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Summary An adaptive system can be devised
- by combining two systems, one an adjustable
“worker;" which receives an input and operates
"upon it to yield an outpﬁt, the other a "boss" whose
input is @ measure of the performance of the work-
er and whose output is the adjustment of the worker.
“Performance feedback can be used to achieve auto-
matic system synthesis, that is, the selection of -
an optimum worker from a predetermined class

of possibilities.

In this paper, adaptive sampled data "Wiener-
Lee systems" are described and analyzed. An
examble is a predictor whose purpose is to adapt
in order to be able to predict with minimum mean-

'square error the next sample of a correlated
random input segquence.

Iterative gradient methods used in the adjust-
ment of the impulses of the worker's impulse
re.éponse can be represented by linear Ba.mpled
feedback models. '
adjustment transients are multidimensmnal geo-

Except for measurement n‘oise,

metric progredsions.

Small sample size noise causes imperfect 8ys-"
tem adjustment. The "misadjustment® is shown to
be approximately equal to the reciprocal of the .
number of input samples required to adapt to a ste;i
change in process statistics multiplied by the num-
ber of interacting adjustments. This result has
been verified on an IBM 704 digital computer. .

For nonstationary inputs, the choice of adap-
tation time constant can be shown to beé optimum
when the misadjustment due to measurement noise
is eqixal to twice the misadjustment due to i_niper-
fect process "tracking." This choice can be made
adaptive, and would require a higher level of
supefvision (the boss's boss). The duration of per;
formance averaging that takes place at the higher
level is much longer term.
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monitoring their inputs and outputs.

Adaptive systems cah adjust to changes in,.
environment and to partial system failure and can
"learn" to imitate complex dynamic systems ‘by -

: The com-
bination of predictionv and imitation may permit an
accuracy in statistical prediction that has not beexr
heretofore posmble. .
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A fixed "optimum?" system design implies that
the designer has foreseen all possible input -condi-
tions (at least statistically) and, knowing what he
would like the system to dé under each condition,
has chosen the best (according to his criterion)
within a class of designs to which he has restricted.:
himself, a priori. An example of this is the "
use of the Wiener-Lee optimization for the design
of linear control systems. 12,3 S

In many instances however, the characteris-
tics of input signals are not known, even statisti-
cally. In other cases, the nature of the input might
be known to be changeable; for example, input sta-
tistics can be nonstetionary_, An adaptii'é system
that continually searches for the optimum within‘
the allowed class by an orderly trial-and-error
process would give vastly superior performance
in mahy of these instances. 'Sampled-data systems
that involve digital computers could be readily,
made adaptive. A digital filter whose structure
ig determined by the program ofa computer could
be modified by a program to change the program.
The objective is always to improve performance.

A. Feedback and Trial-and-Error Processes

Iterdtive or trial-and-error proceéses ‘are
integral parts of adaptive systems. They provide
the mechanism of adaptation. It is often conven-
ient to represent such proces.sés as feedback sys’-

tems; the error of trial and error is analogous to ‘



the "error" of feedback control. ,
Many of the relaxation and iterative methods
commonly employed by numerical analysts appear
1o be linear feedback systems when represented
in this manner. These might be called linear
trial-and-error processes. An example- of great
Ainllportance in this discussion is that of surface
exbloration for stationary points. '
Statmnary pomts, or maxima and minima,
are characterlzed by zero part1al derivatives with
respect to the independent var-labl‘es. These par-
tial derivatives generally increase with distance
from the statlonary point and, moreover, 1ncrease
linearly for a quadratic surface. In many of the
commonly used gradient methods, the surface is
explored by making changes‘ in the independent
: variables‘ (startihg» with an initial guess) in pro-
portiori to ineasured partial derivatives to obtain
the next guess, and so forth. These methods g1ve
- rise to geometrlc (exponentlal) decays in the
mdependent varlables as they approach a sta-
tionary point for second—degree or quadrat1c
surfaces. This is 111ustrated by the one-
dimensional model of Fig. 1.-
The "surface being explored in Fig. 1 is -
given by Eq. . The first and second derivatives

-are given by Egs. 2 and 3.

= ax-b)2+c IO (1)
dy
G = 2alx-b) R - (@)
2 v
d7y .
== 2 . (3)
'd’FZ a o o

Let the proportionaility'cohsftanf between
change in guess and derivative be -k. This con-
_stant could be so chdsen that the error in x
‘decreases by one half with each iteration cycle,
as illustrated in Fig. la. A sampled-data feed-

“back model of the iterative process is shown in

Fig. 1b. 5,67 The mitial numerical guess is: inJected’

once at the begmning of the process, whereas the
A numerical reference or stationary value b is
mJected sy'nchronously durmg each cycle. - The
: numerrcal sequence at the point x(n) begins with -

_ guesses in the surface exploration.

" minus the constant 2ab.

. surface is given special attention.. -

the initial guess and proceeds as a sampled
transient that relaxes geometrically toward the
stationary point, exactly like the sequence of
For the
present, we shall disregard the source of
"derivative meesurement noise."

The following is an explanation of the feed-
'The next guess is equal to the -pres-
ent guess (this accounts for the Aunity feedback

back model.

" branch) plus a constant (-k) times the derivative.

From Eq. 2, the derivative- equals 2a times x(n)
Since the next guess w1ll
become the present guess for the next iteration
cycle, it is stored by the unit delay (the feedforward
branéh of transfer function z) to supply the signal-
at node x(n) at the proper timef It is clear from
the flow-graph model that if the iterative process ‘
is stable, equilibrium will be reached when x(n)
reaches the value b.. ' o

The flow-graph can be reduced, and the trans-
fer function from auyv point to any other point can
thus be found. The resulting characteristic equa-
tion is o ' o ‘

(2ak-1)z + 1= 0 , - (4)

The iteratie process is stable when 0< k<~— In
order to choose the "loop gain”" k to: get a speciflc
transient decay rate; one would have to. measure -

~ the second derivative (2a) at some point on the

curve.

Each time a guess in x is to be made, the
derivative is physically measured (Fig. la),
whereas in the model-_(Fig. 1b) it is obtained as a
quantity proportional to. x. If the surface ‘were
of h1gher degree than second, the derivative -

“would not be simply proportional to x but would

be some-polynomial in x. 'The~mode1 could strll e
be made, but it would not be a linear system, ' -

and transients would not be geometric. Neverthe-
less, the iteration process will locate the station- -
ary point. “In-its vicinity,“ transients will be -
geometric because the second a.nd lower degree

- terms of the Taylor expansion of any continuous .-

surface become the dominating ones. TFor this

and other reasons, exploration'of-the parabolic -



'The derivatives of a parabola and the partial
derwa’uves of a parabolic surface could be meas- .
ured in the manner illustrated by Fig. 2. The
dimensionless ratio of y to B is defined as the
perturbation P of the measurement.

The first and second derivatives are given by
Eqs. 5 and 6.
parabolas, and are appreximafe for higher degree

These relations are precise for -

curves.
et - 1/5[1/205.- 1/2A] - | (5)
B
dzy’ T ' . :
—~|  =1/6%[1/2C-B + 1/24] (6)
ol |

Figure 3 shows a two-dimensional paraboloid
and a plan view of a sequence of vector changes in
the independent variables- x, and x, while a mini-
mum is being sought. Each component of a vector

change is a linear combination of the local partial

derivatives. The resulting transients are multi-

dimensional geometrlc progressmn

The surface bemg searched is given by Eq. 7,
the partial derivatives by Egs. 8, and the second
partial derivatives by Egs. 9.

y = Z+ bx2+cx +dx,+ exlx +f (7)) -
3y , : ey , : o
glz 2ax) +c +ex, 8x be td+ex, (8)
o’y i A e
— =2a A Ao =@ —5=2b - (9
ox> 9x, 9%, ax’

A vector flow—graph model of the iterative
process is given in Fig. 4. The branches in this
graph are capable of carrying two<dimensional
samples, indicated by column matrices, and the
matrix gains of the-branches signify that outputs
equal inpufs‘premultiplied by gains. - The two-
dimensional flow graph is completely analogous to
the one-dimensional graph. The feedforward
branch is mere_ly a delay with no crosscoupling of
the coordinates, and the unit feedback branch is
simply that with no crosscoupling. The first
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partial derivatives are formed, as indicated by
Egs. 8, from the linear combination of the cone
stants ¢ and d and of the x's premultiplied by
the matrix of second partials.

This flow graph can be reduced stralght-
forwardly by making use of the rules of matrix
algebra. There are as many natural fre-
quencies (decay ,rates). as there are independent
coordinates. The multidimen’sional loop gain
in this case is determin'ed by choice of the
matrix of k‘s.

There are many surface-searching methods in
common use. Among these are the method of
steepesf deseent, Newton's  method, and the
Southwell Relaxation method. These can all be
represented by feedback models, like F1g 4.
They dxffer mainly in the choice of the k's in the

feedback matrlx.

B. Analysxs of an Adaptive Stat1st1ca1 Pred1ctor

The point of view taken in Sec. A on certain
trial-and-error processes has been helpful in
analyzing theibehaviorv ,ef adaptive systems.
Consider the general linear sampled-data system
formed of a tapped delay line, shown in Fig. 5.
This system is intended to be a statistical pre-
The present output sampie g(-n) isa
linear combination of present and past input
samples. The constants in this cembihation are
h h 'hz, etc., the predictor impulse-response
samples, or the gains associated with the delay-

dictor.

line taps. Their choice constitutes the predictor .
design:. They may be adjusted in the followmg
manner. Apply a»mean-square reading meter -
to €(n), the dlfference between the present.
input and the delayed prediction. This meter
will measure mean-square error in prediction, "
Adjust hg, h), h,,..., until the meter reading
is minimized. = - c PR
The problem of adjusting the h's ig not .
trivial because their effects upon perfbrmance
Suppose that the predictor has only
two impulses in its impulse response, h" and”

interact.

h,. The mean-square error: for any setting of -
h and h can be: readily derived ‘



€(n) = f(n) - h, f(n-1) - h, f(n-2)
@) =2@) + h2 2(n-1) + b2 P (n-2)
-2h f(n) f(n-1) - 2h, f(n) f(n-2)

+#2h_h; f(n-1) f(n-2) (10)

€ (n) = 4(0) nZ + ¢ (0) h} - 26, (1) b - 24,(2) b,
+ 2¢ff(l) h")hl + ¢ff(0)'

The discrete autocorre,lation function of the input

is o (k).

The mean- square error of Egs. 10 is what the
mean-square meter would read if it were to aver-
age over very large sample size. The mean-
square error is a parabolic function of ‘the
predictor adjustments ho and hi, and in general
can easily be shown to be a quadratic function of
such adjustments, regardless of how many there
are. Any of the Wiener-Lee problems such as
linear prediction, interpolation, or noise filtering
give quadratic functions.  If a mean-fourth error
criterion were used “this woiild be a fourth-
degree function. i

" The optimum m-impulse predictor can be
derived analytically by setting the partial deriv-
Finding the
optimum system experimentally is the same as

atives of e of Eq. 10 equal to zero.

finding a minimum of a paraboloid in m dimen-
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human operator read the meter and set the ad]ust -

ments, or it could be done automatically by
makmg use of the iterative gradient methods for
surface sear hing, as described in the prevmus
When either ‘of these schemes is

section
employed ‘an adaptive ’system results that

consists: essentially ‘of a "worker" and a "boss."
The worker m thJ.S case predlcts, whereas the
‘boss has the job of adjusting the worker. -

Figure 6 is a block-diagram representation

tive unit. The boss contin- ‘

ua]ly"se’;é 5 ‘worker and sees the com-
bination of

objeé’fi\‘ie'iif prfé:ﬂié"t:ion'with minimum mean-

ndom process, worker, and desired

square ‘error as:"a multidimensional transducer
Adap-
tation is a multidimensmna(l feedback process.

that connects ad]ustment to performance

The "error" signal is the gradient of mean-square

error with respect to adjustment.

Noise enters the adaptation feedback system
because the input process cannot be continued
indefinitely for each measurement of mean_-sQuare
error (A, B, C of Fig. 2, needed for gradient
measuremnient), and thereby places a basic-limi-
‘It will be shown that the
slower the adaptation, the more precise it is..-The

tation upon adaptability.

faster the adaptation, the more noisy (and poor)
are the system adjustments.

The model considered first in deriving a
measure of the quality of adaptation versus the
speed of adaptation will have only one adjustment.
The theory will be generalized to multiple dimen-
sions later. A plot of mean-square error versus
h0 for the simplesi system having only one impulse
in its impulse response would be a parabola,
analogous to the parabola of Fig. 1. During each
: ez with

respecttox =h ° would have to be measured

cycle of adjustment, the derivative of y =

according to the scheme of ‘Fig. 2.

Equation 5 gives the derivative as the differ-
ence of "forward" and "backward" measured
values of y multiplied by (1 /2&).
in derivative errors is equal to the sum of the

The variance

variances in the forward and backward meas-
urements of y = € multiplied by (1/46 ), under
the assumption that they are essentially independ-
ent. "Noisy" measurements of y due to finite
sample size cause noisy derivative measurements.
These in turn cause noisy settings of x = ho and
losses in system performance. The over-all
objective is to find a relation between the loss in
average performance and the sample size used in
measurement of A" and C of Fig. 2. ‘

" Set ho”to some fi_i_:_g_d value. The corresponding
meari-square error € , a long-term average, can
be estimated by taking the square of a single error

saniple’; The variarice in such a measurement is
AR R 2
(€ - %) = (& ) + et -z(e)
= e - (e ) (11)

If € were 'Gaussian-distributed with zero mean,
the mean fourth minus the square of the mean




square would equal 2 times.the square of the
‘me'an square, whereas if € were flat-top distrib-
uted with zero mean, thié would equal 0. 8 times
the square of the mean square. An average com-
ponent added to € causes the coefficient to _
diminish only slightly. No value of this coeffi-
cient greater than 2 has been found, and it could
range from 2 to 0. A reasonable all-round value
is taken 'as 4/3. Since the variance in an
average of N independent measurements is 1/N
times that of a single one, the variance in a point
on the ? curve taken from N measurements is
g_(ez)z

size 1s a fractlon of N when measurements are

appro:gimately 4 The effective sample

not mdependent It can be shown however that
this fraction is close to unity even when the €(n)'s
are highly correlated, as high as 90 per cent, for
example. It follows that the variance in the meas-
urément of a first derivative (as in Fig. 2) from
N forward and N backward samples is given by

1 4 2 2
—5 ) == (A"+C")
(12) s

(12)

It can be shown that when the perturbation P
is less than 20 per cent, as it will usually be, the
following approximation will be essentially an
equality: ' K

2 (13)

The perturbation has been defined to be P = (y/B).
It can be shown that y is precisely equal to (ad”).
Combination of all these allows expression (12) to

A%+ %~ 2B

be replaced by

" /variance in 2
I ._2B

| derivative =
measurement 3N_6‘

(14)

During each iteration cycle, a "noise" in
\derivative measurement occurs, the variance of
which is given by (14). ' These noises are almost
"statistically independent from cycle to cycle. -

- Assume that B?
mately equal to- 2.

is relatively constant and approxi-
This will be essentially the
case inthe vicinity of the optimum. To find the ef—
fectof these noises upon the adjustment x,.- con-
"sider the flow graph of Fig. 1b. The var_1ance in x
is equal to the variance in derivative ndisé 'muklti-‘
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plied by the sum of the squares of the impuise values
of the unit impulse response from the derivative.
point to x(n). The sum of squares is co_nveniently,.;
expressed in terms of the "time constant" ¥ of the.
flow graph rather than in terms- of the feedback -
constant k. A unit value of ¥ means that the tran-
sients decay by a factor of (1/e) with each: iteration
cycle. The sum of squares turn out to be very close
to (I / 8a2—r); with the result that the variance in x is

1 V cz
12(N7) | az 62

In steady state after transients have disap-

(15)

peared, x will vary randomly about the optimum
point from iteration cycle to iteration cycle.
Because x 1s not always at optimum, y on the
average will be greater than c. The "misadjust-

ment" M is defined as

y-c
c

M =

(16)

~The misadjustment is a very useful parametef._

being the dimensionless ratio of the.mean increase
in mean-square error to the minimum mean-square
error. It is a measure of how the adaptive system
performs on the average, after adapting transients
have died out, compared with the fixed optimum
Wiener-Lee system.

Con51derat10n of Eq. 1 shows that the increase
iny y is equal to the variance in x multiplied by a. |
If use is made of Eq. 15, the misadjustment can be -

expressed as

M =2 1 c2
T ¢ 12(N7) 2252

Recall that P = ab %/c in the vicinity of the opt1—
mum. Eq. 17 becomes

an

R S
M= )P (18)
The (Nt) product is related to the total mumber
of samples "seen" by the system in adapting to a
Notice that

a given effect could be achieved by using many

transient in input process statistics.

samples per cycle (large N) and few cycles to

adapt (small f), or by using few samples per cycle




and proceeding toward the optimum With small
steps (lérge +): “ The important quantity is the
Nt prodict. The misadjustment is always

. ihversel"yfpropor‘ti"on'al to it. 2Nt can be repre-

sented by the symbol T. This is the "adaptation

time constant,” “that is; the number of process
samples that elapse in one time constant of
adaptation.’ Equation 18 can be rewritten as
follows; notice that all symbols are dimension-

less:

- 1
M= %1p (19)

‘Another point of view on finding the derivative
at a point on the mean-square-error curve postu-
lates a "small-sample size" mean-square-error
curve. This entire curve could be investigated
point by point by "playing® the same small piece
of input record over and over again to the system,
each time with different adjustment of h o The
derivative of this'curve can be obtained precisely
by using the same data for the forward and back-
ward measurements of mean-square error.
Perturbation amplitude would have no effect. ‘The
small sample size curve is actually a property of
the piece of input record. - ' B

It can be shown that the variance in the meas-
urement of the derivative using N samples for
both forward arid backward measurements in the
vicinity of the optimum is

'8 ac/3N (20)
Expression 20 is by no means obvious and has
been derived by first finding the variance in the

- position of the minimum vpoint of the small
sample size curve. This turns out to be the

quantity (2c/3a). Since the derivative is equal to

2 ax, the variamnce in derivative near x 0 is
452 times the variance in x, whi'ch‘ is the same
as the variance in mini;num-pomt position. From
this we obtain expre‘ssibri 20. The variance in

x is .

8ac: 1 L€
3N 8 2
: arT

~ 3aNr (2 1)

The average increase in y is

c/3N+ (22)
The misadjustment is therefore
1 1
M= 3N+ 3T (23)

In this case, the adaptation time constant I" or
the number of samples that elapse per time
constant is (N7).

There is often a premium on operating with
small perturbation: If the adaptive sysiem is
connected "in line" with an actual process, a
component of misadjustment exactly equal to the
perturbation must be added to the appropriate
misadjustment expression. Setting an adjustment
forward for some time and then backward for some
time always makes performahc.,e worse, on the
average, by the amount y than if the adjustment.
If the
adaptation does not take place in real time or if

had remained at center all the while.

another identical system not "in line" is available
for experimentation, advantage could be taken of
data-repeating or the use of large perturbations.
There is another way that the derivatives could be
measured,8 which is equivalent to da’ca—rebeating.
This method requires the measurement of the ‘
input autocorrelation function. Differentiation of
expression 10 shows how the derivatives are
related to the input correlations. The auxiliary
system in this case is a correlator, and the
technique can be used only where there are simplé

' relations between derivatives and correlations. -
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These ideas can be extended to multidimen-
gional adaptation. The most efficient adaptation
scheme has the partial derivatives measui'éd along
the major and minor elliptical axes. These direc-
tions would be at an angle of 45° with the original
coordinate axes because coefficients in the mean-
squdre expression (Eq. 10 for 'é’xample) associated

-with the squares of the h's are always of equal mag-

nitude for any of the Wiener-Lee ﬁroblems. It
partial derivatives are measured along these ‘
directions, and the vector changes were to have
com‘ponerits along these directions proportional to
the respective partial derivatives, transients and
measurement noise p,ropagaiions along these
directions would be isolated. The branch in the



flow graph of Fig. 4 connecting the x(n) matrix
with the partial-derivative matrix would have a 7
gain matrix with only diagonal elements. The
feedback-gain matrix would likewise have only
diagonal elements. .

The time constants for the two variables in
the flow graph could be chosen separately, but a
reasonable procedare is to make them‘ the same.
It is also reasonable to make N and P the same
for both directions. The increase in mean- »
square error due to variance in adjustment along
one of the Inajor axes plus that due to variance in
adjustment,along the other major axis equals the
total increase in-mean-square error.. Misadjust-
ments add. .The previous. expressions for
misad’justm’ent_ are generalized by multiplying
them by the number of adjustments; m.

If the orthogonalization scheme is not used, it
is quite difficult to predict closely the misadjust-
ment for a given situation. "Ball-park" answers
can surely be obtained from the same misadjust-
ment expressions- by taking the t of the flow
graiah to be an average over its various modes. A
few generalizations can be made however. Dou-
bling N halves M, and halving the over-all adap-
tation rate halves M. To achieve a given M, the
number of process samples - that must elapse
before the system will adapt increases with the
square of m- when different data for each per-
formance measurement are used, and increases
in direot proportion to m if data-repeating is
used. - i

C.. Simulatmn of Adaptwe Sampled Data
Systems

v Relatmns 19 and 23 are very general and
apply regardless of the nature of the input proc -
‘esses and the goals of adaptatmn Several
assumptlons were made in their der1vat1on, how-
ever, and 1n order to verlfy the reasonableness of
the assumptions, an extenswe series of simu-
lation studies was undertaken with the aid of an

IBM 704 digital computer. The results of these
. experi_rpents have show,n that the mea'sured mis-
adjustments usually fall Witllin 10 per cent of their
predicted values, and rarely differ by as rnuch as
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20 per cent. - B ) )

The results of one of these s.imulations is
shown in Fig. 7. The adaptlve system in this
case was a predictor. Its sampled mput was a
stationary Markov process generated by m]ectmg
a random sequence into a sampled data system of
transfer function 1/(1-1/2z). The adaptatlon '
process was orthogonahzed and the m1t1a1 guess
of system structure was h, = h, =o. The opti-
mum impulse response point and contours of
constant mean-square error are shown m the
figure. :

. Ten samples per iteranon cycle were used in
the data- repeatmg scheme. The adaptatlon rate
was set so that trans1ents along each coordinate
diminished by a factor of 1 /2 during each cycle,
so that T = 1.45, and therefore I' = 14.5.
Since m = 2, the theoretlcal mlsad_]ustment is

M= 3—21., = 4—3.—5= 4.6‘pe‘r eent

It can be seen from Fig. 7 that within about
four cycles, the adjustment transient had essen-
tially died out (it theoretically was down to 1/2%
of its original value). 'The system adjustments
take ona "random walk" ‘about the optimum point.
The experlmental misadjustment has been calcu-
lated by subtracting the minimum mean-square
error from the average ‘mean-square error of
iterations 4 through 10 (thls allows the initial
transient to disappear) and then dividing by the
minimum mean-square error. ‘This turns out to
be 20 per cent. This value, however, is only
5.4 per cent if points 9 and 10 in Fig. 7 are
ignored. The statistical phenomenoni'giving rise
to the large excursion in point 9 is a rare one,
although quite normal. By the tenth cycle, the
adaptation®system has almost recovered. If

‘averages were taken over more cycles, there

would be very close agreement betweern the theo-
retical and measured values of M ‘ '

D. Application of Adaptive Fllters to

Nonstationary Signals

The adaptive predictor considered in the pre-
viousg section ig able to adapt to a new process
environment within approximately four adaptation




cycles, which is less than three adaptation time
constants. During this time, 40 input sam‘ples‘
are processed by the system, and M = 4.6 per
cent. When a mlsad]ustment of approximately

10 per cent is tolerable, a two-impulse filter
could be made to adapt to a major change in input
process statistics: after seeing about 20 samples.
A'ten-impulse filter would require 200 input
samples to adapt and would have a steady-state
misadjustment of 10 per cent. This degree of .
complexity is all that would be required for most
practical applications.

Speed of adaptation can always be acquired at
the expense of increase in misadjustment. Adap-
tation speed: is controlled By N and #. Fast
adaptation is highly desirable when the input proc-
ess statistics change rapidly. When process
changes are slow, slow adaptation has the advan-
tage of small misadjustment.

Nonstationariness of input processes adds
another component to expression 23 because of
imperfect process "tracking"; the larger the
adaptation time constant, the greater the average
lag between the system adjustments and the

instantaneously optimum adjustments. It can be

shown-g that the misadjustment for nonstationary
inputs is ‘
-84 g2 24
T pr ‘ (24)
The constants a and B are properties of the input
process. If the derivative of M is set to zero,

dM

ar-

The condition for.optunum choice of the adap-

;"— + 28T = 0 (25)

tation time constant T' is therefore
= 2T - (26)
This important pesult means that the adapfation
‘time constant is optiinizad when the misadjust-
ment component resulting from small sainple
size "noise" equals twice that due to ‘poor process
tracking. The same result can be generalized
for any number:of adjustment coordinates.
When the nature of the nonstationariness is

®

. designed to realize a certain T,
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- is shown .in F'ig. 8.

known, it is possible (but not simple) to calculate
the optimum I' . I an adaptation process is to be
second partial
derivatives must be measured at the same time
as the first partial derivatives. The former
change quite slowly. It is feasible to maintain

T' quite close to any desired value by continually
upde.ting the adaptation loep gain, and this has
béen demonstrated ekper‘ixﬁentally. : '

An dlternative that would require much less
knowledge of the input process and no elaborate
calculation of the value of T" is to achieve self-
ohtimization of I'. This can be done by experi-
mentally varying T', much as the impulses in the
impulse response are varied, with the objective
of selecting the adaptation rate that optimizes
long-term performance. A block diagram. of
such a system, an adaptive predictor in this case,
The box W is the worker,
"The

duration of performance-averaging that takes

Bl is the boss, "and B2 is the boss's boss.

place at the level of B, (over many variations of
the nonstationary input process) is much longer

. term than at B 1 (over a fraction of a variation).

E. Conclusions

We have described and evaluated an adaptive
sampled-data system model that is quasistatically
linear and makes use of performance feedback
for self-optimization. The goal is the minimiza-
tion of a mean-square error.

There are two main reasons why this model
of adaptation is both important and interesting. -
First, it provides a solution to many practical
problems in the control systems and communi- ‘
cation theory areas; and second, it 'obe,ys' simple

"math’ematice.l laws and seems to have behavioral

characteristics in common with other kinds of
evolving systems. An example of the latter is the
living animal whose structure adapts to "optimize"
existence in its environment. Another example

is the policy of an industrial firm which, in order
to maximize profits, evolves with changes in
economic conditions, with techriological advaric‘es,
and with competition. Performance feedback is akin

to what evolutionists call "natural .‘s!elec’t:lon,"’10



except that in nature, structural perturbations
are random in frequency and amplitude.
Adaptation makes possible conirol and com-
munications systems that perform almost as well
with nonstationary inputs as fixed systems do with
stationary inputs. Adaptive systems can be de-
signed to control highly nonlinear processes by
adjusting to changes in their operating regions. A
new, unique area for the application of adaptive.

. systems is that of imitation of unknown complex dy-
namic systems by observation of their inputs and
outputs. ' )

The adaptive system in Fig. 9 is connected to
combine imitation and prediction. It can be shown
that €2 is a parabolic function of theh's, if the un-
known systemis linear, and that the model applies
exactly. Because of normal lagsin a dynamic proc-
ess, "early warning" information is presentinthe
input signal, and couldbeused in prediction if the
characteristics of the complex system were under-
stood. The adaptive system can imitate these
characteristics. This principle might be apphed to
weather prediction, for example. Assume that
early warning information for a one-day forecast
for a certain cityis contained in a multitude of
meteorologic. measurements taken within a 500~
mile radius. By observation of current and previ-
ous weather records, the predicting system could
"learn" to imitate (approximately) the weather dy-
namics and to use this in prédiction.

Closed-loop adaptation that makes use of ber—
formance feedback permits direct, automatic sys-
tem synthesis. It has the advantage of being usable
where no analytic synthesis procedure is known;

_ f‘Qr example, where error criteria other than
mean-square are used and where systems are
quasistatically nonlinear. In the event of a partial
system failure, an adaptation system thatcontin-
ually monitors perfoi'mance will optimize this
performance by adjusting the intact parts. System
reliability is thereby improved.
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. INITIAL
x, (n+1) z 0 xl(n’} GUESS
xp(n+1) oz xz(n) ,

UNIT DELAY

[59]

ki k2
ka1 ke2

DERIVATIVE
MEASUREMENT
NOISE

Fig. 4. Feedback model of two~dimensional surface
searching. 7 .

PREDICTOR

INPUT f(n)o

PREDICTION
n).

o €(n)

Fig. 5. An adjustable linear predictor.

CORRELATED ) . : : ,'I
INPUT o— w o PREDICTION

'PROCESS

Fig. 6. An elementary adaptive .prgdiétor.

PREDICTION
ERROR




hy
ITERATION €2
I 4.43
2 1.43
3 0.686
4 0.473
5 - 0.440
6 1 0.417
7 0.413
8 0.417
9 0.764
10 0.523
ho
€2, =0.410

Fig..7. Adaptation steps of a simulated predictor.

NONSTATIONARY )
INPUT PROCESS ° ] w .———*’PRED'CTION

Fig. 8. An adaptive predictor with two levels of

adaptation.
SYSTEM gsl'\“"fh';g‘ . SYSTEM
TPUT
INPUT SYSTEM i ov
. +
ADAPTATION € sz
PROGESS - | .
’ﬁ ‘ Reprinted from:
\ . 1959 IRE WESCON CONVENTION RECORD
: Part L -
hyshys hz\\.. . DELAY |
\ PREDICTION
OF SYSTEM
OUTPUT

Fig. 9. Adaptive imitation and prediction. -
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