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- Adaptive Filters

e

Bernard Widrow

INTRODUCTION

The term “filter’’ is often applied to any device or system that

- processes incoming signals or other data in such a way as to elimi-

nate noise, or smooth the signals, or identify each signal as belonging to

a particular class, or predict the next input signal from moment to
moment. ’ )

This paper presents an approach to signal filtering using an adaptive
filter that is in some sense self-designing (really self-optimizing). The
adaptive filter described here bases its own ‘“design” (its internal
adjustment settings) upon esttmaied (measured) statistical character-
isties of in put and output signals. The statistics are not measured
explicitly and then used to design the filter; rather, the filter design is
accomplished in a single process by a recursive algorithm that auto-
matically updates the system adjustments with the arrival of each new
data sample.

Inevitable errors in the statistics estimates prevent the adaptive filter
from delivering optimal performance, but the loss in performance can
often be made quite small. This loss will be related to the averaging time
(which in turn is related to the speed of adaptation) and to the number
of internal adjustments.
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AN ADAPTIVE FILTER STRUCTURE

Many forms of adaptive filters have been described in the literature,
some of which have been shown to be optimal in certain applications.
The special form of filter to be treated here, if its adjustments were fixed,
would be a simple linear discrete feedback-free system. Although there
exist applications for which the use of this filter would be optimal, a
principal reason for considering such a filter is its relatives implicity. Its
form is basic and fundamental, and analysis of its behavior during adap-
tation gives insight to other more complicated adaptation processes.

The filter to be considered here consists of a tapped delay line, vari-
able weights (variable gains) whose input signals are the signals at the
delay-line taps, a summer to add the weighted signals, and machinery to

adjust the weights automatically. The impulse response of such a dis--

crete system is completely controlled by the weight settings. The adap-
tation process automatically seeks an optimal filter impulse response by
adjusting the weights. Figure 1 illustrates schematically the adaptive
filter used in this case for modeling an unknown dynamic system..

Two kinds of processes take place in the adaptive filter: training and
operating. The training (adaptation) process is concerned with adjusting
the weights. The operating process consists in forming output signals by
weighting the delay-line tap signals, using the weights resulting from the
training process. :

During the training process, an additional input signal, the “desired
response,” must be supplied to the adaptive filter along with the usual
input signals. This requirement may in some cases restrict the use of this
particular form of adaptive filter.

An example illustrating the use of the desired-response signal is that
shown in Fig. 1. Here a continuous input signal f(t) is applied to an un-
known system to be modeled. The discrete adaptive model is supplied
with an input signal f(7), derived from samples of f(t). The output-of the
unknown system ¢(t) is sampled, and these samples g(j) are compared
with the output y(j) of the adaptive-system model. This system can self-
adapt to minimize the mean-square error, where the error is defined as
the difference between the output of the adaptive model and the output
of the unknown system (the latter output being taken as the desired
response for the adaptive model).

It will be shown that if the input and output signals of the system
being modeled are statistically stationary, the error signal has a mean-
square value which is a quadratic function of the weight settings. Thus,

the mean-square-error function may be viewed as a “performance sur-

face”” for the adaptive process. Automatic minimization of mean-square
error can be accomplished by ‘hill-climbing”’ methods. For the adaptive
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filter shown in Fig. 1, the performance surface has a unique stationary
point (a minimum) which can be sought using gradient techniques.

THE PERFORMANCE SURFACE

The analysis of the adaptive filter can be developed by considering
the adaptive linear combinatorial system shown in Fig. 2. This combi-
natorial system is embedded in the adaptive filter of Fig. 1, and indeed
is its most significant part.?

In the system of Fig. 2, a set of stationary input signals is weighted
and summed to form an output signal. The input signals in the set are
assumed to occur simultaneously and discretely in time. The jth set of
input signals is designated by the vector X7(j) = [r1()), z=(5), - - -,
zi(7), - - -, «a())]. The set of weights is designated by the vector

1 This combinatorial system can also be connected to the elements of a phased array
antenna to make an adaptive antenna,l!l as will be shown subsequently; below; to a
quantizer to form an adaptive threshold element (‘‘Adaline’’[?1 or TLUI3l) for use in
adaptive logic and pattern-recognition systems; or it can be used as the adaptive por-
tion of certain learning control systems.[*}.[5]
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FIG. 1. Modeling an unknown system by a discrete adaptive filter.
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WT(5) = [wi(y), wa(4), - - -, zi(d), - - -, za(5)]. The jth output signal is

y() = ) wi(z()) ¢y

1

s

This ean be written in matrix form as
y(5) = WI(HXG) = XTGHHW () 2)

Denoting the desired response for the jth set of input signals as d(j), the
error at the jth time is

() = d(G) —y() = d@G) — WI(HXG) 3)
The square of this error is
e(j) = &) — 26(DX"GHW(G) + WIHXGHXT(GHW 4)
The mean-square error, the expected value of €(7), is
E[&(5)] = d*(j) — 2@(z, W () + WI(j)®@(z, 2)W()) (5)

where the vector of cross-correlations between the input signals and the
desired response is defined as

z2(7)d(7)

E[d()X()] = E ﬁ L ®(z, d) (6)

z.(7)d ()

Input Weights
signals W(j)
XD
xy (7))
Output
. signal
x2 () y(N=wT{) X3)
O O
X}(f) E
IToT
e(jy=d()-y(j)
x, (/)
Desired
response
a(j)

FIG. 2. Adaptive linear combinatorial system.
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and where the correlation matrix of the input signals is defined as

z1(Nr1(7)  21(f)z2(7)
z2(7)21(g)  z2(9)22(7)

EX(HNXT(G)] = E . I L ®(z, )

Tn(7)2a(7)
Q)

It may be observed from (5) that for stationary input signals, the
mean-square error is precisely a second-order function of the weights. The
mean-square-error performance function may be visualized as a bowl-
shaped surface, a parabolic function of the weight variables. The adaptive
process has the job of continually seeking the “bottom of the bowl.” A
means of accomplishing this by the well-known method of steepest de-
scent!®: ! jg discussed below. 5

In the nonstationary case, the bottom of the bowl may be moving,
while the orientation and curvature of the bowl may be changing. The
adaptive process has to track the bottom of the bowl when inputs are
nonstationary. Detailed analysis of the adaptive process when the input
statistics are time-variable is beyond the scope of this paper and is a sub-
ject of strong current research-interest.

It will be assumed that the input and desired-response signals are
stationary. This paper is concerned with transient phenomena that take
place when a system is adapting to an unknown stationary input process,
and in addition, it is concerned with steady-state behavior after adaptive
transients die out. ’

THE GRADIENT AND THE WIENER SOLUTION

The method of steepest descent uses gradients of the performance
surface in seeking its minimum. The gradient at any point on the per-
formance surface may be obtained by differentiating the mean-square-
error function of equation (5) with respect to the weight vector. The
gradient is

V(D] = —2@(z, d) + 2@(z, 1)W()) ’ (®)

To find the “optimal” weight vector Wrys that yields the least mean-
square error, set the gradient to zero. Accordingly,

®(z, d) = ®(z, ©)Wins )
WLMS == <I>‘1(x, II))(I)(:B, d) (10)

Equation (10) is the Wiener-Hopf equation in matrix form.
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An expression for the minimum mean-square error may be obtained
by substituting (10) into (5):

éminz = &2(j) - WLMSTq)(x; d) (11)

THE METHOD OF STEEPEST DESCENT

In seeking the minimum mean-square error by the method of steepest
descent, one begins with an initial guess as to where the minimum point
of the mean-square-error surface may be. This means that one begins
with a set of initial conditions for the weights. The gradient vector is
then measured, and the next guess is obtained from the present guess by
- making a change in the weight vector in the direction of the negative of
the gradient vector—that is, in the opposite direction of the gradient
vector. If the mean-square error is reduced with each change in the weight
vector, the process will converge on the stationary point (minimum)
regardless of the choice of initial weights.

A plan view of a- two-dimensional (two-weight) quadratic perfor-
mance surface is shown in Figs. 3A and B. The mean-square error is
assumed to be measured along a coordinate normal to the plane of the
paper. The computer-drawn ellipses represent contours of constant mean-
square error, spaced at equal increments. The gradient must be orthogonal
to these contours everywhere on the surface. A series of small steps under-
taken by the weight vector, starting with an initial guess, is illustrated in
Fig. 3A. These steps are so small that they appear to comprise a con-
tinuous chain. A series of larger steps is shown in Fig. 3B. Each step is
taken normal to the error contour from which it begins. It will be shown
that the weights undergo geometric (discrete exponential) transients in

Initial

FIG. 3. TIllustration of method of steepest descent. A—Overdamped. B—Under-
damped. : : :
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relaxing toward the surface minimum. “Overdamping’’ and ‘“underdamp-
ing”’ are illustrated in Figs. 3A and B, respectively. )

The method of steepest descent makes each change in the weight
vector proportional to the gradient vector; the method of steepest descent
can thus be described by the following relation:

WG+ 1) = W) + kV[E(Q)] (12)
An expression for V[e2(j)] can be obtained by using equation (8), so
WG+ 1) = W) + 2kW(j) @z, 2) — 2k2(z, d) (13)

The gradient vector V[e2(j)] is the gradient of the expected error-squared
funetion when the weight vector is W (7).

When, as in the present case, the performance function is quadratic,
the gradient is a linear function of the weights. The beauty of working
with the quadratic performance surface lies both in this linear relation
and in the freedom from relative minima that is a characteristic of such
a surface.

FEEDBACK MODEL OF STEEPEST DESCENT

The analysis of steepest-descent adaptation is facilitated by making
use of the familiar feedback flow graph,8.1 used in a multidimensional
sense, to express relations (12) and (13). A feedback model is highly
appropriate, since the gradient is like an ‘“‘error’” signal in an n-dimen-
sional servomechanism that controls the adjustments of the adaptive
filter. The bigger the gradient, the greater is the required weight—vector
correlation; when the gradient is zero, no correction is needed since the
“error” in the weight settings is zero. This form of feedback has been
called ““performance feedback” by the writer.[10.[11]

The flow graph incorporating relations (12) and (13) is shown in
Fig. 4. The ‘“‘signals” at the nodes are indicated by row vectors rather
than by column vectors. The transfer function of each branch is a matrix,
as indicated on the flow graph. The signal vector flowing out of each
branch is that flowing in multiplied by the matrix transfer function of the
branch. The matrix transfer funétion of two parallel branches of such a
graph is the sum of the matrix transfer functions of the branches. The
matrix transfer function of two branches in eascade is the product of the
‘matrix transfer functions arranged in the order of signal flow, since the
signal vectors are row vectors. The symbol Z—1is the “frequency domain’
or Z-transformt?—051 representation of a delay of one iteration cycle;
Z711 is the matrix transfer function of a unit delay branch, and so forth.
The graph represents a first-order multidimensional sampled-data system.
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Transient phenomena in W (j) will take place in the flow-graph model
exactly as they will in the actual hill-climbing process if the initial weight
vector W(0) in the flow graph is set to the initial guess. Transients in the
weight components ean be studied by examining the natural behavior
of the flow graph. The “output’ of the graph is the present weight vector
W (7). Assume, for the moment, that precise gradient measurements are
available during the hill-climbing process, so the source of additive gra-
dient measurement noise may be ignored. The reader can verify that
equilibrium conditions in the graph are

W(w) = @1(z, 2)0(, d) = Wixs (14)

Each branch transfer function in the flow graph of Fig. 4 is a diagonal
matrix except for the feedback branch labeled 2®(z, z). In general, this
branch matrix will have finite off-diagonal elements since the input
signals may be mutually correlated. As a result, transients will cross-
couple from one component of the weight vector to the next. This some-
what complicates the study of transient phenomena in the hill-climbing
proeess.

DIAGONALIZATION OF THE FEEDBACK MODEL:
THE NATURAL MODES

To facilitate the analysis of adaptive transients, the flow graph may
be diagonalized. Consider the expression for the mean-square error given

Gradient
7} measurement
noise Next Present
weight weight
(The gradient) vector vector

2 (x, d) +’ p)) —O W (j)

W@+ w()

JI 2¢(x,x) l[

FIG. 4. Feedback model of the method of steepest descent with quadratic performance
surface. :
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by (5). Combining this with (10) and (11), the mean-square error may be
expressed as

&) = &in® + [W() — Wins]"®(z, 2)[W() — Woms]  (15)

The ®(z, ) matrix is real, symmetrie, and positive definite. It may be
expanded in normal form:

®(z, 2) = QTAQ (16)

The diagonal matrix of eigenvalues is A, and the square matrix of eigen-
vectors is the modal matrix Q. Let the latter matrix be constructed or nor-
malized eigenvectors, thus making Q orthonormal; therefore Q—! = Q7.
The mean-square error may now be expressed as

&(J) = &’ + [W() — Wins]"Q"AQ[W()) — Wins] (17)
A new set of coordinates may be defined as follows:

W7(5)Q" & W'7(j)

. e 18
QW(j) = W'(j) (18)

Substituting these into (17) yields
&(7) = &mn? + [W'(J) — Wius'TTA[W' () — Wrns'] (19)

The transformation Q projects W(j) into W’(j7)—that is, projects W (5)
onto the primed coordinates. It can be observed from (19) that since A
is diagonal, the primed coordinates must comprise the principal axes of
the quadratic mean-square-error performance surface.

Refer once again to the feedback model of steepest descent, shown
in Fig. 4. By inserting the normal form (16) for the transfer function
®(z, ) and by some manipulation of the feedback model, the simpler but
completely equivalent feedback model of Fig. 5 results. All eross-couplings
within the feedback paths have now been eliminated. V

The natural modes of steepest descent are the natural modes of the
feedback portion of the model of Fig. 5. Since the transients are isolated
and each of the primed coordinates has its own natural mode, the natural
behavior of steepest descent can be completely explored by considering
the action within a single primed coordinate.

Consider, therefore, the isolated one-dimensional feedback model for
the pth normal coordinate, shown in Fig. 6. The transfer function of this
feedback system is :

—k,Z1
1 — (14 2kN)Z 72

(20)
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FIG. 5. Feedback model of steepest descent, using normal (primed) coordinates.

where A, is the pth eigenvalue of ®(z, z). The impulse response is geo-
metric, having the geometric ratio

rp = 1 4 2K\, (21)

An exponential envelope of time constant 7, can be fitted to the discrete
impulse response by considering the unit of time to be one iteration
(adaptation) cycle and by making the time constant such that

rp = €\ (22)

The pth time constant can be expressed in terms of the constant k, and
the eigenvalue )\, as -
—1

7 In (1 + 2k (23)

In most practical situations, k, is small, so r, << 1. Accordingly, for slow

adaptation
1

- 2(—1@)\,,

Tp

wo(j+1) -
z-1 WI,(I)

FIG. 6. One-dimensional feedback model (for the pth normal coordinate).
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The stability of the one-dimensional flow graph is assured when
the magnitude of the geometric ratio is less than one.

lrpl < 1 (24)
It may therefore be concluded that the multidimensional flow graph of

Tig. 5 1s stable iff
I"p‘max <1 (25)

The eigenvalues of [®(z, x)] are such that A, > 0 for all p. Therefore, the
only way that the stability condition (25) could be met is for

ks <O
and (26)
[ehmax| < 1

where Amax is the maximum eigenvalue of [®(z, x)]. It follows that a
necessary and sufficient condition for the stability of the steepest-descent
adaptation process in the absence of gradient measurement noise® is that

1

max

" Tt should be observed from (23) and (27) that the rate of adaptation
and stability can be controlled by setting k..

<k <0 ‘ 27

THE LMS ADAPTATION ALGORITHM

The purpose of the adaptation process is to find an exact or an
approximate solution to the Wiener—Hoff equation (10). One way of
finding the optimum weight vector is simply to solve (10). Although
this solution is generally straightforward, it could present serious com-
putational problems when the number of weights n is large and when
input data rates are high. In addition to the necessity of inverting an
n X n matrix, this method may require as many as [n(n + 1)]/2 auto-
correlation and cross-correlation measurements to be made to obtain the
elements of ®(z, ) and ®(z, d). Furthermore, this process needs to be
continually repeated in most practical situations where the input-signal
statistics may change slowly. No perfect solution of equation (10) is
possible in practice because of the fact that an infinite statistical sample
would be required to estimate perfectly the elements of the correlation
matrices.

2 This assumes that true values of the gradient are used each adaptation cycle. In
practice, measured rather than exact values are used. Nevertheless, the same stability
conditions apply, as will be discussed below.
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A method for finding approximate solutions to (10) will be presented
below.-The accuracy of this method is limited by statistical sample size,
since weight values are found that are based on finite-time measurements
of input-data signals. This method does not require explicit measure-
ments of correlation functions, nor does it require matrix inversion. It is
the “LMS” algorithm,’? based on the method of steepest descent. This
algorithm does not even require squaring, averaging, or differentiation in
order to make use of gradients of mean-square-error functions.

When using the LMS algorithm, changes in the weight vector are
made along the direction of the estimated gradient vector. Accordingly,

W@ +1) = W) + kV[2()] (28)
where
W(j) & weight vector before adaptation
W( + 1) & weight vector after adaptation
ks 2 scalar constant controlling rate of convergence and stability
(ks < 0)
VIe2(5)] & estimate of gradient of E[e?] = & with respect to W, with
W =W()
One method for obtaining the estimated gradient of the mean-
square-error function is to take the gradient of a single time sample of
the squared error; that is,

V[e()] = V[e(5)] = 2¢(5)VIe()] (29)
From equation (3),

Vle(N] = VId(G) — WI(DHX(G] = —X(@)

ViE()] = —2e()X(5) = —2[d() — WHXHDIXG) (30)

The gradient estimate of (30) is unbiased, as will be shown by the
following argument: For a given weight vector W(j), the expected value
of the gradient estimate is

EY[&(5)]

Thus,

It

—2E{X(j)ld(7) — X"(HW()I}
= —2[@(z, d) — ®(z, 2)W(5)] G2y

Comparing (8) and (31), we see that
E{VE(N1} = vie)]

and therefore for a given weight vector, the gradient estimate V[e2(5)] is
unbiased.

Using the gradient-estimation formula (30), the weight iteration rule,
equation (28), becomes

WG+ 1) = W0) — 2ke()HXG) (32)
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and the next weight vector is obtained by adding to the present weight
vector the input vector scaled by the value of the error. This is the
LMS algorithm.

This algorithm is directly usable as a weight-adaptation formula for
digital systems. Figure 7A is a block-diagram representation of this
equation in terms of one component w;(j) of the weight vector W (7).
An equivalent differential equation which can be used in analog imple-
mentation of continuous systems [see Fig. 7B] is given by

c—gW(t) = —2kse(t));(t)

This equation can also be written as

W) = —2k [ «(OX(®) dt = W(0)

Weight
Multiplier setting
Unit wi(7)
delay
Error
signal
A
Weight
setting

dw; (1)
fN | dr /N i)
xi(t) - X \f/

- Integrator
3}
e(t)
Error
signal
B

FIG.7. Block diagram representation of LMS algorithm. A—Digital realization.
B—Analog realization. :
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- Figure 8 shows how circuitry of the type indicated in Fig. 7A or
7B might be incorporated into the implementation of the basic adaptive
element of Fig. 2.

CONVERGENCE OF THE WEIGHT-VECTOR MEAN

For the purpose of the following discussion, assume that the time
between successive iterations of the LMS algorithm is sufficiently long
so that the sample input vectors X(j) and X(j + 1) are uncorrelated. This
assumption is common in the field of stochastic approximation.[18.017

Because the weight vector W(j) is a function only of the input vee-
tors X(j7 — 1), X(7 — 2), - - -, X(0) [see equation (32)] and because the
successive input vectors are uncorrelated, W(j) is independent of X(j).
For stationary input processes meeting this condition, the expected value
E[W(j)] of the weight vector after a large number of iterations can then
be shown to converge to the Wiener solution given by (10). Taking the

%
X1 O !
.
Weight
. - ad}. e
Circuit
¢ + Output
w; + signal
Xi O »{ > p——0 S
+
L]
Weight
) > adj.
Circuit
L]
w
X n O "
£
- € = error -
Welght signal H
> adj. P
Circuit \ t
d=d esired
response
signal

FIG. 8. ‘Analog/digital implementation of LMS weight-adjustment algorithm.
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expected value of both sides of (32), we obtain a difference equation in
the expected value of the weight vector:

EW(@j + 1)] = EIW())] — 2kE{X()dG) — X"(HW ()}
= [I + 2k, ®(z, 2)IEW ()] — 2k ®(z, d)  (33)

With an initial weight vector W(0),j -+ 1 iterations of equation (33) yield
EW(G + 1] = [I + 2k.@(z, )[7'W(0)
J
— ok, Z 14 2%k,®(z, )0, d) (34)
i=0 :

Equation (34) may be put in diagonal form by using the normal-form
expansion of the matrix ®(z, z); that is, :

®(z, 7) = QAQ - (16)

The eigenvalues are all positive, since ®(z, x) is positive definite. Equa-
tion (34) may now be expressed as

EW( + 1)] = [I + 2k.Q*AQJ*'W(0)

— 2k Y [I+ 2k.Q-'AQJi®(z, d)

i

= QI + 2k,AJ*+QW (0)
— 2%,Q 2 I + 2kE[Q®(z, d) (35)

Consider the diagonal matrix [I + 2k,A]. As long as its diagonal terms
are all of magnitude less than unity,

lim [I + 2kAJ*1— 0

jor
and the first term of (35) vanishes as the number of iterations increases.
The second term in (35) generally converges to a nonzero limit. The sum-

mation factor .

J
2 L+ 2k.A
i=0
becomes
. \ ) 1
lim I+ 2kAl? = — 3

e ks
i=

A—l
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where the formula for the sum of a geometric series has been used; that is,

©

1 -1

1+ 2k, = =
(4 + ») 1 — (14 2k, 2k,

i=0

Thus, in the limit, equation (35) becomes

lim BE[W(j + 1)] = QTAQ®(z, d) = ®7'(z, 2)®(z, d)

J

Comparison of this result with equation (10) shows that as the number of

- iterations increases without limit, the expected value of the weight vector

converges to the Wiener solution.

Convergence of the mean of the weight vector to the Wiener solution
is insured if and only if the proportionality constant k, is set within
certain bounds. Since the diagonal terms of [I + 2k,A] must all have
magnitude less than unity, and since all eigenvalues in A are positive,
the bounds on k, are given by

I]- + 2ks)\max' <1
or
—1

<k <0 (36)
where Amax is the maximum eigenvalue (27) of ®(z, x). Note that this
convergence condition on %, is identical to the stability condition (27)
of the noiseless steepest-descent feedback model. This convergence con-
dition can be related to the total input-signal pewer as follows:
Since

Max = trace [®(z, )] 37)
where

trace [®(z, z)] & E[X"()X(7)]

= z Elz;?*] A total input power
i=1

it follows that satisfactory convergence can be obtained with
—1

i E[z?]
i=1

In practice, when slow, precise adaptation is desired, ks is usually chosen
such that

<ks<0

> |kl

n

Y, Ela?]

i=1
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It is believed that the assumption of independent successive input
samples used in the above convergence proof is overly restrictive. That
is, convergence of the mean of the weight vector to the Wiener solution
can be achieved under conditions of highly correlated input samples.
Griffiths!'® has presented an experiment in which it is shown that adapta-
tion using highly correlated successive samples converges to the Wiener
solution, but leads to slightly higher steady-state mean-square error than
does adaptation using statistically independent successive samples.

TIME CONSTANTS AND LEARNING CURVE WITH LMS ADAPTATION

As shown above, the weights undergo transients during adaptation.
The transients consist of sums of exponentials with time constants given
by
B 1
T 2(—ko,

Tp p=12---,n (39)
where A, is the pth eigenvalue of the input-signal correlation matrix
®(x, ).
In the special case when all eigenvalues are equal, all time constants
are equal. Accordingly,
1

T = ——-——2(_]63))\ (40)

One very useful way to monitor the progress of an adaptive process
is to plot or display its ‘“learning curve.” When mean-square error is
the performance criterion being used, one can plot the expected mean-
square error at each stage of the learning process as a function of the
number of adaptation cycles. Since the underlying relaxation phenomenon
that takes place in the weight values is of exponential nature, and since
from equation (5) the mean-square error is a quadratic form in the weight
values, the transients in the mean-square-error function must also be
exponential in nature.

When all the time constants are equal, the mean-square-error learning
curve is a pure exponential with a time constant

T_ 1
2 4(—k)\

Tmse = (41)
The basic reason for this is that the square of an exponential function
is an exponential with half the time constant. Estimation of the rate of
adaptation is more complex when the eigenvalues are unequal.

When actual experimental learning curves-are plotted, they are gen-
erally of the form of noisy exponentials because of the inherent noise
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in the adaptation process. The slower the adaptation, the smaller will be
the amplitude of the noise apparent in the learning curve.

MISADJUSTMENT WITH LMS ADAPTATION

All adaptive or learning systems capable of adapting at real-time rates
experience losses in performance because their system adjustments are
based on statistical averages taken with limited sample sizes. The faster a
system adapts, in general, the poorer will be its expected performance.

When the -LMS algorithm is used with the basic adaptive element of
Fig. 2, the expected level of mean-square error will exceed that of the
Wiener optimum system whose weights are set in accordance with equa-
‘tion (10). The longer the time constants of adaptation, however, the
closer the expected performance comes to the Wiener optimum perfor-
mance. To get the Wiener performance—that is, to achieve the minimum
mean-square error—one would have to know the input statistics a priori,
or if (as is usual) these statistics are unknown, they would have to be
measured with an arbitrarily large statistical sample.

When the LMS adaptation algorithm is used, an excess mean-square
error therefore develops. A measure of the extent to which the adaptive
system is misadjusted as compared to the Wiener optimum system is
determined in'a performance sense by the ratio of the excess mean-square
error to the minimum mean-square error. This dimensionless measure
of the loss in performance is defined as the “misadjustment” M. For
LMS adaptation of the basic adaptive element, it is shown in Ref. [19]
that

n

1 1
Misadjustment M = — z - (42)

2 Tp

p=1
In deriving this formula, it is assumed that the Wiener input signal
vectors are uncorrelated and that the adapting weight vector W(7) is
close to the Wiener optimal Wrys.

The value of the misadjustment depends on the time constants
(settling times) of the filter adjustment weights. In the special case when

all the time constants are equal, M is proportional to the number of weights

and inversely proportional to the time constant; that is,

n n
21 ATmse

(43)

Although the foregoing results specifically apply to statistically sta-
tionary processes, the LMS algorithm can also be used with time-vari-
able input processes. It is shown in Ref. [11] that under certain assumed




'L

Applications of Adaptive Filters / 581

conditions, the rate of adaptation is optimized when the excess mean-
square error resulting from adapting too rapidly equals twice the excess
mean-square error resulting from adapting too slowly.

APPLICATIONS OF ADAPTIVE FILTERS

In order to demonstrate how adaptive filters of the type described
above can be used in practice, an application example will be presented.
It is concerned with signal filtering and prediction. The behavior of
adaptive filters in this application will be illustrated both qualitatively
and quantitatively by the results of computer simulations.

In applying adaptive techniques to a practical systems problem,
the key step lies in providing an appropriate desired-response signal for
the adaptation process. In adaptive modeling applications, the desired
response is generally available as the output of the unknown system to
be modeled. This idea is illustrated in Fig. 1. The modeling situation is
a simple one, but what can be done to provide the desired response for
a real-time adaptive predictor? If the future were known, the predictor
would not be needed. One way of coping with this situation is described
below. .

Let x(j) be the discrete input signal applied to an adaptive tapped-
delay-line predictor. Let the desired response be d(j) = z(j + 8). The
objective is to predict the input signal 6 time units into the future.
The desired response signal is needed to get the error signal, which is
required by the LMS algorithm of (32). An error signal can be obtained
by delaying the predictor output y(j) by & time units, and subtracting
y(j — 8) from the input x(j). This would yield e(j — §), but e(j — 9)
could be just as useful as e(j) for the purposes of adaptation. To see
this, examine the LMS-algorithm equation,

WG+ 1) = W) — 2ke()X()) (32)

If e(y — &) is available, the LMS algorithm can be utilized in the following
form to realize the same ultimate weight-vector solution.

WG+ 1—08) = WG —08) — 2ke(j — 85X — 3)
=W =8 — 2k[d(j — &) — WT(j — 8)IX(j — &) (44)

In this form, the delayed desired response can be obtained, since
d(7 — 8) = z(7). An adaptive system based on (44) is shown in Fig. 9.

The output of the adaptive system in Fig. 9 is y(; — 6), an estimate
of the present input z(j). The predictive output y(j), an estimate of
z(j + 8), is developed by a nonadaptive filter, identical in form to the
adaptive filter, whose weights are copied from those of the adaptive
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filter. In the steady state, after adaptive transients die out, the output
y(7) will be close to a best least-squares estimate of z(j + 6).

Suppose now that the input signal is z(j) = s(7) + n(7), where s(7)
is “signal” and n(j) is “noise.” Let the ‘“‘noise” be uncorrelated with the
“signal.” Let E[n(j)] = 0. Assume that E[n(j)n(j + «)] = 0 for all values
of a in the range 8 < a < o, and for any other values of a. The system
of Fig. 9 will produce a weight vector whose mean converges to

Wins = ®7'(z, 2) ®(z, d)

@ \(z, 2)E[X(7)d(5)]

@ (z, )E{[S() + NDIs(G + 8 + n(7 + DI}
@z, 2)E[S(5)s(7 + 9)]

I

Thus, the adaptive process illustrated in Fig. 9 is suitable for prediction
and for elimination of noise having the properties assumed above. In
this case, adapting with the readily available desired response d(j — 8) =
z(j) produces the same mean filter weight vector as would have been
obtained if it were possible for the desired response to be d(j —8) =
s(7)-

This technique could be used quite effectively for noise elimination
alone. Suppose that the noise is ‘“white” (uncorrelated). The system of
Fig. 9 could be used to predict with 3 = 1, then the output signal could
be delayed by one time unit to produce a good estimate of the current
signal s(7). ‘

In a computer simulation of a 5-weight tapped-delay-line adaptive
filter, a bandpass signal s(j) and a white noise n(j) were summed to form
an input z(7). The signal power was 1, and the noise power was 4. The
signal bandwidth was equal to its center frequency. Figure 10 shows
the signal s(j) and the filter input z(j) = s(7) + n(). Figure 11 shows

Adaptive
) filter
i j-8 .
Input 05805 . x G-9) w(j-8) |——0 (-8
Time /
/
R delay / ) .
// d (j-8) = x ()
/
/
ya . AL
y () =X (j+8)

¥
w (i'- 8) p—————00O0utput

Nonadaptive :
filter

FIG. 9. An adaptive predictor.
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the filter output y(j) plotted on the same scale as the underlying signal
s(j). The objective was to predict one sample time into the future, and
to eliminate noise. Thus, after adapting transients died out, y(j) =
G+ ).

The initial transient phenomena can be observed in Fig. 10, as well
as in Fig. 12, which shows learning curves for this simulation. Each point
on the individual learning curve is a computed value of mean-square
error, obtained by using equation (5), corresponding to the current
weight vector that resulted from adaptation. The input statistics were
known precisely, having been generated by the computer. The smooth
learning curve is an average over an ensemble of 150 simulations, each
starting with the same initial weight vector [W(0) = 0] and each having
a different input signal derived from the same stochastic process.

1.50
1.25
an individual learning curve
., 100 Ensemble average of 150 learning curves
E
o
g
8 0715fp-—————-x-"-~"——-- ==&
7 N
g .2 = 0.74396 (Wiener solution)
O
= 050 |
0.25
1 1 1 1 1 1 1 1 1 i
.0 20 40 60 80 100 120 140 160 180 200

Number of iterations j
X =200 Y = 1.50

FIG. 12. Individual and ensemble learning curves.

Adaptive Predictor Input Statistics
Five weights Signal {center freq. = 0.03 X sampling freq.
Initial weight values all zero . bandwidth = 0.03 X sampling freq.
Constant k, = —0.0065 sG) variance = 1
Misadjustment {theoretical: 4879%  Noise

‘. el 1 —_—
measured: 5.40% nG) { white’’; variance = 0.5

Input variance = 1.5
x(p ) eigenvalues of ®(z, z) = 5.14,
J 0.853, 0.502, 0.500, 0.500
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The eigenvalues of ®(z, x) were known to be 5.14, 0.853, 0.502,
0.500, and 0.500. The time constants of the natural modes in the weight-
adjustment system are obtained from equation (39). The constant k. was
set equal to —0.0065. The time constants are 15.0, 90.0, 152, 154, and
154 adaptations. Exponential relaxation in the weights causes exponen-
tial relaxation in the learning curve. The time constants in the learning
curve are half those in the weights. The learning-curve time constants
are therefore 7.5, 45, 76, 77, and 77 adaptations. Although the learning
curve consists of a linear combination of exponential transients and is not
a single exponential, an “eyeball’” measurement of time constant of the
ensemble-average learning curve shows this to be about 30 adaptations.

Using the set of known eigenvalues of ®(x, z), the misadjustment is
calculated using (42). This gives a value M = 4.87 percent. The mis-
adjustment was found to be 5.40 percent by direct measurement.

Although the time constants are not all equal, it is interesting to
use formula (43), which relates the misadjustment M to the number of
weights n, and to the time constant rme of the learning curve.

=" (43)

4:"'mse

" If 7mse 18 taken at the “eyeball” value of 30 adaptations,

5
M = m—) = 4.15 percent

This is a less accurate formula for general use, but it is a lot simpler and
does not require detailed knowledge of the eigenvalues of ®(z, x).

The adaptive filter produced about 5 percent more mean-square error
than the Wiener filter, but the Wiener filter could have been designed
only with complete knowledge of the second-order statistics of the signal
and the noise.

In general, formula (43) gives an approximate ‘‘rule of thumb’ re-
lating speed of adaptation to the number of weights. If a misadjustment
of 5 percent is acceptable, then

Tmse = ON
if a misadjustment of 10 percent is acceptable, then

Tmse = 2.1
and so on.
The adaptive filtering techniques described here have also been ap-
plied to the problem of processing the outputs of the elements of an
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antenna array so as to provide a main directive lobe in a specified ‘“look”’
direction while simultaneously rejecting unknown noises that are received
by the array. Tapped delay lines, similar to that shown in Fig. 1, are
used to filter the output of each element in the array. An array output
is formed by summing the outputs of all weighted signals. The weights
are adapted using the LMS algorithm presented above. The processor
adaptively rejects incident noises whose directions are different from the
desired look direction by forming "appropriate nulls in the antenna
directivity pattern. The results of this application of adaptive-filtering
techniques are described in detail in Ref. [1]..

Some of the best applications of adaptive filters will doubtless be
made to the filtering of nonstationary inputs. Means of describing the
behavior of adaptive systems with nonstationary inputs is for the most
part an uncharted area and is currently a subject of intensive research.
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