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Abstract—An adaptive noise canceller was used to reduce the
effect of floor vibrations on ballistocardiogram (BCG) measure-
ments from a modified electronic bathroom scale. A seismic
sensor was placed next to the scale on the floor and used as the
noise reference input to the noise canceller. BCG recordings were
acquired from a healthy subject while another person stomped
around the scale, causing increased floor vibrations. The noise
canceller substantially eliminated the artifacts in the BCG signal
due to these vibrations without distorting the morphology of
the measured BCG. Additionally, recordings were obtained from
another subject standing inside of a parked bus while the engine
was running. The artifacts due to the vibrations of the engine,
and the other vehicles driving by the bus on the road, were also
effectively eliminated by the noise canceller. The system with
automatic floor vibration cancellation could be used to increase
BCG measurement robustness in home monitoring applications.
Additionally, the noise cancellation approach may enable BCG
recording in ambulances—or other transport vehicles—where
non-invasive hemodynamic monitoring may otherwise not be
feasible.

Index Terms—Physiological monitoring, cardiovascular dis-
ease, ballistocardiogram, adaptive noise cancellation.

I. INTRODUCTION

ALLISTOCARDIOGRAPHY is a non-invasive technique

for assessing myocardial strength and vascular health
[1], [2]. The ballistocardiogram (BCG) signal results from
the reaction forces on the body caused by cardiac ejection
of blood through the vasculature. Many systems have been
described in the literature for BCG measurement, including
those using tables [2], [3], beds [4], electromagnets [5], chairs
[6], and weighing scales [7]-[9]. The systems using weighing
scales have several practical advantages over the alternatives,
in terms of compactness, ease of use, and long-term reliability.
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Fig. 1. Adaptive noise cancellation concept, adapted from [10].

As a result, these systems are well suited for home monitoring
applications.

However, one disadvantage of using a weighing scale for
BCG measurement is the increased susceptibility to motion
artifacts and floor vibrations. Motion artifacts are pronounced
in these measurements since the user stands on the device
rather than sitting or lying prone. Floor vibrations affect the
signal since the measurement axis is parallel to the primary di-
rection of the vibrations. To increase measurement robustness,
a second sensor, indicative of the motion or floor vibration,
can be used as a noise reference for artifact detection and
cancellation.

For motion artifact detection, a recent study proposed the
electromyogram (EMG) signal taken from the feet of the
subject as the noise reference [7]. For floor vibration detection,
this paper proposes a seismic sensor, placed in close proximity
to the scale, as the noise reference. An adaptive algorithm is
then used to filter the output of this sensor and cancel the
vibrations from the measured BCG.

II. THEORY AND SYSTEM DESIGN
A. Theory of adaptive noise cancellation

The basic adaptive noise cancellation architecture is shown
in Fig. 1, after Widrow, et al. [10]. The noise canceller has two
inputs, the primary and the reference inputs, and one output,
the system output. One sensor at the primary input receives
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Measurement setup: The subject stands on the scale while the force of cardiac ejection, Fj, and floor vibrations, F,, are sensed by the scale.

Simultaneously, the floor vibrations are sensed by the geophone. The scale and geophone signals are inputted to an adaptive noise canceller, and the system

output is the best least-squares estimate of the cardiac signal.

some signal of interest, s, combined with an uncorrelated
noise, ny. A second sensor at the reference input receives a
noise, n1, which is correlated to ng by some unknown transfer
function. The noise at the reference input is then filtered
adaptively to match the noise component of the primary input,
as shown below. For a more detailed treatment of the theory
of adaptive noise cancellation, the reader is referred to the
literature [10], [11].

Assume that s, ng, ny, and y are statistically stationary and
have zero means; s is uncorrelated with ng and n;; and ng is
correlated with n;. Using an adaptive algorithm, as discussed
below, the filter will adjust its weights, at each iteration, to
minimize the mean-square error. The error signal, €, is also
the system output, and can be written as:

eE=s+nyp—y 1)
The square of the error is then:
e2 =5+ (no —y)* +2s(no —y) @

The expected value of both sides of this equation can then be
computed to find the mean-square error:

E[e?] = E[]+E |(n—y)| +2Els(no—)

E [sz] +E [(no —y)z}

3)

The E [s (no — y)] term goes to zero since s is uncorrelated with
no and ny, and y is a filtered version of n;. Since the filter
cannot affect the signal power, E [s?], the minimum mean-
square error will be achieved when E [(no — y)z} is minimized.
The filter output, y, is thus the best least-squares estimate of the
primary noise, ng. Finally, when E [(no—y)2 is minimized,
E [(6 —s)ﬂ is also minimized, since

(e—s5)=(n0—y) (4)
As a result, the system output, €, is the best least-squares
estimate of the primary signal.
In this paper, the LMS algorithm [11] was used to update
the weights of the adaptive filter:

Wit = Wi+ 2ug Xy @)

where Wy is a 1xL vector of weights at a given iteration,
k; u is the learning rate of the filter that controls speed and
stability of the adaptation; € is the error signal fed back to the
filter; X is the vector of input samples to the filter; and Wy,
is the vector of weights to be used in the next iteration. With
this algorithm, the misadjustment—or the normalized excess
mean-square error—will be given by:

M = utr[R] (6)
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Fig. 3. (a) Primary input (weighing scale output) and filtered output using
the optimum parameters for the adaptive filter (L = 250 taps, M = 1%, A =
62 samples). The noise reduction was 12dB. (b) Frequency response of the
adaptive filter after convergence. The response dips at the geophone resonance
(10Hz) and peaks at scale resonance (27Hz with m = 40 kg).

where M is the misadjustment, and tr[R] is the trace of the
autocorrelation matrix, R, for the input vector, X. The general
expression for the time constant of the learning curve, Tysg,
assuming equal eigenvalues of the R matrix, is given by:

In many cases, this is also a good approximation when the
eigenvalues of R are unequal [11]. The process used for
selecting the optimum parameters for the filter is described
below, in Section II-C.

TMSE =

B. Measurement setup and electronics

Fig. 2 shows the measurement setup. During the BCG mea-
surement, the subject stands on a commercial bathroom scale
with modified electronics. With each heartbeat, a contractile
force, F;, is exerted by the heart on the blood and an equal but
opposite force is experienced by the body. This causes vertical
body motion synchronized with the beating heart.

The BCG signal is sensed by the strain gauges in the scale
through some transfer function, kg, and amplified using an
analog circuit with a gain of 11,000 and a bandwidth from
0.1-24Hz. The scale has four strain gauges that are connected
in a Wheatstone bridge, excited by a £9V DC voltage. A
commercial instrumentation amplifier (LT1167, Linear Tech-
nology, Milpitas, CA) boosts the differential voltage across
the bridge by a factor of 100 and converts it to a single-ended
signal. An integrator in the feedback loop of the LT1167 output
stage is used to servo the low frequency components of the
signal to zero—this has an overall high-pass filtering effect
with a 3dB cutoff frequency of 0.1Hz. This stage is then AC-
coupled to a Sallen-and-Key low-pass filter with a 3dB cutoff
frequency of 24Hz. The final stage is a non-inverting amplifier
with a gain of 111.

In addition to the forces due to cardiac ejection, forces
due to floor vibrations, F,, are also coupled to the scale
through this same transfer function, hg.. These vibrations can
corrupt the signal quality of the BCG, reducing the robustness
of the recording. To attenuate the artifacts caused by these
vibrations in the BCG signal, an adaptive noise canceller
was implemented with a seismic sensor (MD-81 Geophone,
Geosource Inc., Houston, TX) placed on the floor next to the
scale as the noise reference. This geophone sensed the same
floor vibrations, F,, through a different transfer function, hge,.

The circuit used for amplifying and filtering the geophone
signal was a simple non-inverting amplifier stage AC-coupled
to a Sallen-and-Key low-pass filter—the overall gain was 101
and the bandwidth was 0.1-24Hz. Both the BCG and geo-
phone signals were sampled at 1kHz using a data acquisition
card (6024E, National Instruments, Austin, TX) and stored on
a laptop computer using software (Matlab, Version 2007b, The
Mathworks, Natick, MA). The signals were downsampled to
200Hz prior to the filtering operations.

If the transfer function of the scale, k., and of the geophone,
hgeo, Were time invariant, and could be measured prior to
the BCG recording, the noise could be cancelled using a
straightforward approach: the geophone signal could be passed
through an optimum filter composed of the inverse of the
geophone transfer function cascaded with the transfer func-
tion of the scale. The resulting output would, in theory, be
exactly equal to Ay x F,,, where x is the convolution operator.
Unfortunately, the transfer function of the scale, Ay, can vary
significantly based on the properties of the scale and the mass
and other physical characteristics of the subject, and can be
quite different from person to person. As a result, an adaptive
noise cancelling architecture was implemented, with the raw
BCG signal as the primary input and the geophone signal
as the reference input. With this approach, the adaptive filter
automatically, and continually, adjusted its impulse response
to best map the geophone signal to the floor vibrations
component of the measured BCG to achieve cancellation of
these vibrations.

C. System performance: Loading the scale with iron weights

The setup shown in Fig. 2, where the person on the scale
was replaced by iron weights, was used to tune the parameters
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Fig. 4. Top trace: geophone signal output of amplifier. Middle trace: measured BCG signal with vibration-induced artifacts highlighted by black arrows.
Bottom trace: filtered BCG output of noise canceller. The vibration artifacts are substantially eliminated in the filtered signal, without distorting the morphology
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Fig. 5. BCG recordings taken from a subject standing in a parked bus. Top trace: geophone output of the amplifier. Middle trace: raw BCG signal output
of amplifier with significant vibration-induced artifacts. These artifacts were caused by the engine of the bus as well as other vehicles driving on the road.
Bottom trace: filtered BCG output of the noise canceller. The artifacts due to vibrations have been significantly eliminated from the recording.

of the adaptive filter: length (L), misadjustment (M), and delay
(A) in the desired response path. The delay in the desired
response is necessary in practice to allow the adaptive filter
response to approximate a two-sided impulse response [11].
The iron weights on the scale were of mass, m = 40kg, and
the scale output and geophone output were recorded while

a person stomped around the scale to create significant floor
vibrations. With this setup, the BCG signal source was set to
zero since no subject was standing on the scale. The adaptive
filter weights were initialized at zero and the parameters were
varied to maximize the noise reduction, AN, defined as the
ratio of the variances of the scale output and the system output,
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Fig. 6. (a) Residual computed from the raw and filtered BCG signals
shown in Fig. 5. (b) Power spectral density estimate of this residual computed
using the fast Fourier transform (FFT) of the autocorrelation sequence. The
frequency content of the noise has higher frequency peaks which could be
reduced by linear filtering, but also contains significant low frequency content
that overlaps with the bandwidth of the BCG (1-10Hz). The adaptive noise
canceller effectively eliminates these artifacts from the signal.

expressed in dB:

@)

hge * By
AN = 10log;, <M)

var (&)

A maximum noise reduction of 12dB was achieved with a
filter length, L, of 250 taps, a misadjustment, M, of 1%, and a
desired response delay, A, of 62 samples (L/4). Using equation
7, these parameters correspond to a convergence time constant,
TMSE, Of 6,275 samples, or approximately 31 seconds. For real-
time implementations, this convergence time constant could be
reduced by increasing the misadjustment with a slight decrease
in noise reduction. The recorded signal and the system output
of the canceller using these parameters are shown in Fig.
3(a). Fig. 3(b) shows the frequency response of the adaptive
filter after convergence. Interestingly, the response of this filter
has a dip at the resonant frequency of the geophone (10Hz)
and a peak at the resonant frequency of the scale (27Hz),
calculated based on the spring constant of the scale measured
in a previous study (1.16N/um) [12]. This frequency response

is consistent with the expected response of the optimum filter
discussed above: the adaptive filter response is the inverse
transfer function of the geophone cascaded with the transfer
function of the scale. With loads on the scale other than 40kg,
the same results are obtained by the noise canceller, as soon
as the adaptive filter converges. With a filter length of 250 taps
and a delay of 62 samples, a 1% misadjustment was achieved
with a 31 second convergence time constant.

III. RESULTS AND DISCUSSION

The BCG and geophone signals were recorded from a
healthy subject standing on the scale while another person
stomped around the scale to cause significant floor vibrations.
The subject on the scale was 1.65m in height, 54kg in
weight, and 22 years of age. The adaptive filter parameters
determined in Section II-C were used, and a filtered BCG
signal was obtained by using the noise canceller. The results
are shown in Fig. 4. The top trace is the geophone signal
from the amplifier. The middle trace is the measured BCG
waveform, with vibration artifacts highlighted by black arrows.
The bottom trace is the filtered BCG output of the adaptive
noise canceller, where these artifacts have been removed by
the adaptive filter.

In some instances, the artifacts appear as distortions in the
morphology of the signal, such as the first artifact at the time
t = 0.5s into the recording. These types of artifacts could lead
to a misinterpretation of the signal, resulting in a misdiagnosis
of the cardiovascular health of the subject. In other instances,
the artifacts appear as extra peaks in the signal, such as the
artifact at the time ¢ = 2.6s into the recording. These types
of artifacts could lead to errors in heart beat and arrhythmia
detection.

To ensure that the output of the noise canceller did not
distort the average signal morphology of the BCG, the en-
semble average of both the raw signal and the filtered signal
were computed and compared. A residual was computed by
subtracting the average filtered signal from the average raw
signal. The variance of this residual was 0.09% of the variance
of the original signal average, demonstrating that the signal
morphology was adequately preserved in the filtering.

The signals were acquired from another healthy subject
while standing inside of a bus. The subject was 1.75m in
height, 63.6kg in weight, and 25 years of age. When the bus
was in motion, the BCG and geophone amplifier outputs railed,
preventing the use of adaptive noise cancelling for removing
the vibrations. However, when the bus was parked, the signals
were acquired successfully without railing the amplifier. In
these recordings, the vibrations due to the engine and the other
vehicles driving on the road corrupted the signal quality of
the BCG significantly. The noise cancellation algorithm was
used to eliminate the vibrations from the measured BCG. The
results are shown in Fig. 5.

The top trace shows the geophone amplifier output. The
middle trace shows the measured BCG waveform. Many of
the BCG beats are completely obscured by the vibration
noise from the bus. The bottom trace shows the filtered BCG
waveform, where the vibration artifacts have been significantly
eliminated.
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The residual of the raw and filtered BCG signals of Fig.
5 was computed to analyze the nature of the vibration noise,
and is shown in Fig. 6(a). Fig. 6(b) shows the power spec-
tral density (PSD) estimate for this residual. The PSD was
estimated by taking the fast Fourier transform (FFT) of the
autocorrelation sequence of the residual. While some of the
noise power appears to be outside of the useful bandwidth
of the BCG (1-10Hz), a majority of the power overlaps in
frequency with the BCG and, thus, could not be removed
by simple linear filtering operations; all components were,
however, removed quite effectively by the adaptive noise
cancellation algorithm. Nevertheless, future work should focus
on developing other algorithms for cancelling these vibration
artifacts from the BCG as well, including possibly using
parametric spectral estimation techniques for determining the
optimum filter described in Section II-B.

IV. CONCLUSIONS

The use of a seismic sensor as a noise reference to elimi-
nate floor vibrations from standing BCG measurements was
demonstrated. As a result, high fidelity BCG recording is
possible in nearly all settings, including ambulances and other
transport vehicles, provided that the vibrations are not so
significant as to rail the electronics or cause a distorted version
of the BCG forces to be coupled to the scale.

While in this paper a geophone was used as the seismic
sensor, other sensors such as accelerometers could also be
used with the same approach. Additionally, similar methods
could be applied to other BCG measurement modalities such
as chair- or bed-based systems, where the seismic sensor could
be implanted into the structure of the measurement system
itself. These approaches would increase the robustness of
BCG measurements, allowing the BCG to be a useful tool
for cardiovascular monitoring at home.
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