, if a set of weights exists that
will solve the training problem. The essence of the
proof lies in showing that the probability of a given
Adaline taking responsibility for adaption to a given
pattern, desired-response pair is greatest if that Ada-
line had taken such responsibility during the previous
adapt cycle in which the pattern was presented. The
division of responsibility stabilizes at the same time
that the responses of the individual Adalines to their
share of the load stabilizes. In the case that the train-
ing problem is not perfectly separable by this system,
it can be shown that the adaptation process tends to
minimize error probability.



The memory capacities of Madaline structures
utilizing both the majority element and the OR element
have been measured by Koford. Although the logic
functions that can be realized with these output elements
are different, both types of elements yield structures
with the same statistical storage capacity. The average
number of patterns that a Madaline can be adapted to
equals the capacity per Adaline multiplied by the num-~
ber of Adalines. The memory capacity is therefore
equal to twice the number of weights. This result re-
mains to be proven analytically.

With suitable pattern-response examples and the
proper training procedures, generalizations can be
trained into Adalines. The kinds of generalizations
that have been produced are concerned with the train-
ing of Adalines to be statistically insensitive to noise,
and to be sensitive or insensitive to translation, rota-
tion, and size. Adalines can be forced to react con-
sistently on a training set of patterns for all possible
positions, for example, and then they will react con-
sistently in all positions with high reliability on new
patterns never seen before, which aré quite unrelated
to the training set. Single Adalines and simple Mada-
lines have been trained to be insensitive to left-right
translation, size, and rotation simultaneously, and
have performed with very high reliability, much greater
than chance. Reference 9 gives examples of these
phenomena and the weights that resulted in the adaptive
structures.

C. A Real-Time Adaptive Speech Recognition System

A list of the design requirements for a machine
which recognizes speech would surely include as
desirable features: (1) the use of several parameters
of the speech waveform which contain the information
required to characterize many sounds; (2) a decision
network which is sophisticated enough to handle many
speech recognition tasks yet is easily designed; and
(3) the ability to recognize voices other than those on
which its design is based.

A real-time adaptive speech recognition system10
has been constructed which is composed of a pre-
processor with a microphone input which feeds a bank
of eight band-pass filters spaced throughout the audio
spectrum. Spectral power is quantized and sampled to
form a 240-bit pattern for each spoken word. When
these patterns are applied to Adaline networks for
classification, the reliability is high. With an 18-word
vocabulary, after training on only 8 samples per word,
the system was able to make correct identification of
new samples of these words with better than 95 percent
reliability. When interrogated by new voices of the
same sex, the average reliability was better than 85
percent.

(1) System description

The input transducer of the system utilizes sound
spectra of words because the manner in which the
energy at various frequencies changes during the course
of an utterance can serve to identify the word spoken.
Figure 6 is a pictorial representation of the sound
spectrum for the word "zero."

The three variables to consider are frequency,
energy, and time, each of which must be quantized for
presentation to the Adaline network. Figure 7 is a
block diagram of the adaptive speech system. The
speech sound is passed from a microphone through a
processor, consisting of an audio amplifier and an
automatic level control, to eight band-pass filters
which have center frequencies spaced from 300 cps to
4.5 kc and bandwidths on the order of 200 cps. The
outputs of the filters are rectified and integrated to
produce waveforms similar to the slices which make up
Figure 6.

Figure 8 shows in greater detail the procedure for
time sampling and energy quantization. For simplicity
the waveform for the 2.8 kc filter of Figure 6 has been
redrawn. Three quantum levels have been drawn hori-
zontally across the waveform, dividing the amplitude
scale into four quantum zones. Each of these quantum
zones has associated with it a three-bit binary code,
as shown in Figure 8. Time sampling is initiated and
terminated by a voice-controlled trigger, which is a
switch operated by the speech intensity. During the
utterance, the waveform is sampled ten times; each
time a sample is taken, the corresponding three-bit
pattern is stored. When this process is complete, the
waveform has been translated into a 30-bit binary
pattern which can be used with an_Adaline network.
With the actual system, eight such waveforms are
translated into a 240-bit binary pattern for each spoken
word.

The patterns formed for a given word will change
if the rate at which the word is spoken is changed. The
effect of this rate variation is reduced by a linear time
normalization process. Real-time sampling takes place
at a rate of about 250 samples per second. Most sam -
ples are discarded. Normalized patterns are formed
by taking 10 samples at intervals such that each interval
is one eleventh of the total word length. The combined
effect of amplitude and time normalization is to reduce
the error rate for a wide variety of test situations by a
factor of 5 to 10.

The sampler, digital storage, Adaline network, and
decoder are simulated on an IBM 1620 digital computer -
an approach which enables the experimenter to make
changes in the system with only a change in the computer

" program. Several programs written to simulate a

variety of Adaline networks and speech pattern forming
techniques have nearly the same operating features.
The set of words to be recognized is entered into the
computer at the beginning of the training phase. The
training speaker(s), directed by the computer, then
speaks examples of these words for training. After all
the training examples and their associated output codes
have been accepted by the computer, their correspond-
ing patterns are sequentially presented to the Adaline
network which is trained until all of these patterns are
classified correctly. When the training is completed,
any person may speak a word, and the system forms
the pattern, presents it to the Adaline network, decodes
the output, and types the associated word on the com-
puter typewriter.

(2) System Performance

A series of experiments was performed to determine




how well the adaptive speech system can recognize
speech patterns not included in the training set. Sets
of binary patterns made by various speakers were
recorded on punched cards and were later used for
training and testing the system. This allowed the
same patterns to be used for comparing various system
organizations, and prevented speakers from purposely
changing their voices during an experiment in an
attempt to lower error rates. There was some back-
ground noise in the laboratory during the recording
sessions.

Two sets of words were considered, (1) the ten
decimal digits (“'zero" through "nine"), alﬁl (2) ten
phonetically balanced monosyllable words." In each
case the system was trained by a single speaker (10
examples per word), then tested by several persons,
each speaking 10 examples per word. When the "train-
ing" speaker spoke new examples of the words for
testing, the error rates were 2 percent, and 0 percent
respectively for the two word sets. When other
speakers tested the system, the average error rates
were 15 percent, and S percent for these word sets.
The system not only learned the distinguishing charac-
teristics of the words, but also the characteristics of
the training speaker. It still, however, demonstrated
an ability to do well on the voices with which it had no
previous experience.

The effect of the size of the word set was studied
by adding randomly selected phonetically balanced
words to a list, then training and testing with a single
speaker each time the length of the list was increased.
The error rate was less than 2 percent until there
were 18 words in the list. The error rate for 18 words
was 4 percent; that for a 20 word set was 14 percent.

Four more experiments were performed to study
the versatility of the system. In the first, the system
was trained to identify, in English, the digits "1"
through "4", spoken in four languages. The languages
used were Chinese (Mandarin), English, French, and
Portuguese, spoken by native speakers. When tested
by the speakers after training, the system identified
all words spoken with an average error rate of 14 per-
cent. In the second experiment, the system was
trained to identify three speakers saying the word
“you." After training, the system identified the speak-
ers with an average error rate of 23 percent. In the
third experiment, words were spoken to the system
through a conventional telephone line by a person 4
miles away. After training the system on the digits
"1" through "4", this person spoke 10 new examples
of each of these words. The system recognized this
set of 40 words with 100 percent accuracy. The com-
puter program was modified in the fourth experiment
so that several words could be spoken in a series dur -~
ing the recognition phase. When spoken with a slight
pause between words, whole sentences were recognized
with the same error rates as when the words were
spoken one at a time.

In another set of experiments, the system was
trained by one, three, and five speakers to recognize
the ten digits. When tested by four other speakers,
the average error rates were 18,7 percent, 18.5 per-
cent, and 27.7 percent respectively. This was a sur-
prising result because it had been presumed that the

system would perform better if it had a greater variety
of experience during training. Work on this aspect of
the problem is continuing.

This speech recognition system is an extremely
simple one and has performed quite well. Research is
under way to improve it. This system has been an
excellent source of patterns for testing Adaline-Madaline
types of recognition systems in a real and practical con-
text.

D. Adaptive Weather Forecasting

When meteorologists forecast the weather based on
their past experience, they are actually recognizing
relationships between current and future meteorological
events. Weather forecasting can thus be thought of as
a type of pattern-recognition problem. Adaline, used
as a pattern recognition device, might serve as a
weather forecaster since it has the ability to make
decisions, based on past training experience, to pre-
viously unseen problems.

(1) Adaptive Methods

An adaptive imitator12 that is capable of imitating
weather conditions is also capable of giving weather
forecasts. Figure 9 represents an adaptive weather
imitator.

The complex meteorological system which the
adaptive imitator tries to imitate is the "World". The
mput and output of the "World" are yesterday' " and
"today's" weather respectively. The "adaptive process"
is an automatic operator whose function is to correct
the adaptive imitator whenever it disagrees with the
system that it is attempting to model. The adaptive

imitator could be as simple as a single Adaline.

An adaptive weather forecasting system can be
operated in the following manner. "Yesterday's"
weather conditions are presented to the system, and
it is trained to read "today's" weather. Then if "today's"
weather is presented as an input, it will give tomorrow's
weather. The training procedure should actually go on
for days, weeks and years, until the system has seen a
large variety of weather situations and learns to fore-
cast with very few errors on the average. In practice,
the system could be trained on past weather information
from previous years.

(2) An Experiment

Weather data from January to April 1961 were
obtained from Mr. H. E. Root of the U.S. Weather
Bureau at the San Francisco International Airport.
Several experiments have been performed. In one
experiment, a single Adaline was trained to "read"
surface -pressure maps, and to forecast fair or rain
for the San Francisco Bay Area. :

Figure 10 shows that the inputs to the Adaline are
the quantized grid-point pressures. In this experiment,
pressure information over an area of approxtmately
5, 000, 000 square miles (bounded by latitudes 25°N to
SSON and by longitudes 110°W to 150 W) was used.




To train the Adaline to recognize locations of
high and low pressure centers, the area shown in
Figure 10 was divided into forty-eight 5° by 5° squares.
Instead of using the average pressure at each grid point,
the average pressure over each 5 by 5~ square was
used as an input to the Adaline. The range of pres-
sures was ligearly divided up into ten levels, i.e.,
each 5~ by 5 square was quantized into ten levels of
pressure.

An adaptive weather forecasting system consisting
of three independent multilevel-input and binary -output
Adalines was simulated on an IBM 1620 computer. A
steepest descent adaption procedure designed for analog
inputs was used. This system was trained to forecast
fair or rainy weather in the San Francisco Bay Area
for the succeeding period of 36 hours, at 12-hour inter-
vals. The first Adaline was trained to be an expert at
forecasting for the first 12 hours, the second Adaline
for the second 12 hours, and the third Adaline for the
last 12 hours.

The experiment consisted of using three types of
weather information. The three-Adaline system was
trained to recognize 33 patterns of each of the follow -

ing types.

1. Today's 0400 PST (Pacific Standard Time)
surface-pressure map.

"2. Today's 0400 PST and yesterday's 0400 PST
surface-pressure maps.

3. Today's 0400 PST surface -pressure map and
the difference (AP/At) between today's and yesterday's
quantized pressures.

The system that was trained on patterns from 2
and 3 required twice as many inputs, 96 instead of 48
inputs, since the amount of input information had been
doubled.

After training, the three-Adaline system was then
tested on 18 patterns from each of the types mentioned
above. The forecaster's percent probability of rain
were interpreted to be fair if the percent probability
of rain was less than 50 percent, and to be rain if the
percent probability was 50 percent or more. The
performance of the three-Adaline system was then
compared with the official forecast for those 18 days.
The results are tabulated below.

ADALINE FORECAST
WE ATHER OFFICIAL Using Patterns
FORECAST FORECAST]
FOR L 2 3
Score Score Score | Score
B R (VA ($]
TODAY
8:00 a.m. -
8:00 p.m. 78 72 78 78
TONIGHT
8:00 p.m. -
8:00 a.m. 89 67 78 89
TOMORROW
8:00 a.m. - :
67 67 78 83

8:00 p.m.

The results of this test and of subsequent tests
indicate that Adalines using today's surface pressure,
and AP/At weather information can do as well as human
forecasters on the initial 24 hours, and can do better on
the last 12 hour forecast. The results of this test are
interesting since the 33 training days and 18 testing days
were chosen during the rainy season and at transitions.
These were days that forecasters had trouble in fore-
casting.

Other interesting results can be obtained by study -
ing the final weight settings of the Adaline after it has
been trained. Areas of significance will show up as
weights with large values, which can furnish additional
information to forecasters when they make their weather
forecasts. Areas with large weight values have appeared
which correspond to propagation paths of storm move-
ments.

(3) Other Applications

There are numerable problems in weather fore-
casting where Adalines or Madalines might find use.
For example, a system of Adalines or Madalines could
be trained to give weather forecasts for Seattle, San
Francisco, Los Angeles and San Diego all at once using
the same weather data; or they could be trained to fore-
cast the amount of precipitation for different locations;
or they may be trained to reduce information from pic-
tures of cloud patterns taken by weather satellites.

The results of these experiments and of a more
recent experiment using 200 training patterns and 100
testing patterns during the rainy seasons over the past
seven years have demonstrated that an Adaline, using
only limited amounts of data, can be used as an objec-
tive weather forecaster. Based on Adaline's perfor-
mance, it is conceivable that an adaptive weather fore-
casting system can become an effective meteorological
operational and research tool.

E. Adaptive EKG Diagnosis

Another promising area for the application of adap-
tive systems is that of diagnosis in clinical medicine.
In this area, correlation between symptoms, test re-
sults, and the malady-to-be-discovered is certainly
present, but it is often difficult to describe.

With the cooperation of Drs. Toole and Von der
Groeben of the Department of Cardiology of the Stanford
University Medical School, a simulated Madaline struc-
ture was given the task of discovering the correlations
between vectorcardiograms and heart disease with the -
intention that it would thereby become a reliable diag-
nostic aid for heart disease.

The heart muscle, in its normal function of con-
tracting and expanding, is a current source which
generates an electric field in the human body. More
precisely, it can be represented by numerous small
current sources which are simulated into conduction
sequentially. An electrocardiogram is a recording of
the changing electric potential between various points
on the surface of the body resulting from redistribution
of charge within the heart tissue.



A clinical electrocardiogram (EKG) consists of
12 or more tracings recorded sequentially. On the

RECOGNITION RATE ON THE TESTING SET

other hand, vectorcardiograms (which are not in
common use clinically) reportedly contain as much
or more information in only 3 tracings recorded

simultaneously. The name derives from the fact that
the three voltages approximate three orthogonal com -
ponents (x = right-left, y = head-foot, z = anterior-

posterior) of a voltage vector which is the resultant
effect of the electrical activity going on within the
heart. It was chosen for this study since it clearly
has less redundancy than the clinical EKG and it re-
tains the phase information which is lost by the se-

quantial recording of the clinical EKG. An example
of a normal vectorcardiogram is shown in the upper
part of Figure 11.

True True
Normals Abnormals
(27 cases) (30 cases)
Clinical EXG > 959% 54%
Generalized
Adaptive 89% 73%
Approach
Improvement -6% +19%

The vectorcardiogram consists of three time-
varying analog voltages. Although adaptive threshold
elements can be made to accept analog inputs as well
as binary, time-varying inputs cause the output to be
a function of time also. Since it is desired that the
output be a function of the total waveform, the solu-
tion is to sample the waveform in time and to apply
each of the samples to a separate input of each of the
adaptive threshold elements.

Experimental work has been limited so far to
analysis of the QRS portion of the signal taking samples
every 5 msec up to 75 msec measured from the onset
of QRS. The QRS portions of the waveform in the upper
part of Figure 11 is shown,after sampling, in the lower
part of that figure.

The first (and perhaps most important) task is
the separation of normals from abnormals. The
separation of abnormals into the different diseases is
a second phase. For either phase, the QRS samples
are applied to a Madaline of the structure shown in
Figure 12, The 45 analog samples of Figure 1l are
seen here being applied simultaneously to a number of
45-input Adalines.

The adaptive threshold element outputs are com-
bined by an OR element, and are also connected to a
maximum detector. The output of the OR element is
entirely adequate for classification alone, but the
analog outputs of the elements were retained to serve
as a "level of confidence' indicator to the physician.

To assure reliability of the classification of the
training samples used in the experiments, the clinical
EKG eiagnosis was supplemented by a complete phys -
ical examination, a study of the patient's medical
history, and, in many cases, hemodynamic studies.
Finally an independent set of samples (also with known
diagnoses) was used to test the trained Madaline. The
Madaline responses were then compared with the known
diagnoses.

In one experiment, 107 vectorcardiograms were
obtained for training. Five Adalines were used to
separate the normals from the abnormals in the train-
ing set. To check the generalizing ability, the trained
Madaline was then tested on 57 new cases with results
as shown below:
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" the state variables.

There is ample evidence that the comparison will be
even more favorable when the Madaline is trained on a
much larger, and a more truly representative sample
of patients.

Work is presently in progress (using the present
small sample) in identification of abnormalities. A
preliminary experiment in separation of Right Ventricu-
lar Hypertrophy from other abnormalities indicates
generalization to 85 percent of cases not in the training
set.

F. Pattern-Recognizing Adaptive Control Systems

The conditions of a dynamic system can be com-
pletely described at any instant by the values of its state
variables (such as the error, the error derivative, etc.).
Control decisions depend only on the present values of
These values can be encoded as a
sequence of binary digits, the collection of which forms
a pattern. Proper control of a dynamic system by an
Adaline or Madaline becomes a matter of classification
of the patterns which represent the different states of a
dynamic system. Just as an Adaline can be taught to
classify patterns into two groups, it can be taught to
control a dynamic system in a "bang-bang" or +, -1
manner.

When the state variables are encoded using what has
been called a "linearly separable code", the task of
learning control strategies is quite natural for an Adaline.

i) The large sets of patterns representing the con-
trol strategy for all possible regions of state space are
often either linearly separable or separable with simple
Madaline structures. The number of patterns which the
Adaline is able to correctly classify is generally an
order of magnitude or more greater than its statistical

capacity.

ii) The Adaline generalizes in a known and predic -
table way. Namely, the Adaline can correctly classify
all the patterns of a control strategy after learning to
correctly classify only the patterns bordering on the
switching surface.

iii) Because of this strong generalizing property and
because of the special interrelationships among the




many patterns, the Adaline is much easier to train
than it would be for a similar number of random or
near random patterns.

(1) Trainable Controllers

Figure 13 shows in block-diagram form the gen-
eral situation in which a Madaline would be used as a
trainable controller for a dynamic system. The state
variables YooY are assumed to be the system
error.

The teaching controller supplies the desired out-
put to the Adaline during the training process. This
controller could be automatic or possibly human. The
Adaline controller and the teaching controller need
not have the same inputs, provided both receive the
same or related information. For instance, the
Adaline controller could be receiving the state vari-
ables as electronic signals while a human teacher
could be.receiving information about the system by
actually watching its motions.

For the purposes of discussion the teacher will
be assumed to be represented by a function f(yl, c V)
The switching surface f(y;,..., ym) =0 indicates
where the teacher changes his reaction from "force
plus” to "force minus.” The Adaline with its encoder
is basically a trainable function generator which forms
the function ?(yl, AN ym). During the training, the
Adaline analog output is adjusted so that its switching
surface f(y;,...,y..) =0 is made to approximate the
switching surface of'the teacher.

The Adaline controller consists of an encoder and
an Adaline. For simplicity, a single Adaline is shown
here in the controller; more typically a Madaline might
‘be used. The encoder produces patterns by quantizing
or dividing the range over which each of the state
variables varies into a finite number of zones. Each
zone of a state variable y. is represented by binary
number or partial pattern. The m partial patterns
make up the total pattern which represents a particular
hypercube of state space. The pattern inputs to the
Adaline change continually as the state variables change.

Figure 14 illustrates the quantization of a two-
dimensional state space. Each square in the figure is
represented by a particular pattern for the Adaline.
The continuous curve f(y,, YZ) = 0 represents a typi-
cal desired switching sur%ace (a curved line in this
case). The jagged curve 'f(y ,¥,) = 0 is the switching
curve that an Adaline controller might use to approxi-
mate the teaching controller.

The system has two modes of operation:

i) During the training mode, the teaching controller
controls the dynamic system. The adapt logic in the
Adaline continuously compares the binary output of the
Adaline with that of the teacher. Whenever they differ,
the Adaline is adapted in the direction which would
make them agree. Because the patterns change rapidly,
there may not be time for a full correction. However,
the pattern is bound to reoccur, at which time adaption
can be continued. During the training mode the Adaline
controller "watches' the tedcher zero the error after
various large disturbances or initial conditions.

ii) During the Adaline control mode, the teaching
controller is not used and may be completely removed
from the system.

(2) Coding

The choice of codes used to represent the zones of
the quantized state variables as partial patterns largely
determines how well the Madaline controller will be
able to imitate its teacher. Certain linearly separable
codes make the classification very easy for the Adaline.
Two of these codes are illustrated in Figure 15. A
linearly separable code is any code which has a non-
singular partial pattern matrix. This matrix has the
partial patterns as rows plus an extra column of ones
(if necessary). The partial pattern matrix for codes
(a) and (b) of Figure 15 are respectively:

0 0 0 1 1 1 1 1
0 0 1o 1 1 1 0
0 1 0 O 11 0 O
1 0 00 1 0 0 O

Both matrices are obviously invertible. When linearly
separable coding is used, the Adaline will be able to
exactly imitate (except for quantization effects) any
teacher whose function does not contain cross~-product
terms, i.e., terms of the form y.y., i # j, regardless
of the number of patterns. vl

The proof that an Adaline using linearly separable
coding has such classifying power can be given by demon-
strating how_the Adaline matches its function to that of
the teacher. The analysis of an Adaline is much sim-
pler for classification problems in which a decision is
based on the encoded values of state variables than for
most problems. The simplification occurs because the
Adaline can be fully described in terms of the m state
variables instead of the n binary inputs, (n>> m
generally). The weights for the inputs used to encode a
particular state variable are considered not as separate
entities but as a single function of the state variable.
The abilities and limitations of a single Adaline in pat-
tern classification and generalization become apparent.
Also, the weights can often be calculated in many seem-
ingly complicated problems.

This new interpretation of the Adaline is for analyti-
cal purposes only. The Adaline is trained in the usual
way. The function matching to be described goes on
automatically "inside” the Adaline.

Because each state variable is encoded independently
of the others the switching function realized by the
Adaline can have no cross terms. Therefore, it and
the teacher are limited to functions of the form:

m
f = iEI fi(yi) =0 .

Furthermore, because the y., and thus the f.(yi), can
vary independently of each other the individual partial
sums, the T.(y,), of the Adaline must match the corres-
ponding sums, ‘the fi(y-), of the teacher. Therefore, a
study of the coding needs only to consider how the func-

tions of one variable are matched.
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The matching of £ (y) and f. ( places con-
straints on the weights lassociated wi‘th y.. If the func-
tions are matched once per quantum zone, there is a
constraint for every zone. These constraints can be
expressed as a set of linear equations:

Al w, =g e
[A] is the partial pattern matrix described above. If
the Adaline is to have a threshold weight, the first
column contains the +1's of the threshold inputs.
vector W1 contains the weights associated with y..
[Row of A'] - wl =f(y) is the constraint for one
zone. The vector f. contains the values of f, (y)
where f.(y.) is exactly matched to f(y ), i.e.,
£@y;) = Lp-

When [A] has an inverse, the weights necessary
for matching always exist since then

-t E ®

regardless of the form of f, (y ) (and f ). Thus, an
invertible partial pattern matrix [A] guarantees that

the functions can be matched. There are many possible
[A] 's, one for each linearly separable code.

The

Two possible ways of encoding the state variables
are illustrated in Figure 15. The "single spot™ code
of Figure 15(a) is easy to analyze mathematically be-
cause most of the weights would have zero coefficients.
If the threshold weight is not used, the weights are:

w1

Wz N

wa | = 7§ 6)
Wy

The “multi-spot" code of Figure 15(b) is illustrated
because it is usually quite easy to inplement, and also
because this code usually allows the weig] gtg of the
Adaline to be quite small. Other authors™’ have shown
that, in general, the smaller the magnitudes of the
weights (after proper normalization) the easier it will
be to train the Adaline.

The development leading to linearly separable
coding shows that it is sufficient to guarantee that the
Adaline function generator be able to imitate a teach-
ing function that has no cross-product terms. By a
more involved argument, it can be shown that linearly
separable coding is necessary if the Adaline controller
is to do this using a minimum number of weights. A
proof of necessity is not needed when the non-statistical
capacity of an Adaline using linearly separable coding
is considered. For instance, when each of the state
variables is quantized into n' zones, there are (n')
possible patterns. The statistical capacity of this
Adaline is approximately 2mn’'.

(3) Imitation of Functions with Cross-Product Terms

Previously, it was stated that a single Adaline
controller can imitate only teaching functions which
do not have cross-product terms. Functions con-
taining cross-products can be realized in two ways.

One way would be to encode the desired cross-product
terms as additional variables. Another and more sat-
isfactory approach would be to use several Adalines
together in a Madaline. Encoding additional variables
has the disadvantage in most problems that there will
be an extremely large number of possible cross-product
terms which may be significant. For generality they
should all be encoded. A Madaline does not need a
weight for every cross-product term because it can
organize its total structure in such a way as to take
into account the most significant cross -product terms
while ignoring the rest.

The situation illustrated in Figure 16 demonstrates
the ability of a Madaline structure to imitate a teaching
function with cross-product terms. The teaching func-
tion is a rotated ellipse with equation:

fypy9) =5y - 6y, + Sy,0 - 2=0. ()
This curve was chosen as a familiar nonlinear function.
Two Adalines are used. Adaline I in Figure 16(b) has
the U shaped switching line which approximates the
switching line of half of the teaching function. Adaline
II in Figure 16(c) has the inverted U shaped switching
line which approximates the other half of the teaching
function. The Adaline outputs are combined in an OR
circuit. The logic or the OR circuit is: both Adaline
outputs -1 then Madaline output -1 otherwise Madaline
output +l. With the polarity of the Adaline outputs as
shown on the figure the OR circuit causes the interior
of the ellipse to be +1 as desired. The functions
approximated by the individual Adalines can'be shown
to contain no cross terms.

(4) Examples of Adaline Controllers

The application of the ideas of this section to con-
trol systems can be readily demonstrated. The switch-
ing line of the teaching controller in Figure 14 is that
of the well-known minimum time optimum controller
for an oscillatory undamped second-order dynamic
system. A single Adalire using linearly separable
coding is able to imitate the essential features of this
highly nonlinear curve.

An Adaline employing adaptive components has been -
used in the controller of the "broom-balancing machine."
The dynamic system being controlled is a cart carrying
an inverted pendulum (or "broom™). This is an un-
damped and inherently unstable fourth-order dynamic
system.

The Adaline controller contains one 16 input Adaline.
The range of each of the state variables is divided into
five approximately equal zones. The state variables
are encoded into 4 bit partial patterns using a linearly
separable code similar to the one illustrated in Figure
15(b). The controller is taught by having it observe the
teacher return the system to the origin of state space
after it has received various large disturbances. Train-
ing time is usually several minutes, after which, the
Adaline is able to take over and balance the “"broom."

G. Realization of Adaptive Circuits by Memistors




G. Realization of Adaptive Circuits by Memistors

In large networks of adaptive neurons, it is im-
perative that the adaptive processes be fully automated.
The structure of the Adaline neuron and the adaption
procedures used with it are sufficiently simple that it
has been possible to develop electronic automatically-
adapted neurons which are reliable, contain few parts,
and are suitable for mass production. In such neurons
it is necessary to be able to store weight values, analog
quantities which can be positive or negative, in such a
way that these values can be changed electronically.

A new electrochemical circuit element called the
Memistor (a resistor with memory) has been devised
by B. Widrow and M. E. Hoff for the realization of
automatically-adapted Adalines. The Memistor pro-
vides a single variable gain element. Each neuron
therefore employs a number of Memistors equal to the
number of input lines, plus one for the threshold.

A Memistor consists of a conductive substrate
with insulated connecting leads, and a metallic anode,
all in an electrolytic plating bath. The conductance of
the element is reversibly controlled by electroplating.
Like the transistor, the Memistor is a 3-terminal
element. The conductance between two of the terminals
is controlled by the time integral of the current in the
third terminal, rather than by its instantaneous value,
as in the transistor. Reproducible elements have been
made which are continuously variable, which vary in
resistance from 50 ohms to 2 ohms, and cover the
range in about 15 seconds with several tenths of a milli-
ampere of plating current., Adaptation is accomplished
by direct current, while sensing is accomplished non-
destructively with alternating current.

Although the Memistor is still an experimental
device, it is in limited commexrcial production. Figure
17 shows a partially fabricated sheet of Memistors, 21
at a time on a common substrate. Each cell has a,
volume of about 2 drops. The entire unit is encapsu-
lated in epoxy.

The "broom-balancer” has been controlled by an
adaptive machine called Madaline I, containing 102
memistors. This machine was constructed a year
and a half ago hastily over a one and one half month
period. The Memistors were not tested before instal-~
lation in the machine, and some were defective when
first made. A number of wiring errors existed; some
weights were adapting to diverge rather than converge.
There were a number of short circuits, open circuits,
cold solder joints, etc. This machine worked very
well when first turned on, and has functioned with very
little attention over the past year and a half. After
several weeks of experimentation, the individual
weights were checked. Twenty-five percent of them
were not adapting, yet the machine was able to adapt
around these internal flaws and was able to be trained
to make very complex pattern discriminations. Self-
repairing systems are a very real and vital possibility.
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