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Introduction

‘The .modern science of switching theory began
with work by Shannonl in 1938. The field has de-
veloped rapidly since then, and at present a wealth
of literature exisfl:s2 concerning the analysis and
synthesis of logical networks which might range .
from simple interlock systems to telephone switch-
ing systems to large-scale digital computing systems,

An. example illustrating the use of ‘switching
theory is that of the design of an interlock system
for the control of traffic in a railroad switch
yard. The first step is ‘the preparation of a
"truth table"”, an exhaustive listing of all input
possibilities (the positions of all incoming and
outgoing trains), and what the desired system out-
put should be {what the desired control signals
should be) for each input situation. The next step
is the construction of a Boolean function, and the
following steps are algebraic reduction and design
of the logical control system. :

The design of the traffic control system is an
example wherein the truth table must be followed
precisely and reliably. Errors would be destructive.
The design of the arithmetic element of a digital
computer is another example wherein the truth table
must be followed precisely. '

There are other situations in which some errors
are inevitable, however, and here errors are usually
costly but not catastrophic., These situations call
for statistically -optimum switching circuits. A
cammon performance obJjective is the minimization. of
the average number of errors. An example is that
of prediction of the next bit in a correlated stoch-
astic binary number sequence. The predictor output
is to be a logical combination:of & finite number °
of previous input sequence bits. An optimm system
is a sequential switching circuit that predicts
with a minimum number of errors.

Suppose that a record of the binary sequence is
printed on tape and cut up into pieces (with indi-
cation of the positive direction of time preserved),
say 25 bits long. Place all pieces where the most
recent event is ONE in one pile, and the remainder
in another pile. Delete the most recent bit on
each piece of tape. If the statistical scheme
could be discovered by which the pieces of tape are
classified, this would lead to a prediction scheme.
It is apparent that prediction is a certain kind of
classification. ; .

Assuming statistical regularity, a reasonable
way to proceed might be to form a truth table, and
let the data from each piece of tape be an entry in
the table. It might be expected that with the data
of 100 pieces of tape, a fairly good predictor.
could be developed. The truth table woiild havi .
only 100 entries however, out of & total of 22%,
The "best" way to fill. in the remainder of the truth
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table depends upon the nature of the sequence
statistics and the error cost criteria. Filling
in the table is a difficult and a crucial part of
the problem. Even if the truth table were filled
in, however, the designer would have the diffi-
cult task of realizinﬁ a logical network to satisfy
a truth table with 22% entries.

An approach to such problems is taken in this
paper which does not require an explicit use of
the truth table. The design objective is the min-
imization of the average number of errors, rather
than a minimization of the number of logical com-
ponents used. The nature of the logical elements
is quite unconventional. The system design pro-
cedure is adaptive, and is based upon an iterative
search process. Performance feedback is used to
achieve autamatic system synthesis, i.e., the sel-
ection of the "best" system fram a restricted but.
useful class of possibilities. The designer "trains"
the system to give the correct responses by "'show-
ing" it examples of inputs and respective desired
outputs. The more examples "seen", the better is
the system performance. System competence will be
directly and quantitatively related to amount of
experience.

B. A Neuron Element

In Fig. 1, a cambinatorial logical circuit is
shown which is a typical element.in the adaptive
switching circuits to be considered. This element
bears same resemblance to a "neuron" model intro-
duced by von Neuman3, whence the name.

The binary input signals on the individual lines
have values of +1 or -1, rather than the usual
values of 1 or O. Within the neuron, a linear com-
bination of the input signals is formed. The weights
are the gains aj,ap,..., which could have both pos-
itive and negative values. The output signal is+1
if this weighted sum is greater than a certain
threshold, and -1 otherwise. The threshold level is
determined by the setting of ag, whose input is
permanently connected to a +1 source. Varying ag
varies a constant added to the linear combination
of input signals. . : ‘ : .

For fixed gain settings, each of the 29 possible
input combinations would cause either a +1 or -1
output. Thus, all possible inputs are classified
into two categories. The input-output relationship
is determined by choice of the gains 80y +- .85, In
the adaptive neuron, these gains are set during the
"training" procedure. 5

In general, there are 22° different input-output
relationships or truth functions by which the Ffive
input variables can be mapped into the single out-
put varieble. Only a subsﬁt of these, the linearly
separated truth functions*, can be realized by all

possible choices of the gains of the neuron of Fig.
1. Although this subset is not all-inclusive¥*, it

It becames a vanishingly smsll fraction of
all possible switching functions as the number of
inputs gets large. . : i




is a useful subset, and it is "searchable", i.e.,
the "best" function in many practical cases can be
found iteratively without trying all functions with-
in the subset,

Application of this neuron in adapt%vg pattern
classifiers was first made by Mattson.->- He has
shown that complete generality in choice of switch-
ing function could be had by combining these neu-
rons. He devised an iterative digital computer
routine for finding the best set of a's for the
classification of noisy geometric patterns. An
iterative procedure having similar objectives has
been devised by these authors and is described in
the next section. The latter procedure is quite
simple to implement, and can be analyzed by stat-
istical methods that have already been developed
for thé analysis of adaptive sampled-data systems.

C. ‘An Adaptive Pattern Classifier

An adaptive pattern classification machine
(called "Adaline", for adaptive linear) has been
constructed for the purpose of illustrating adap-
“tive behavior and artificial learning. A photo-
graph of this machine, which is about the size of
a lunch pail, is shown in Fig. 2.

During a training phase, crude geometric pat- -
terns are fed to-the machine by setting the toggle
switches in ‘the ixl input switch array. Setting
another toggle switch (the reference switch) tells
the machine whether the desired output for the par-
ticular input pattern is +1 or -1. The system learns
something from each pattern and accordingly exper-
iences a design change. The machine's total ex-
perience is stored in the values of ‘the weights
ag...816. The machine can be trained on undistorted
noise-free patterns by repeating them over and over
until the 1tera’cive search process converges, or it
_can be trained on a sequence of noisy patterns on
a one-pass basis such that the iterative process
converges statistica,lly ‘Combinations of these
methods can be accommodated simultaneocusly. After
tra,im_ng, the machine can be used ‘to classify the
original patterns and noisy or distorted versions
of these patterns. :

A block schematic of Adaline is shown in Flg. 3.
In the actual machine, the ‘quantizer is not built
in as a device but is accomplished by the operator
in viewing the outp'ut meter. Different quantizers
(2-1evel; 3-level, - h-level) are realized by using
the appropriate meter scales (see Fig.2). Adaline
can be used to classify patterns into several cat-
egories by using multi-lével quantizers and by fdl-
lowing exsctly the same adaptive procedure. -

‘The folléwing is a description of the iterative
searching routine. - A'pattern is fed to the machine,
and the reférence switeh is set to correspond to
the desired output. The error (see Fig.3) is then
read: (by switching the reference switchj the error
voltage' appea¥s on the meter, rather than the neu-
ron -output voltage). ' All gains including the level
are to be changed by the same absolute magnibude, -
such that the error is brought to. zero. This is
accomplished by changing each gain (which could be
positive or negative) in the direction which will
diminish the error by an smount which reduces the
error maghitude by 1/17. The 17 gains may be
changed in’any’ seqiience, and after all changes are
made, the error: for the present input pattern is
zero. Switching the reference back, the meter reads
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exactly the desired output. The next pattern, and
its desired output, is presented and the error is
read. The seme adjustment routine is followed and
the error is brought to zero. If the first pattern’
were reapplied at this point, the error would be
small but not necessarily zero. More patterns are
inserted in like manmer. Convergence is indicated
by small errors (before adaption) 5 with' small fluc-
tuations ‘about a stable root mean-square value. The
iterative routine is purely ‘mechanical, and requires
no thought on the part of the operator. Electronic
automation of this procedure will be discussed below
"The results of a typical adaption on six noise-
less pattems is given in Figs. 4 and 5. The pat-
terns were selected in a random sequence, and were
classified into 3 categories. Each T was to be
mapped to +60 on the meter dial, each G to O, and
each F to -60. As a measure of performance, after
each adaptation, all six patterns were read in
(without adaptation) and six errors were read. The
sum of their squares denoted by 52 vas computed
and plotted. Fig. 5 shows the learning curve forthe-
case in which all gains were initially zero. )

D. Statistical Theory of Adaption for Samgled-Da.ta.

Systems

This section is a summary of the portions of
Widrow's s’catigtical theory of adaption for sampled-
data systems »° that is useful in the analysis of:
adaptive switching circuits.

Consider the general linear sampled-data systen form-
ed of atapped delay line, shown inFig 6. This system is in-
tended tobe a statisthal predictor. The individual im-
pulses of the impulse response may be adjusted in the fol-
lowing manner. Apply amean square reading meter to e(m),
the difference between the present input and the de-
layed prediction. This meter will measure mean
square error in prediction. Ad just hy,hp,h3, ...,
until the meter reading is minimized.

The problem of adjusting the h's is not trivial,
because their effects upon performance interact.
Suppose that the predictor has only two impulses in
its impulse response, hy and hp. The mean square
error for any setting of hj and hp can be readily
derived: - '

e(m) = £(m) - hyf(m-1) - hof(m-2) o
<2(m) = Pes(0)Z + Fep(0)2 - Bpe(1)n) - ee(2y

+ 2fee(1)hiho + Pee(0)

(1)
The discrete autocorrelation function of the input
is Bre(J).

The mean square error given by equations (1) is
what the mean square meter would read if it were to
average over very large sampled size. The mean
square error is a parabolic function of the pre- : -
dictor adjustments by and hp, and, in geperal, can
easily be shown to be a quadratic function of such
ad justments, regardless of how many there are.

The optimm n-impulse predictor can be derived -
analytically by setting the partial derivatives of
€2 .of equation (1) equal to zero. This is the dis-
crete analogue of Wiener's optimizationT of contin-
uous filters. Finding the optimum system experi-
mentally is the same as finding a minimum of a para-
boloid in n dimensions. This could be done manually
by having a human operator read the meter and set
the adjustment, or it could be done automatically




by making use of any one of several iterative grad-
ient methods for surface-searching, as devised by
numerical analysts. When either of these schemes
is employed, an adaptive system results that con-
sists ‘essentially of a "worker" and a-"boss". The
worker in this case predicts, whereas the boss has
the job of adjusting the worker.

Figure T is a block-diagram representation of
such a basic adaptive unit. The boss continually
seeks a better worker by trial and error experi-
mentation with the structure of the worker. Adap-
tion is a multidimensional performance feedback
process. The "error" ‘signal in the feedback control
sense is the gradient of mean square error with
respect to adjustment.

Many of the commonly used graxhent methods
search surfaces for stationary points by making
changes in ‘the independent variables:(starting with
an initial guess) in proportion ‘to measured partial
derivatives to obtain the next guess, and so forth.
These methods give rise to geametric (exponential)
decays in the independent variables as they approach
a stationary point for second-degree or quadratic:
surfaces., One-dimensional surface-searching is il-
lustrated in Fig. 8.

The surface being explored in Fig. 8 is’ g:x.ven by
Eq. (2). The first and second der:.vatlves are giv-
en by Egs. (3) and (1).

= a(x - b)2 + ¢ (2)
d—y - oa(x - b) (3)
2
i%’ - 2a (%)

A sampled.-d.ata feedback model of the iteratlve
process is shown in Fig. 8(b). This flow-graph can
be reduced, and the resulting characteristic equa-

tion is g
~(2ak + l)z "+ 1= (5)

The iterative process is stable when -1/a<%<0, and
trz;,nsients decay completely in one step when k =
-1/2a.

"Noise" in the measurements of the mean square
error surface due to small sample size causesnoisy
‘derivative measurements. These noises enter the :
adaption process, as indicated in Fig. 8(b), and
-cause noisy system adjustments.

Variance in x about the optimum: value causes the
average of Y to be greater than the minimum value
¢, The increase in ¥ equ.als the varia.nce in b4 mul-
tiplied by a, as can be seen from Eq. (2). It is
useful to define a dimensionless parameter M the
"mlsadgustment", as the ratio of the mean increase
in mean square error to the minimum mean square
error. It is a measure of. how the system performs
on, the average, after adapting transients have died
out, compared with the fixed optimum system. With
regard. to the curve of Fig. &,

e y g .

More detailed . d.erivations of misad justment
formulas covering several different methods of sur-
face searching and d.er:.vative measurement are pre-
sented in Refs. 7 and 8. The particular formulas

which can be applled to the. a.naly31s of adaptlve
- switching 01I‘Cul‘bs are the follcwlng. )
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When derivatives are measured by data repeating,
i.e., when the same system input data is applied
for both N "forward" and N "backward" measurements
of mean square error, the misadjustment is given by

1 .
= 3w (7)

T is the time constant of the iterative process
of Fig. 8, and is equal to -1/2ak. A unit time
constant means that the adjustment error decreases
by a factor 1/e per iteration cycle. Equation(T)
is conservative, and appreciably so only for small
values of T, less than 1. In the limiting case of
one-step adaption, T = O and the appropriate mis-
ad justment formula is !

1

M =% ) (8)
In deriving Formulas (7T) and (8), it has been as-
sumed that the error samples are Gaussian distri-
buted, with zero mean, and are uncorrelated. It can
be shown that these results are highly insensitive
to this distribution density shape, and are appre-
ciably affected by correlation only when it ex-
ceeds 0.8. It is interesting to note that the
quality of adaption depends only on the number of
samples "seen" by the system in adapting.

The expressions (7) and (8) are based on the
supposition that fresh data is brought in for each
cycle of iteration. If the system adapts on a fix-
ed body of N error. samples the misadjustment .is
given by Formula (8). When there are m interacting
ad justments instead of just one, Expressions (T)
and (8) may be generalized by multiplication by m.

E., Statistical Theory oi' Adaption for the Adaptive'
Neuron Element -

The error signal measured and used. in ad.aption
of the neuron of Fig. 1 is the difference between
the desired output and the sum before quantization.
This error is indicated by € in Fig. 9. The actual
neuron error, indicated by en in Fig. 9, is the
difference between the neuron output and the de-
sired output. :

The objective of adaptlon is the following.
Given a.collection of input patterns and the as-
sociated desired outputs, find the best set of
weights ag,a1,...ay to minimize the mean square of
the neuron error, Eg' .Individual neuron errors
could only have the values of +2, O, a.nd. =2 with a

two-level quantizer. Minimization of en is there-
fore equivalent to minimizing the average number
of neuron errors... .

. The simple adaption procedlu'e described 1n this
paper minimizes €2 rather than ef. The measured
error € has zero mean (a consequence of the mini- -
mization of €2) and will be assumed to be Gaussian-
distributed. By making use of certain geometric
arguments or by using a statistlcal “theory o of ampli-
tude quantlzation,l it _can be shown that en is a
monotonic function of e_é, and that mn:imization of
e is equivalent to minimization of en and to min-
imization of the probability of neuron error. The
ratio of these mean squares has been calculated and
is plotted in Fig. 9 as a function of the neuron
error probability.

Given any collection of input patterns and the
associated desired outputs, the measured mean
square error €2 must be a precisely parabolic



flmc’cion of the gain settings, aQy »+.8pn. Let the

attern be indicated as the vector 8(x) = s1(x)

?,...sn(k) The s's. have values of +1 or -1,
afid represent the n input components numbered in a
fixed manner. The kth error is

e(k) = &(k) - ao - a1s1(k) - apsa(k)-...-ansn(k)(q)
For simplicity, let the. neuron have only two input

lines and a level con‘brol. 'I'he square of the error
is accordingly

H(x) = d(x) + eo+s (k)a1+s2(k)a2
- 2d(k)a -Ed.(k)s (k)a -24(k)s,(k)a,

+ 28 (k)a a,+2s (k)a 8,+28 (k)s (k)a (10)
The mean square error averaged over k is
<—:-2 = a2+¢(s]'_»,s )e2+¢(sg,sfi)a2-vaa6
-2¢(d,s )a -QQ'(d,s )a, +251aoal+2828’0a2
+2¢(Sl:s )ala +¢(d)d) (ll) '
The @'s are spatial correlations B(s1s s2) = 8152,

ete, Note that ﬁ( = l.

= §383

Ad justing the a. ’Eo minimize €2 is equiva.lent
to searching a parabolic stochastic surface (having
" as many -dimensions as there are a's) for a minimm,
How well this surface can be searched will be limit-
ed by sample size, i.e., by the number of pat‘ce:ms
seen in the searching process.

The method of searching-that has proven most
useful is the method of steepest descent. Vector
ad justment cha.nges are made in the direction of the
gradient. Transients consist of sums of geometric
sequence components (there are as many natural "fre-
quencies" ‘as the number of adjustments, as can be
seen from generalization of the flow graph of Fig.
O9—see Ref. 9). It can be shown that the method of
steepest descent will be stable when the proportion-
ality constant k between partial derivative and size
of change is less than the reciprocal of the second
partial derivative. It can also be shown that when
k is small, transients can be approximately repre-
sented as being of the single time constant 1/2k.

The me_thod of adaption that has been used re-
-quires an extremely-small sample size per iteration
cycle, namely one pattern. One-pattern-at-a-time
adaption has the advantages that derivatives are
" very easy bo'measure and that no storage is re-
quired within the adaptive machinery except for the
gain values (which contain the past experience .of
the neuron).

‘The square of the error for a single pattern
(the mean square error for a sample size of one) is
given by Eg. (10). The partial derivatives are

T_H'e;()k = [ '2‘1(\1‘)*250*2%1(1‘)%1*52(k) az] -
¢ i k) = Sl(k) ’[_2-(1( k)+zao+2si( k) al-|?2s 2( k)a, 2]

.Qg;;ﬁ = SZ(k) [f-zd(k)+2ao~q:’?el(k')al+.2e Q(k)ae] >(12)

Comparison of the Egs. (12) with Eq. (9) shows that
the derivatives are simply related to the measured
error, and suggest that the-derivatives could be
ing and averaging and without

measured without squari
actual differen’ciation. The jth partial derivative

is given by
Be (k) _

J

It follows that all partial derivatives have the
same magnitude, and have signs determined by the
error sign and the respective input signal signs.
The procedure described in Sec. C for bringing
e(k) to zero with each successive input pattern
-gives the constant k a value of 1/2(n+1l). Fram the
previous discussion we see that the time constant
of the iterative process is therefore T=(n+l) pat-
terns. On the ixlh adaline, there are n=16 input
line gains plus a level control. Therefore, the
time constant should be roughly 17 patterns (for
verification, see the learning curve of Fig. 5).
The search procedure could be readily modified to
speed up or slow down the a.daption process by ad-
justing k.

The misadjustment Formulas (7) and (8) when ap-
plied to the adaptive neuron give the per unit in-
crease in measured mean square error as a result
of adapting on a finite number of patterns. Since
the ratio of probability of neuron error to the
mean square error €= is essentially constant over
a wide range of error probabilities (Fig.9), the
misad justment as expressed by Formulas (7) and (8)
mey be interpreted in terms of the ratio of the in-
crease in error pro'ba'bility to the minimm error
probability.

-If adaption is accamplished by injection of a
fresh pattern each iteration cycle, the misadjust-

- 2sj(k) e(k) '(13)‘ |

ment, as derived fram Egq., (7), is
e gn_;:g (14)

Following the procedure of bringing e(k) to zero
each iteration cycle, the mlsa.djustment is

_Q+1) _(n +1)

27 2avd) (15)
If ada.ption is accomplished by. taking a .fi.xed.

" collection of N patterns and repeating them over

and over for several time constants (where the time
constant is long, several times N), the misadjust-
ment, as derived from Eq. (8), is
o (n+1) v
| neBg D

Simlation tests have shown that the misadjust-
ment formulas are highly accurate over a very wide
range of pattern and noise characteristics. A des-
cription of a typical experiment and its results is
given in Fig. 10.

Noisy 3x3 patterns were generated by ra.nd.anﬂ.y
‘injecting errors in ten percent of the posi‘bions of
the four "pure" patterns, X,T,C,J.

The best system, arrived at by slow precise
adaption on the full body of 100 noisy patterns,
was able to classify these patterns as desired ex-
cept for twelve errors. The gains were then set to
zero and ten patterns were chosen at random. The
best system for these .patterns was arrived at and
tested on the full body of 100 patterns. Twenty-




five classification errors out of 100 were made.
The misadjustment was 108 percent. The experiment
was repeated three more times, and the misadjust-
ments that resulted, in order, were 58 percent, 67
percent and 133 percen‘t Since N=10 patterns and
n=9 input lines, the theoretical misadjustment was

n+ 1
N

An average taken over the four experiments gives '
a measured misadjustment of 91.5 percent.

The adaptive classifier can adapt after seeing
remarksbly few patterns. A misadjustment of 20
percent should be acceptable in most applications.
To achieve this, all one has to do is supply the
adaptive classifier with a number of patterns equal
to five times the number of input lines, regardless
of how noisy the patterns are and how difficult the
"pure" patterns are to separate. Although the mis-
adjustment formulas have been derived for the
specific classifier consisting of a single adaptive
neuron, it is suspected that the following "rule of
thumb" will apply fairly well to all adaptive class-
ifiers: the number of patterns required to trainan
adaptive classifier is equal to several times the
number of bits per pattern.

M=

= 100 percent

F. Networks of Adaptive Neurons

Linearly separable* pure patterns and noisy ver-
sions of them are readily classified by the single
neuron. Non-linearly separable pure patterns and
their noisy equivalents can also be separated:by a
single neuron, but absolute performsnce can be im-
proved and the generality of the classification
scheme can be greatly increased by using more than
One neuron.

Two Adalines were combined by us:.ng the following
adaption procedure: if the desired output for a
given input pattern applied to both machines was -1,
then both machines were adapted in the usual manner
to ensure this; if the desired output was +1, the
machine with the smallest measured error € was as-
signed to adapt to give a+l output while the other
machine remained unchanged. If either or both
machines gave outputs of +1, the pattern was clas-
sified as +1l. If both machines gave -1 outputs, the
pattern was classified as -l.

This procedure assigns specific "responsibility"
to the neuron that can most easily assume it. If,
at the beginning of adaption, a given neuron takes

‘responsibility for producing a +1 with a certain

input pattern, it will invariably take this res-

" ponsibility each time the pattern is applied dur-

ing training. Notice that it is not necessary for
a teacher to assign responsibility. The combination
does this automatically and requires only input
patterns and the associated desired outputs, like
the single neuron.

Various classification problems could be solved
similtaneously by multiplexing neurons or combin-
ations of neurons. One neuron might be trained to
decide whether the man in a given picture does or
does not have a green tie, while another neuron or
combination could be trained to decide whether or
not the man has a checkered shirt, Each neuron or

*
A more complete discussion of linear separ-
ability is given in references 4 and 5.

combination has its own output line, and each i1s
fed the appropriate desired output signal during
training. The input signals are common to all neu-
rons. In this manner, it is possible to form adap--
tive classifiers that can separate with great ac-
curacy large quantities of complicated patterns into
many output categories. All that is needed is large
quantities of adaptive neurons.

G. Adaptive Microelectronic Systems

The structure of the neuron described in this
paper and its adaption procedure is sufficiently
simple that an effort is under way to develop a
physical device which is an all-electronic fully
automatic Adaline. The objective 1s a self-con-
tained device, like the one sketched in Fig. 11,
that has a signal input line, a "desired output"”
input line (actuated during training only), an out-
put- line, and a power supply. The ‘device itself
should be suitable for mass production, should con-
tain few parts, should be reliable, and probably
should consist. of solid-state components.

To have such an adaptive neuron, it is necessary
to be able to store the gain values, which could be
positive or negative, in such manner that these
values could be changed electronically.

Present efforts have been based on the use_ of
multi-aperature magnetic cores (MAD elementsll),

The special characteristics of these cores permi’c
multilevel storage with continuous, non-destructive
read out. In addition, the stored levels are easily
changed by small conbtrolled amounts, with the di-
rection of the change being determined by logic per-
formed by the MAD element. The results of this work
have shown that macroscopic adaptive neurons made
of MAD elements will soon exist; and that with the
use of thin ferromagnetic films, adaptive micro-
electronic neurons will ultimately exist.

H. Applications for Adaptive Logical Circult Elemalts

If a computer were built of adaptive neurons, de-
tails of structure could be imparted by the designer
by training (showing it examples of what he would
like to do) rather than by direct designing. This
design concept becomes more significant.as size and
complexity of digital systems increase. The.demands
of modern technology are such that larger and more
complex digital systems are continually being con-
templated, and in step with this, progress in micro-
electronics makes such sys‘bems physically and econ-
omically possible.

The problem of reliability is greatly aggravated -
by increase in size and complexity.

Shannon and Moorel2 and von Neumann3 have pro-
posed schemes for increasing the reliability of
fixed digital systems by using redundancy. The re-

liability of systems may be increased further by ™ ~_

combining adaption and redundancy. Consider a multi-
plex consisting of three machines solving the same
problem with the same input data. Let the output
of each machine be a single binary number, expres-
sed as +1 or -1l. If these machines were perfectly
reliable, their outputs would always agree. If not,
then von Neumann proposed that-the majority should
rule. The neuron shown in Fig. 1 with ag set to
zero, and the other gains set to +1 would give a
ma jority output. Each machine has equal vote. Un-
equal vote (higher vote going to the more relisble
machine) is possible by making the a'sadjustable,
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and causing these adjustments to be made automati-
cally to optimize performance. The adaptive vote
taker, identical to the adaptive neuron, can be
trained by periodically injecting a certain input
when the desired output is known. The adaptive vote
taker could ideally give the correct outcome with
only a single correct machine by giving it a heavy
vote and attenuating the votes of the unreliable
machines., This is in effect an adaptive routing
procedure for information flow, and allows systems
in a small measure to be self-healing.

One of the most promising areas of research in
computer system theory is that of problem-solving
machines, theorem-proving machines, and artificially
"intelligent" machines. The earliest proponen"bs of
this research were Turing and Shennon.13 Their sug-
gestions were put to pracﬁ:.ce with same success by
Newell, Simon, and Shaw by Samuel,

An automatic problem-solving computer should have
a memory system from which information could be ex-
tracted according to classification rather than
according to address mumber. The use of stored games,
or "rote learning”,*’ would be considerably more
powerful if it were possible to extract from the
memory previous situations that are similar and not
necessarily identical to the current situation. Far
less experience and storage would be needed to
adapt to a given level of competence. The extent of
classification before storing should be slight (e.g.,
is the pattern of checkers or of chess?); and a con-
sistent scheme for the arrangement of the pattern
bits should be established before storing. Final
classification should be done within the memory it-

self. Each storage register might contain an Adaline :

or a network of Adalines. )

A request from a “central control”,for a certain
type of information would be sent to évery register
in the memory simultaneously. This has the effect
of setting the adjustments of -all the Adalines.
Only the registers ,.—whosé classifiers respond prop-
erly (e.g., give +1 outputs) answer the request and
transmit their information back to the "central
control.”

. Very sophista.cated learning procedures would be-
come possible if- one had such recall-by-association
parallel-access memory systems. The simplicity of

- Adaline and the progress being made in micro-
electronics gives a strong indication that such
memory systems will come into existence in the not

-~ too distant future
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