BP

Adaptivé Sampled-data Systems

B. WIDROW

Introduction

Adaptive or self-optimizing systems have the capability of
automatically modifying their own structures in order to achieve
performance optimization. An adaptive capability is particu-
larly useful in cases where the nature of system input signals is
not known, even statistically. In other cases, the nature of the
mput might be known to be changeable; for example, input
statistics can be non-stationary. An adaptive system that
continually searches for the optimum within its allowed class
of possibilities by an orderly trial-and-error process would give
performance vastly superior to that of a fixed system in many of
these instances.

Several ways of classifying adaptation schemes have been

y=a(x-b)2+c
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systems; the error of trial and error is analogous to the ‘error’
of feedback control. Many of the relaxation and iterative
methods employed by numerical analysts appear to be linear
feedback systems when represented in this manner. An example

‘of importance in this discussion is that of surfaoe exploration for

stationary points.

Many of the commonly used gradient methods search the
surfaces by making changes in the independent variables (start-
ing with an initial guess) in proportion to measured partial '
derivatives to obtain the next guess, and so forth. These
methods give rise to geometric (exponential) decays in the
independent variables as they approach a stationary point for
second-degree or quadratic surfaces. One-dimensional surface-
searching is illustrated in Figure 1.
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F‘z;grure 1. One-dimensional surface searching

proposed in the literature. The author finds it convement to
think merely in terms of closed loop and open loop adaptation
processes.

The open loop adaptation process involves making measure-
ments of input or environmental characteristics, applying this
information to a formula or a computational algorism, and
using the results to set the adjustments of the adaptive system.
Closed loop adaptation, on the other hand, involves automatic
experimentation with these adjustments to optimize a measured
system performance. Open loop adaptation is usually simpler
to implement where it is applicable. Closed loop-adaptation
is more fundamental and more generally applicable.

The purpose of this paper is to study adaptation, particularly
closed loop adaptation. The objective is to gain an under-
standing of how automatic system synthesis can be achieved by
making use of ‘performance feedback’.

Feedback and Trial-and-error Processes

Tterative or trial-and-error processes are integral parts of
adaptive systems. They provide the mechanism of adaptation.
It is often convenient to represent such processes as feedback
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* The surface being explored in Figure 1 is gi\}eh by equation 1.
The first and second derivatives are given by equations 2 and 3.

y=ax—>b*+c )]
dy _ _
,.a—x = 2a(x — b) )]
2
o= ®

A sampled-data feedback model of the iterative process is
shown in Figure 1 (b))%, The flow graph can be reduced, and
the transfer function from any point to any other point can
thus be found. The resulting characteristic equation is

(2ak—l)z+1=0 @
In order to choose the “loop gain’ k to get a specific transient
decay rate, one would have to measure the second denvatlve
(2a) at some point on the curve.

The first and second derivatives are given by equations 5-and



6. These relations are precise for parébolas,, and are approxi-
~mate for highér degree curves (see Figure 2). :

zp ’
2 ‘- :
d¥y =(%2[C+2B+A] (©6)

A two-dimensional parabolic surface is described by equation
7, the partial derivatives by equations 8, and the second partial
derivatives by equations 9. ‘ ’ :

y= axl2 + bx22 + CXy + dx2 + ex1X, _I_f (7)
é‘g—zax1+c+¢x2 6_x;_2bx2+,d+ exy  (®
32)) . 32y agy : ‘
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A vectd_r flow-graph model of v a two-dimensional iterative
surface searching process is given in Figure 3 (a). The branches
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Figure 2. Measurement of derivatives; definition of the
perturbation : ’

in this graph are capable of carrying two-dimensional samples,
indicated by column matrices.” This flow graph can be reduced
- straightforwardly by making use of the rules of matrix algebra.
There are as many natural frequencies (decay rates) as there are

independent coordinates. The multidimensional loop gain in

_ this case is determined by choice of the matrix of k’s.

There are many surface searching methods in common -use. -

~Among these are the method of steepest descent, Newton’s
method; and the Southwell relaxation method. ‘
The flow graph of Figure 3 (a) can Tepresent Newton’s

~ method, wherein the matrix of k’s is the inverse of ‘the -

. matrix of second partials. Multidimensional transients die
out completely in one step. "A modified Newton’s method has
the same matrix of &’s, only scaled by a factor less than unity.

“Transients- die out geometrically, not in one step, and are of a

- single time constant. ‘Successive adjustments proceed along a
straight line in multidimensional space from the initial guess
to-the stationary point. Cross-coupling among the coordinates
is eliminated. :

The flow graph of Figure 3 (a) can also represent the method
Adjust hy, hy, by . .

of ‘steepest descent. Here, the matrix of k’s is a diagonal one,
with identical elements on the main diagonal. This corresponds
to vector changes in adjustment being proportional to the
successive local gradient vectors. Cross-coupling is present. -
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The flow graph of Figure 3 (b) represents surface séarching
by the Southwell procedure. Adjustment along each coordinate
each time is set to minimize y. This corresponds to the matrix
of k’s being a diagonal one, with '

' 1 1
. kn = Et—l and k22 = %
Cross-éoupling is present, but transients-are of a single time
constant.
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Figure 3. Two-dimensional surface searching models .

Analyéis of an Adaptive Sampled-data Predictor »

Consider the general linear sampled-data system formed of
a tapped delay line, shown in Figure 4.  This system is intended

to be a statistical predictor. The present output sample g(n) L

is a linear combination of present and past input samples. The
constants in. this combination are #y, h;, h,, etc., the predictor
impulse-response samples, or the gains associated with the
delay-line- taps. Their choice constitutes the adjustable part -
of the predictor design. They may be adjusted in the following
manner. Apply a mean square reading meter to &(n)," the .
difference between the present input and the delayed prediction. -
This meter will measure mean square error in prediction.
., until the meter reading is minimized.
The problem of adjusting the /s is not trivial, because their-

effects upon performance interact. Suppose that the predictor
~ has only two impulses in-its impulse response, #, and A;.
BP2 ' R :
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‘mean square error for any settmg of hy and h1 can be readily
derived:

&) = f(n) = hof(n — 1) — by f(n — 2)

Eﬁ(n) /O + ¢ﬁ<0>h1 26, Dk — 2,20y
2¢ff(1)hoh1 + ¢40)

The dlscrete autocorrelation function of the input is ¢ (k).

(10)

The mean square etror is a parabolic function of the predictor

adjustments /4, and ;.
The optimum m impulse predictor can be derived analytically

by setting the partial derivatives of & of equation 10 equal to
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Figure '4v.' An adjustable sampled-data predictor

zero. This is the dlscrete analogue of Wiener’s optimization®* -

of continuous filters. Finding the optimum system experi-
mentally is the same as finding a minimum of a paraboloid in
m dimensions. This could be done manually by having a
buman operator read the meter and set the adjustment, or it
could be done automatically by making use of the iterative
gradient methods for surface searching, as described in the
previous section. When either of these schemes is employed

an ad'aptive system results that consists essentially of a ‘worker’

and a ‘supervisor’. The worker in this case predicts, whereas
the supervisor has the job of adjusting the worker.

W /
[

Figure 5. An adaptive predictor

Correlated
input
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Figure 5 is a block diagram representation of such a basic
adaptive unit. The supervisor continually seeks a better worker.
Adaptatlon is a multidimensional feedback process. The
‘error” signal is the gradient of mean square error with respect
to adjustment.

‘Noise enters. the adaptatlon feedback system because - the
input process cannot be continued indefinitely for each measure-
ment of mean square. error (4, B, C of Figure 2, needed for
- gradient measurement), and thereby places a basic- limitation

. upon adaptability. It will be shown that the slower the

adaptation, the more precise it is. The faster the adaptation, the

more noisy (and poor) are the adjustments.

Consider that the adaptive model has only a single adjust-
ment. - A plot of mean square etror versus hy for this simplest
system would be a parabola, analogous to the parabola of
Figure 1. During each cycle of adjustment, the derivative of
y = ¢ with respect to x = h, would have to be measured
accordmg to the scheme of. Figure 2.
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Noise- in the system adjustment causes loss in steady-state
performance. It is useful to define a dimensionless parameter
M the ‘misadjustment’, as the ratio of the mean increase in
mean square error to the minimum mean square error. It is a
measure of how the 'system performs on the average, after
adapting -transients have died out, compared with the fixed
optimum system With regard to the curve of Figure 1

j—c
c

Consideration of equation 1 shows that (J — c), the average
increase in y, is equal to the variance in x multiplied by a. This
variance is due to derivative measurement noise which propa-
gates by way of the iterative surface-searching process.

‘The noise propagation path is shown in the flow graph of
Figure'1 (b). Assuming that derivative measurement noises are
statistically independent from one iteration cycle to the next,
the variance in x equals the variance in derivative noise multi-
plied by [1/(8a27)], a conservative approximation to the sum.
of squares of the 1mpulses of the impulse response from the
noise injection point to the adjustment x. The time constant 7
is defined so that if = 1 -adaptation transients decay by a
factor (1/¢) with each iterative cycle.

Equation 5 gives the derivatives as the difference between
‘forward’-and ‘backward’ measured values of y multiplied by
1/26.. “Noise’ in the measurements of y (due to finite sample
size) causes noisy derivative measurements. A detailed deriva-
tion of the variance in derivative measurement is given in
reference 5. The result is that

M = (11) -

(12)

L, s . ac
(variance in derivative measurement) = ]-\71—,

The number of forward or:backward measurements per cycle
is N.  The perturbation is P." Relation 12 is based upon several
assumptions: that the adjustment x is in the vicinity of the
minimum, that the prediction error signal is gaussian distributed
(relation 12 is quite insensitive to the shape of this distribution
density, however), and that the prediction error samples are
uncorrelated (correctlon for correlatlon less than 90 per cent .
is very small). .

If the nature of the physical process permits ‘data repeating’,
ie. if it is possible to apply the same input data to the system

_for both forward and backward measurements, the variance of -

the derivative measurement noise does not depend upon the
amplitude of the perturbation. Making the same assumptions
as were made prevmusly, the expression for the variance with
data repeatmg is

4ac
(varlance in derivative measurement) = N

13y
It should be noted that in this case N is the total number of
error samples per cycle.

The misadjustment equals (1 /(8a7-c)) multiplied by the
variance in derivative measurement noxse Accordingly

M T 8NTP 4@NDP | ()
For the data repeating case
1 '
M= 3N ) 15)

The (N7) product is related to the total number of samples
‘seen’ by the system in adapting to a step transient in input

“process statistics. Notice that a given effect could be achieved
BP3 '



by using many samples per cycle (large N) and few cycles with
large steps to adapt (small 7), or by using few samples per
cycle (small N) and proceeding towards the optimum with
small steps (large 7). :

Let the number of samples that elapse in one time constant
of adaptation be called the ‘adaptation time constant’ I'.

Complex Process
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process
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- process
{ {
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Adaptive imitator
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on the effectiveness of the choice of adjustment variables (are
there enough of these and are they the best to use). -

An extensive series of simulation studies was undertaken by
R. R. Brown with the aid of an IBM 704 digital computer. The
results of these experiments have shown that the measured
misadjustments rarely differ from their predicted values by as

Noisy communication
link :

| Noise | Adaptive noise filter
| | i
Signal | i loutput
O i 0]
]___‘_________, l ho'hp-u I
| —]
I Adaptation |
= process '
| |
| . S
e(n)

Low capacity :
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(b)

Fngure 6. An adaptive imitator and an adaptive noise filter ‘

Where data repeating is not practised, I' = 2N7. Where data
is repeated, I' = Nr. Expressions 14 and 15 become 16 and 17
respectively.

i _

M= | (16)
1

M= 55 a7

These ideas can be applied to multidimensional adaptation
by using the flow graphs of Figure 3. The misadjustment
increases with m?® when Newton’s method is used. The ‘mis-
adjustment increases with m when data is repeated for any
single time-constant method. One such method, Southwell’s, is
easy to implement (no matrix inversion). The misadjustment
is given by equation 17 multiplied by m.

These principles may be applied in a variety of situations, two
of which are illustrated in Figure 6. Performance feedback is
used in the system of Figure 6 (a) to achieve imitation of an
unknown complex system. The adaptive system ‘learns’ of the
characteristics of the unknown system by imitating its behaviour
as best it can. The mean square error is a parabolic function of
the adjustments, if the input is stationary and the unknown
system is linear. A combination of imitation and prediction

~ enables an adaptive system to predict the output of an unknown
dynamic system by making use of both its input and output
signals. ' A conventional predictor would use only the output
signal. In Figure 6 (b), a scheme is shown which combines a low
noise, low capacity link for performance feedback with a high
capacity, noisy communication link. An adaptive filter is used
to separate noise and signal. The mean square error is again
a parabolic function of the adjustments, and the rate of
adaptation is limited by the low capacity link.

The misadjustment gives a measure of the effectiveness of
adaptation. ' It neither gives information on the magnitude of
the minimum mean square error, nor does it give information

BP 4

much as 20 or 30 per cent. The results of one of these simu-
lations is given in reference 5.

The misadjustment formulae are quite accurate when applied
to the situations for which they have been derived. These
formulae serve as ‘rules of thumb’ when other performance
criteria than minimization of mean square error are used, and
when the worker is non-linear®. Solutions to many practical
problems in the control and communications fields will be
attainable by using these principles. As evidence of this, a ten-
impulse filter could adapt to a major change in input process
statistics after ‘seeing’ 200 process samples and would have a
steady-state misadjustment of about 10 per cent.

Application of Adaptive Filters to Non-stationary Signals

The mean square error surface is fixed in shape orientation
and position when the input to an adaptive system is a
stationary process. It is possible to define a quasi-static or
instantaneous mean square error surface when the system
input is not stationary. The characteristics of this surface
vary with the changes in statistical characteristics of the input
signal. Performance feedback allows an adaptive system to
‘track’- continually the changes in process and environment,
and to maintain its adjustments at any instant close to the
instantaneous mean square error surface minimum, ,

The response of an adaptive filter with a single adjustment
to a sudden change in input process is illustrated in Figure 7 for
two different values of adaptation time constant. -The solid

-lines represent ideal adjustments, and the dotted lines represent

the actual noisy geometric adjustments. This kind of response
suggests the R—C filter analogue of Figure 8.

The ‘signal’ in Figure 8 represents the ideal adjustment.
For a stationary process, this is a constant. The variance of
the ‘noise’ that propagates through the R-C filter is inversely
proportional to its time constant I, and accounts for the mis-
adjustment from small sample size.

409



BP

When the input process is non-statiohary, there are two

sources of loss in performance. There is a component of mis-
adjustment that results from small sample size ‘noise’, and a
component due to lag in adaptation or imperfect tracking of
the process by the system. In making I' small, misadjustment
~ due to small sample size becomes large, and in making I' large,
misadjustment due to slow process tracking becomes large.

A stationarily non-stationary worker input signal causes the
‘signal’ of Figure 8 to be a low frequency random process.

Adjustment

sese
seee

1 1 1 L
el 10 ‘20 30 40
Process samples

"V
50

Figure 1. Response of an adaptive system adjustment to a
sudden process change

Such an input is generated by applying an uncorrelated random
sequence to a sampled-data filter whose impulse response is
slowly randomly varied. .

The definition of misadjustment is hereby generalized to be
the ratio of the difference between the mean square error of
an ideal adaptive system and the actual one divided by the
mean square error of the ideal system, where averages are
taken over many variations of the input process. The ideal
system' (a non-physical entity) has an instantaneous impulse
response which is always optimum for the instantaneous input-
process statistics. The misadjustment is proportional to the
total variance of the ‘tracking error’ of Figure 8.

The transfer function of the propagation path of the small-

sample-size ‘noise’ (Figure 8) is
i

HS) =157 ~

1)

Low o i
frequency
‘signal’

__W,‘\ : ‘: :

The transfer function by which signal tracking error develops is

r's
Ls+1 , (19)

The spectral densities’ of ‘signal’ and small-sample-size
‘noise’, as well as the amplitudes of these transfer functions for
real frequencies, are sketched in Figure 8 (b). The behaviour of
[1 — H(S)| for S = jw and for small o is approximately like
that of |Cw|. Of importance is |1 — H(S)|? or [w?. If the
spectra of ‘signal’ and ‘noise’ are roughly as shown, the variance
of the ‘signal’ error for fixed variance of ‘signal’ is proportional
to I'? while the ‘noise’ variance is proportional to 1/I". There-
fore, the misadjustment is ; :

1— H(S) =

M=F+pI® 0)
The constants o and 8 are properties of the system input
process. ; _
Setting the derivative of M to zero gives

& _ 2
T= 2pT" @D
This means that the adaptation time constant is optimized
when the misadjustment component due to small-sample-size
‘noise’ equals twice the misadjustment component, due to lag
in process tracking. The same result can be generalized for any.
multidimensional iterative process having a single natural
frequency.

A Higher Level of Adaptation—the Supervisor’s Supervisor

When the nature of the non-stationary input is known, it is
possible (but not simple) to calculate the optimum I'. An
alternative that would require much less knowledge of the input
process and no elaborate calculation of the value of T'is to
achieve self-optimization of I'. This can be done by experi-
mentally varying I', much as the impulses in the impulse
response are varied, with the objective of optimizing long-term
performance. A block diagram of such a system, an adaptive
predictor, is shown in Figure 9. The box W is the worker, S}
1s the supervisor, and S, is the supervisor’s supervisor. Choice
of I' constitutes the adjustment of S;.

The optimum I' minimizes the variance of the random
‘tracking error’ signal of Figure 8. The derivative of the

||
‘Noise

spectrum
. &

1-

'Tracking’ error

T

c L3
High frequency ‘noise€ \

(@)

»—0
Spectrum
of 'signal’
o 1-
T \ /m ()|
> W

(b)

Figure 8. R-C filter analogue of adaptation process
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‘tracking error’ variance with respect to I' is obtained by
measuring the worker’s mean square error (long-term averages
over many error samples) for ‘forward’ and ‘backward’ values
of I'. This may be done with and without data repeating.

The misadjustment M of the supervisor .S; adds directly to

‘the misadjustment M,, of the worker (defined with I at opti-
mum) to give the overall misadjustment M.

M=M,+ M, 2

Inspection of Figure 8 shows that the random ‘tracking
error’ contains a high frequency component that fluctuates at

f
w/"
1,

.

Sz

Nonstationary

input process ————o Prediction

Figure 9. An adaptive predictor with two levels of adaptatioﬁ

the input sampling rate, and a low frequency component that
fluctuates with the variations in the input statistics. When the
setting of I' is close to optimum, the variance due to the low
frequency component is approximately ‘one-third of the total
variance. Errors in the measurement of the variance of the
‘tracking error’ are due essentially to its low frequency com-
ponent; the variance in the variance has approximately one-
ninth the value that it would have if both the high. and low
frequency components contributed. :

The misadjustment M, may be computed with the assistance
of relations 16 and 17. In the data-repeating case

1/-1
Msfg(iﬁ)

where I s is the adaptation time constant of .S;, or the number of

(23)

~samplings of the worker’s mean square error per time constant .

of adaptation of ;. When S, continuously samples the
worker’s mean square error, the number of samplings is
equivalent to half the number of periods of the fastest variation
components in the statistics of the non-stationary input process.

Conclusion

- In this paper an adaptive sampled-data system model that is
quasi statistically linear and makes use of performance feed-
back for self-optimization has been described and evaluated.

. Analytical results’ derived from the model show that mis-
- adjustments are inversely proportional to adaptation rates.
Adaptation taking place at different ‘administrative’ levels

Summary

An adaptive sampled-data system model consisting of an adjustable
‘worker’ and a ‘supervisor” is described and evaluated. ‘Performance
feedback’ is employed to ‘achieve automatic system synthesis.
- Iterative gradient methods used in the adjustment of the worker’s
impulse response are represented by linear sampled feedback
-models.- Small sample size “noise’ causes ‘misadjustment’.approxi-
mately equal to the reciprocal of twice the adaptation time constant
multiplied by the number of interacting adjustments (verified by
simulation). :

BP6
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within the same system may be treated analytically as separate
phenomena because of the great disparities in the averaging
times. Misadjustments developed at the various levels add.
Closed loop adaptation that makes use of performance
feedback permits direct, automatic system synthesis. It has the
advantage of being usable where no analytic synthesis procedure
exists. . More general types of performance feedback were used
by Clark and Farley’ and by Rosenblatt® in their computer -
simulations of adaptive ‘nerve nets’. Interconnections among
‘neurons’ were strengthened or weakened depending upon the
success or failure of experimental applications of ‘these nets.
A class of adaptive switching circuits was studied by Mattson®
that is structurally similar to the adaptive sampled-data systems.

~Again, searching for the ‘best” within the space of possibilities

was done by means of performance feedback; 5

It is interesting to note that many natural adaptation pro-
cesses seem to be based on similar principles. The psychologist -
trains animals to give desired responses to certain stimuli by
‘rewarding’ and ‘punishing’. The palacontologist on the other

“hand studies the effects of various earth and sea environments

over millions of years on the structures of living animals.
Performance feedback is akin to what evolutionists call ‘natural
selection’, except that in nature, structural perturbations seem
to be random in frequency and amplitude. :
It can be said that the most important and the most general

“concept studied in this paper by means of a simple adaptive-

system model is that of performance feedback.
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For non-stationary inputs, measurement noise misadjustment
equals -twice that due to process-tracking lag when the adaptation -
time -constant is optimized. Automatic optimizatxop’ could be
accomplished by adaptation on a higher level (supervisor’s super-

wvisor). This can be treated analytically as a separate phenomenon,

and causes an additive misadjustment component.

Performance feedback makes possible adaptive systems that can
cope with non-stationary inputs and can adjust topartial system
failure. : R
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