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Noise Canceling and Channel Equalization

Bernard Widrow and Michael A. Lehr

Introduction
The fields of adaptive signal processing and adaptive neural

networks have been developing independently but have the

adaptive linear combiner (ALC) in common. With its inputs
connected to a tapped delay line, the ALC becomes a key com-
ponent of an adaptive filter. With its output connected to a
quantizer, the ALC becomes an adaptive threshold element or
adaptive neuron.

Adaptive filters have enjoyed great commercial success in
the signal processing field. All high-speed modems now use
adaptive equalization filters. Long-distance telephone and sat-
ellite communications links are being equipped with adaptive
echo cancelers to filter out echo, allowing simultaneous two-
way communications. Other applications include noise cancel-
ing and signal prediction.

Adaptive threshold elements, however, are the building
blocks of neural networks. Today neural nets are the focus of
widespread research interest. Although neural network systems
have not yet had the commercial impact of adaptive filtering,
they are already being used widely in industry, business, and
science to solve problems in control, pattern recognition, pre-
diction, and financial analysis.

The commonality of the ALC to adaptive signal processing
and adaptive neural networks suggests that the two fields have
much to share with each other. This article describes the man-
ner in which the ALC can be used in practical adaptive noise
canceling and channel equalization.

The Adaptive Linear Filter

The adaptive linear combiner is the basic building block for
most adaptive systems. Its output is a linear combination of its
inputs. At each sample time, this element receives an input
signal vector or input pattern vector X = [xo, X, X, ..., X,]',
and a desired response d, a special input used to effect learning.
The components of the input vector are weighted by a set of
coefficients, the weight vector W = [wy, wy, w,,..., w,]T. The
sum of the weighted inputs is then computed, producing a lin-
ear output, the inner product y = X™W. The output signal y is
compared with desired response d, and the difference is the
error signal, &. To optimize performance, the ALC’s weights
are generally adjusted to minimize the mean square of the error
signal. Of the many adaptive algorithms to adjust the weights
automatically, the most popular is the Widrow-Hoff LMS
(least mean square) algorithm devised in 1959 (Widrow and
Hoff, 1960). For the weight update occurring at sample time k,
this algorithm is given simply by

Wi = Wi+ 2peX,, 03]

where p is a small constant which determines stability and
learning speed. The LMS algorithm represents an efficient im-
plementation of the method of gradient descent on the mean-
square-error surface in weight space (Widrow and Stearns,
1985).

Digital signals used by adaptive filters generally originate
from sampling continuous input signals by analog-to-digital
conversion. Digital signals are often filtered by means of a
tapped delay line or transversal filter, as shown in Figure 1. The
sampled input signal is applied to a string of delay elements
(denoted by z '), each delaying the signal by one sampling
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Figure 1. Linear adaptive transversal filter.

period. An ALC is seen connected to the taps between the
delay elements. The filtered output is a linear combination
of the current and past input signal samples. By varying the
weights, the impulse response from input to output is directly
controllable. Since the frequency response is the Fourier trans-
form of the impulse response, controlling the impulse response
controls the frequency response. The weights are usually ad-
justed so that the output signal provides the best least-squares
match over time to the desired-response input signal.

The literature reports many other forms of adaptive filters
(Widrow and Stearns, 1985; Haykin, 1991). Some filters con-
tain a second tapped delay line which feeds the output of the
filter back to the input through a second set of weights. This
feedback results in a transfer function which contains both
poles and zeros. Because it uses no signal feedback, the filter of
Figure 1 realizes only zeros. Another variation is adaptive fil-

“ters based on ladderlike architectures called lattice structures

which achieve more rapid convergence under certain condi-
tions. The simplest, most robust, and most widely used filter,
however, is that of Figure 1, adapted by the LMS algorithm.

The adaptive filter of Figure 1 has an input signal and pro-
duces an output signal. The desired response is supplied during
training. A question naturally arises: If the desired response
were known and available, why would one need the adaptive
filter? Put another way, how would one obtain the desired re-
sponse in a practical application? There is no general answer
to these questions, but studying successful examples provides
some insight.

Noise Canceling

Separating a signal from additive noise is a common problem
in signal processing. Figure 24 shows a classical approach to
this problem using optimal Wiener or Kalman filtering. The
purpose of the optimal filter is to pass the signal s without
distortion while stopping the noise n,. In general, this cannot
be done perfectly. Even with the best filter, the signal is dis-
torted, and some noise goes through to the output.

Figure 2B shows another approach to the problem using
adaptive filtering. This approach is viable only when an addi-
tional “reference input” is available containing noise #;, which
is correlated with the original corrupting noise n,y. In Figure
2B, the adaptive filter receives the refererce noise, filters it, and
subtracts the result from the noisy “primary input,” s + ny.
For this adaptive filter, the noisy input s + n, acts as the de-
sired response. The “system output” acts as the error for the
adaptive filter. Adaptive noise canceling generally performs
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Figure 2. Separation of signal and noise. 4, Classical
approach. B, Adaptive noise-canceling approach. (a)

(b)

much better than the classical approach, since the noise is sub-
tracted out rather than filtered out.

One might think that some prior knowledge of the signal s or
of the noises n, and n; would be necessary before the filter
could adapt to produce the noise-canceling signal y. A simple
argument shows, however, that little or no prior knowledge of
s, ng, 0y, or their interrelationships is required.

Assume that s, ny, n;, and y are statistically stationary and
have zero means. Assume that s is uncorrelated with nyand n,,

-and suppose that n, is correlated with n,. The output is

e=s+ny;—y @
Squaring, one obtains
e =5+ (ng — y)* + 2s(ny — y) ©)]

Taking expectations of both sides of Equation 3, and real-
izing that s is uncorrelated with n, and with y, yields

E[e’] = E[s’] + E[(n — »)*1 + 2E[s(n, — y)]
= E[s’] + El(ny - »)*] @

Adapting the filter to minimize E[¢?] does not affect the sig-
nal power E[s?]. Accordingly, the minimum output power is

Enial?] = Els”] + Enal(t0 — )°] ®)

Figure 3. Canceling maternal heartbeat. in fetal electrocar-
diography. A, Cardiac electric field vectors of mother and
fetus. B, Placement of leads.
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When the filter is adjusted so that E[¢?] is minimized,
E[(n, — y)*] is therefore also minimized. The filter output y
is then a best least-squares estimate of the primary noise n,.
Moreover, when E[(n, — y)?] is minimized, E[(¢ — 5)?] is also
minimized, since, from Equation 2,

(e—9)=@—-y ©

Adjusting or adapting the filter to minimize the total output
power is tantamount to causing the output ¢ to be a best least-
squares estimate of the signal s for the given structure and
adjustability of the adaptive filter and for the given reference
input.

There are many practical applications for adaptive noise
canceling techniques. One involves canceling interference from
the mother’s heart when attempting to record clear fetal elec-
trocardiograms (ECG). Figure 3 shows the location of the fetal
and maternal hearts and the placement of the input leads. The
abdominal leads provide the primary input (containing fetal
ECG and interfering maternal ECG signals), and the chest
leads provide the reference input (containing pure interference,
the maternal ECG). Figure 4 shows the results. The maternal
ECG from the chest leads was adaptively filtered and sub-
tracted from the abdominal signal, leaving the fetal ECG.
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Figure 4. Result of fetal ECG experiment. 4, Reference input (chest
lead). B, Primary input (abdominal lead). C, Noise canceler output
—the fetal ECG signal with maternal interference removed.

Channel Equalization

Telephone channels, radio channels, and even fiber-optic chan-
nels can have nonflat frequency responses and nonlinear phase

responses in the signal passband. Sending digital data at high .

speed through these channels often results in a phenomenon
called “intersymbol interference,” caused by signal pulse
smearing in the dispersive medium. Equalization in data
modems combats this phenomenon by filtering incoming sig-
nals. A modem’s adaptive filter, by adapting itself to become a
channel inverse, can compensate for the irregularities in chan-
nel magnitude and phase response.

The adaptive equalizer in Figure 5 consists of a tapped delay
line with an adaptive linear combiner connected to the taps.
Deconvolved signal pulses appear at the weighted sum, which
is quantized to provide a binary output corresponding to the
original binary data transmitted through the channel. Any
least-squares algorithm can adapt the weights, but the tele-
communications industry uses the LMS algorithm almost
exclusively.

In operation, the weight at a central tap is generally fixed at
unit value. Initially, all other weights are set to zero so that the
equalizer has a flat frequency response and a linear phase re-
sponse. Without equalization, telephone channels can provide
quantized binary outputs that reproduce the transmitted data
stream with error rates of 107! or less. As such, the quantized
binary output can be used as the desired response to train the
neuron. It is a noisy desired response initially. Sporadic errors
cause adaptation in the wrong direction, but on average, adap-
tation proceeds correctly. As the neuron learns, noise in the
desired response diminishes. Once the adaptive equalizer con-
verges, the error rate typically is 107 or less. The method,
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Figure 5. Adaptive channel equalizer with decision-directed learning.

called “decision-directed” learning, was invented by Robert W.
Lucky of AT&T Bell Labs.

Using a modem with an adaptive equalizer enables transmit-
ting approximately four times as much data through the same
channel with the same reliability as without equalization.

Discussion

The simple concept of adapting the weights of a linear com-
biner to cause its output to approximate a desired response
is the basis for the field of adaptive signal processing. In a large
number of practical cases, it is possible to exploit this idea
to solve difficult signal-processing problems with surprising ac-
curacy, even when-the statistics of the involved signals are un-
known. Adaptive noise canceling and adaptive channel equal-
ization are two examples which indicate the power of this

‘approach. The burgeoning fields of neural networks, adaptive

inverse control, and active noise control provide an indication
of the generality and importance of methods based on this
approach. -
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