
Neural Networks 37 (2013) 182–188
Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

The No-Prop algorithm: A new learning algorithm for multilayer neural networks
Bernard Widrow ∗, Aaron Greenblatt, Youngsik Kim, Dookun Park
ISL, Department of Electrical Engineering, Stanford University, CA, United States

a r t i c l e i n f o

Keywords:
Neural networks
Training algorithm
Backpropagation

a b s t r a c t

A new learning algorithm for multilayer neural networks that we have named No-Propagation (No-Prop)
is hereby introduced. With this algorithm, the weights of the hidden-layer neurons are set and fixed
with random values. Only the weights of the output-layer neurons are trained, using steepest descent to
minimize mean square error, with the LMS algorithm of Widrow and Hoff. The purpose of introducing
nonlinearity with the hidden layers is examined from the point of view of Least Mean Square Error
Capacity (LMS Capacity), which is defined as themaximumnumber of distinct patterns that can be trained
into the network with zero error. This is shown to be equal to the number of weights of each of the
output-layer neurons. The No-Prop algorithm and the Back-Prop algorithm are compared. Our experience
with No-Prop is limited, but from the several examples presented here, it seems that the performance
regarding training and generalization of both algorithms is essentially the same when the number of
training patterns is less than or equal to LMS Capacity. When the number of training patterns exceeds
Capacity, Back-Prop is generally the better performer. But equivalent performance can be obtained with
No-Prop by increasing the network Capacity by increasing the number of neurons in the hidden layer that
drives the output layer. The No-Prop algorithm is much simpler and easier to implement than Back-Prop.
Also, it converges much faster. It is too early to definitively say where to use one or the other of these
algorithms. This is still a work in progress.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The most widely used method for training multi-layer percep-
tron networks is the Back-Propagation algorithm (Back-Prop), in-
vented by Werbos (1974). This has proven to be a very robust and
solidly working algorithmwhich has led to many successful appli-
cations for neural networks. This algorithm is based on themethod
of steepest descent, adjusting the weights of the network to min-
imize mean square error. When presented with an input pattern,
the difference between the output response of the network and the
desired response (which is presented during training) is the error
which is to be minimized.

The mean square error is a function of the weight settings.
With the presentation of each input vector during training, an
instantaneous gradient is obtained of the mean square error with
respect to each of the weights (the synaptic weights). Iteratively
changing the weights in the direction of the negative gradient
leads to an approximate minimum mean square error solution.
The training patterns are presented repeatedly to bring the mean
square error, averaged over the set of training patterns, down
to minimum. The Back-Propagation algorithm is known to find

∗ Corresponding author.
E-mail addresses: widrow@stanford.edu (B. Widrow), aarong@stanford.edu

(A. Greenblatt), youngsik@stanford.edu (Y. Kim), dkpark@stanford.edu (D. Park).

0893-6080/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2012.09.020
optimal solutions to the weight settings that are in fact local
optima.

A new algorithm is presented that seems to perform in many
cases equivalently to Back-Prop but is much simpler and converges
much faster. We call this algorithm No-Propagation, or No-Prop.
Furthermore, we can now define a Least Mean Square Error
Capacity (LMS Capacity) of a multi-layered neural network. The
LMS Capacity is defined as the number of patterns that can be trained
into a neural network with zero mean square error.

2. The Back-Propagation algorithm

The Back-Propagation algorithmas applied tomulti-layer neural
networks back propagates the errors of the output layer through-
out the network to derive errors for all of the neurons in the hidden
layers. During training, instantaneous gradients are obtained with
these errors. The Back-Prop training algorithm is very well known,
so it will not be described or derived here. For those who would
like more details, please refer to Werbos’s work (Werbos, 1974),
Rumelhart and McClellan’s books (Rumelhart & McClellan, 1986),
and Simon Haykin’s book (Haykin, 1999). A very simple derivation
is given in the paper by Widrow and Lehr (1992).

Fig. 1 shows a fully-connected three layer feed-forward neural
network. The network inputs are pattern vectors. If the inputswere
derived from a black and white visual image, each individual input
would have a value equal to the gray-scale contents of each pixel.

http://dx.doi.org/10.1016/j.neunet.2012.09.020
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:widrow@stanford.edu
mailto:aarong@stanford.edu
mailto:youngsik@stanford.edu
mailto:dkpark@stanford.edu
http://dx.doi.org/10.1016/j.neunet.2012.09.020


B. Widrow et al. / Neural Networks 37 (2013) 182–188 183
Fig. 1. A three-layer neural network.
Each individual input is a component of the input vector. The input
vector is applied to the first layer neurons. The sigmoidal outputs
of the first layer comprise an input vector for the second layer, and
so forth.

To train the network of Fig. 1, it is common to establish ran-
dom initial values for all the weights. Let the network be trained
by Back-Prop with a given set of training patterns. For each in-
put training pattern, there is a given desired response pattern. The
desired response pattern is comparedwith the actual response pat-
tern for the given input pattern, and the difference, the error pat-
tern or error vector, is back-propagated throughout to compute the
instantaneous gradient of themagnitude square of the error vector
with respect to the weights. The weights of the network are then
changed in proportion to the negative of the instantaneous gradi-
ent. The weight-change cycle is repeated with the presentation of
the next input training pattern, and so forth.

Suppose that the network has already been trainedwith a given
set of training patterns and the error vectors are now small. The
weights are stabilized and are essentially unchanging. New input
patterns may now be applied to the network. Referring to Fig. 1,
the inputs to the third layer neurons are obtained from the new
input patterns as they are mapped nonlinearly through the first
two layers.

The components of the input pattern vectors are assumed to
be gray scale, and therefore will have analog values. As such, an
infinite number of distinct input patterns could exist and could
be inputted to the neural network. Each distinct input pattern,
by nonlinear mapping, would cause a distinct input pattern
at the third layer, the output layer. This happens because the
nonlinear elements of the network, the sigmoids, are monotonic
and memoryless. (Pathological cases can occur where this will not
be true, but they are rare and extremely unlikely.)

If the training patterns are distinct, the corresponding input
patterns to the third layer will also be distinct. If the number of
training patterns is less than or equal to the number of weights of
each of the individual output layer neurons, then the input vectors
to the third layer will not only be distinct patterns but they will
also be linearly independent, even if the training patterns may or
may not be linearly independent. With this linear independence,
the output layer neurons will be capable of delivering the desired
gray-scale response patterns perfectly and the network can thus
be perfectly trained with zero error. Linear independence created
by propagation through a nonlinear layer or layers is assumed and
the rationale for this will be discussed in more detail below.

Linear independence with the input patterns to the output
layer, the third layer for the example of Fig. 1, will result when
the number of distinct training patterns is less than or equal to
the number of weights of the output neurons. Each of the output
neurons is assumed to have the same number of weights as all
the others. The LMS Capacity of the network will be equal to the
number of weights of each of the individual output neurons. If
the number of training patterns is under Capacity or at Capacity,
weight values for the output neurons will exist that will allow the
output neurons to deliver the desired output patterns perfectly,
without error, i.e. with zero mean square error. If the number of
distinct training patterns is greater than Capacity, then the input
patterns to the output layer cannot be linearly independent and
it will not be possible in general to train the network without
error. The network will be able to be trained, but there will be
some residual mean square error in this case. When there is
residual error, ‘‘underfitting’’ takes place.When there is no residual
error, ‘‘overfitting’’ takes place (except when training exactly at
Capacity).

3. The No-Prop algorithm

Referring again to the three layer network of Fig. 1, let the
number of distinct training patterns be less than or equal to
Capacity. The weights of the first two layers could be randomized
and fixed, not set by Back-Prop training. The training patterns will
undergo a fixed randommapping, and the inputs to the third layer
neurons will be distinct and linearly independent. By training only
the weights of the third layer neurons, all of the corresponding
desired response patterns will be able to be perfectly realized at
the network output. The weights being trained are analogous to
the ‘‘unknowns’’ of linear simultaneous equations. The number of
equations is equal to the number of training patterns. Training at
Capacity is analogous to the number of equations being equal to
the number of unknowns.

So, without back-propagating the output errors throughout the
network and by adapting only the output layer after randomizing
and fixing the weights of the first two layers, the ‘‘hidden layers’’,
we have the ‘‘No-Prop’’ algorithm. It is a very much simpler
algorithm than Back-Prop and does not require the training of
all the weights of the network, only the output layer weights.
This algorithm will provide network performance under many
conditions equivalent to that of Back-Prop.

4. Linear independence

It was related above that pattern vectors at the input to the
weights of the output layer neurons will be linearly independent
as long as the number of input patterns is less than or equal to the



184 B. Widrow et al. / Neural Networks 37 (2013) 182–188
Fig. 2. A nonlinear transformation.

number of weights of each of the output neurons, and as long as
the network input patterns propagate through at least one ormore
nonlinear layers before reaching the weights of the output layer.
Linear independence is key to the idea of Capacity.

An explanation for linear independence follows. In Fig. 2, a
nonlinear transformation or nonlinear box is shown. A set of X
vectors are its inputs, and a corresponding set of Y vectors are its
outputs. The set of X vectors are distinct and may or may not be
linearly independent. The input X vectors have n components, and
the output Y vectors have m components. The box is memoryless,
and distinct input vectors will yield distinct output vectors.

Let there be three input vectors that cause three output vectors.
In other words, X1 → Y1, X2 → Y2, and X3 → Y3. These vectors
are

X1 =


x11
x21
...

xn1

 X2 =


x12
x22
...

xn2

 X3 =


x13
x23
...

xn3

 (1)

Y1 = F


x11
x21
...

xn1

 Y2 = F


x12
x22
...

xn2

 Y3 = F


x13
x23
...

xn3

 (2)

where, F is a memoryless nonlinear function. The question is, does
Y3 = αY1 + βY2? In other words, does

F


x13
x23
...

xn3

 = αF


x11
x21
...

xn1

 + βF


x12
x22
...

xn2

 ? (3)

Would a set of constants α and β exist for the above equation
to be correct? The answer is generally no, and then Y1, Y2, and Y3
would be linearly independent. It would be very unlikely but not
impossible for the above equation to hold with a given set of X
input vectors. If Eq. (3) holds, the three Y vectors would be linearly
dependent. This is highly unlikely, and linear independence is
almost perfectly assured.

It is impossible to prove linear independence, since linear de-
pendence could actually happen, but this would be extremely rare.
A set of simulation experiments have been performed to demon-
strate this rarity.

5. Linear independence experiments

By computer simulation, an extensive set of experiments was
performed to verify or deny the above argument about linear
independence, this could also be resolved by experimentation. In
each case, the number of input patterns was chosen to be equal
to the number of outputs m of the nonlinear box of Fig. 2. The
output patterns were tested for linear independence by means
of the MATLAB function called ‘‘rank’’. If the rank of the set
of output patterns equalled the number of output patterns, the
output patterns were linearly independent. Otherwise, the output
Fig. 3. Network with a single fixed layer used for some of the linear independence
experiments. Bias weights, not shown, were used.

patterns were linearly dependent. The nonlinear box of Fig. 2 was
a neural network with randomly chosen fixed weights. For these
experiments, the size of the network and the number of layers was
varied.

For all of the experiments, input patterns were 200 component
random vectors whose component values were gray scale from
−1 to +1. Thirty percent of the patterns were independently
generated. Seventy percent were linear combinations of the first
thirty percent. These input patterns were all distinct, but clearly
not linearly independent. In spite of this, could the output patterns
from the nonlinear box be linearly independent?

The first experiments were done with the nonlinear box being
the network shown in Fig. 3. The input patterns had 200 compo-
nents. The first layer of 400 neurons provided 400 outputs. The
weights of the neurons in this layer were randomly chosen and
fixed. 400 input patterns were generated as described above. The
corresponding output patterns were tested for linear indepen-
dence. There were 400 output pattern vectors, each having 400
components. The rank of the set of output patterns of the fixed
layer was determined to be equal to 400, indicating that the 400
output vectorswere linearly independent. This experimentwas re-
peated 1000 times, each time with a different set of input patterns
generated as above. In all thousand cases, the output pattern vec-
tors were linearly independent.

A second set of experiments was performed with networks
having input pattern vectors with 200 components, and having
one fixed layer like in Fig. 3, but alternatively having 100 outputs,
and 200 outputs. With 100 outputs, 100 input patterns were
applied to the network. With 200 outputs, 200 input patterns
were applied to the networks. The input patterns were generated
as above. The output patterns of the fixed layer were found to
be linearly independent. These experiments were repeated 1000
times. In every single case, the output pattern vectorswere linearly
independent.

A third set of experimentswas performedwith networks having
two fixed layers. The first layer had alternatively 100, 200, and 400
neurons connected in turn with all combinations of 100, 200, and
400 neurons in the second fixed layer. The input pattern vectors
had 200 components generated as above, and the number of input
patterns chosen in each case was equal to the number of outputs
of the second layer. The second layer output vectors were linearly
independent. The experiments were repeated 1000 times, and in
every case the output vectors were linearly independent.

A fourth set of experiments was performed with networks
having three fixed layers, 200 neurons in the first fixed layer, 100
neurons in the second fixed layer, connected with 100, 200, or
400 neurons in the third fixed layer. The number of input patterns



B. Widrow et al. / Neural Networks 37 (2013) 182–188 185
(a) Without noise. (b) With 10% noise. (c) With 20% noise. (d) With 30% noise.

Fig. 4. An example of a Chinese character with its noisy versions.
Fig. 5. A trainable neural-net classifier.
chosen in each casewas equal to the number of neurons in the third
layer. These experiments were repeated 1000 times, and in every
case the third-layer output vectors were linearly independent.

The total number of experiments was 15000. In every case,
the output vectors were linearly independent. Not a single case of
linear dependence was observed. Linear dependence seems to be
highly unlikely andweare no longer concernedwith this issue. This
provides critical support to the idea that the Capacity of a layered
neural network depends only on the number of weights of each of the
neurons of the output layer, regardless of network configuration and
regardless of the nature of the training algorithm.

6. Training classifiers with Back-Prop and No-Prop

Both the Back-Prop and No-Prop algorithms are very useful
for training neural networks. One might expect equivalent per-
formance for these two algorithms when the number of training
patterns is less than or equal to Capacity. When training with a
number of patterns greater than Capacity, it would seem that Back-
Prop would deliver superior performance. In any event, neither of
these algorithms can train over Capacitywith zeromean square er-
ror. Back-Prop might provide a lower mean square error however.

Classification experiments were performed to compare the
behavior of the two algorithms. A set of 20,000 Chinese characters
were available and many of these were used as training and
testing patterns. Each character had 20 × 20 pixels. Each pixel
was either black or white, represented by +1 or −1 respectively.
Random noise was introduced to these patterns by changing black
to white or white to black, randomly over the pixels. The noise
was introduced first to 5% of the pixels. The random changes were
then maintained, and additional random changes were introduced
to the remaining pixels to comprise 10% noise. All these changes
were maintained, and further changes were introduced for a total
of 15% noise, and so forth. In this way, sets of Chinese characters
with 5%, 10%, 15%, 20%, 25%, and 30% noise were generated. An
example of one of the Chinese characters, pure and without noise,
can be seen in Fig. 4(a). This character with 10% noise is shown in
Fig. 4(b), with 20% noise in Fig. 4(c), and with 30% noise in Fig. 4(d).
It is difficult to determine what the character is from inspection of
any of the noisy versions, as verified by Chinese readers. Yet the
neural network was able to classify them, as will be noted below.

The neural network that was used for comparing Back-Prop and
No-Prop in a classifier application is shown in Fig. 5. It is a two-
layer network having one hidden layer and one output layer. With
Back-Prop, both layers were trained. With No-Prop, the fixed layer,
the hidden layer, had its weights set randomly and fixed, while
the second layer, the output layer, was trained. The input patterns
were 20 × 20, 400 pixels, so the inputs to the neural network
werepattern vectors having 400 components. Thehidden layer had
400 neurons, each with 400 weights, and the output layer had 200
neurons, each with 400 weights. The Capacity of the network was
400 and the number of outputs was 200.

Two hundred Chinese characters were chosen. Each of the
output neurons was trained to produce a +1 output when a
correspondingly selected Chinese character free of noise was
presented at the network input, and a −1 output for all other
inputted characters. Training was stopped after 10,000 iterations.
After training, noisy versions of the 200 characters never seen
before were presented, and these inputs were identified with the
output layer neuron which produced the most positive analog
output. The network output is connected to a maximum detector
for a 1 out of 200 code. In most cases, the number of classification
errors was small.



186 B. Widrow et al. / Neural Networks 37 (2013) 182–188
Table 1
Training with 200 noise-free characters; Testing with 100 noisy versions of each character.

% noise in testing patterns 5% 10% 15% 20% 25% 30%

Classification errors Back-Prop trained 1 8 24 114 464 2225
No-Prop trained 0 28 110 440 2219 7012
Table 2
Training with 10% noise, 50 noisy versions each of the 200 noise-free characters; Testing with 100 noisy versions of the 200 noise-free characters.

% noise in testing patterns 5% 10% 15% 20% 25% 30%

Classification errors Back-Prop trained 0 19 63 166 438 1728
No-Prop trained 2 26 92 213 697 2738
Table 3
Training with 20% noise, 50 noisy versions each of the 200 noise-free characters; Testing with 100 noisy versions of the 200 noise-free characters.

% noise in testing patterns 5% 10% 15% 20% 25% 30%

Classification errors Back-Prop trained 6 34 107 274 550 1555
No-Prop trained 6 36 126 274 584 1885
For each experiment, the total number of training patterns was
10,000, consisting of 50 noisy versions of the 200 characters. For
the first experiment, the network was trained only with the 200
noise-free characters. For the second experiment, the networkwas
trainedwith 10,000 noisy characters, each with 5% noise. The third
experiment with 10% noise, the fourth experiment with 15% noise,
the fifth experiment with 20% noise, the sixth experiment with
25% noise, and the seventh experiment with 30% noise. Each of
these experimentswas done alternativelywith Back-Prop andwith
No-Prop. Results of these experiments are the following.

With the first experiment, when the network was trained with
the 200 noise-free characters, the errors at the outputs of all 200
output layer neurons were essentially zero for all 200 training
patterns. After training, testing the network with the 200 noise-
free characters resulted in perfect classification. There were no
discrimination errors. These results were the same for No-Prop
and Back-Prop. This was no surprise since the number of training
patternswas less than Capacity.No-Prop required considerably less
computation.

After training the networkwith the 200 noise free characters by
Back-Prop and then repeating this by No-Prop, the Back-Prop and
No-Prop trained networks were tested with 100 noisy versions of
each of the 200 characters. There were 100 × 200 or 20,000 noisy
test patterns for each level of noise. Noise levels of the test patterns
were 5%, 10%, 15%, 20%, 25%, 30%. The results of this experiment
are given in Table 1. Both methods yielded quite low numbers
of classification errors with test patterns having noise up to 20%.
With 20% test pattern noise, the Back-Prop trained network had
114 classification errorswith 20,000 test patterns of 0.6% error. The
No-Prop trained network had 440 errors or 2.2% error. Of course,
the rate of classification errors increased with the increase in test
pattern noise beyond 20%, and the Back-Prop trained network
performed better than the No-Prop trained network.

Table 2 shows results with another experiment, only here the
network was trained with noisy characters having 10% noise.
The sets of training and testing patterns were independently
generated. The training patterns were 50 noisy versions of each of
the 200 noise-free characters, 50×200 or 10,000 training patterns.
Now the number of training patterns is far greater than Capacity,
but with only 10% noise, they were close enough to the original
200 patterns which, if trained on, would be of a number less than
Capacity. The Back-Prop trained network performed better than
No-Prop trained network, but the noise in the training patternswas
quite beneficial for the No-Prop network. In fact, the performance
of both networks had become similar.

Table 3 shows results with another repeat experiment. Here
the network was trained with noisy characters having 20% noise.
The training and testing patterns were independently generated.
There were 10,000 training patterns, far greater than Capacity, but
still close enough to the original 200 patterns to cause the training
to behave somewhat like training under Capacity. The additional
noise in the training patterns further improved the performance of
the No-Prop trained network which is now very close to that of the
Back-Prop trained network. Higher noise in the training patterns
causes lower error rate for the noisier test patterns, with noises in
the 25% and 30% range, especially for the No-Prop trained network.
With 25% noise in the test patterns, the No-Prop network made
2.92% output error. The Back-Prop network made 2.75% output
error. This is good performance by both algorithms, and there is
not much difference between them. Training with noisy patterns
helps with subsequent classification of noisy patterns.

7. Training autoassociative networks with Back-Prop and No-
Prop

There are many applications for autoassociative neural net-
works. An application of great interest to the authors is to data
retrieval in ‘‘cognitive memory’’. The subject of cognitive mem-
ory involves the study of human memory and how it works,
with the goal of designing a human-like memory for computers.
Applications for such memory are to the field of pattern recog-
nition, learning control systems, and to other problems in arti-
ficial intelligence. Cognitive memory will not be described here.
Papers reporting early work on the subject are reproduced on the
website, http://www-isl.stanford.edu/widrow/publications.html,
which can also be reached by googling ‘BernardWidrow’s Stanford
University home page’.

Autoassociative networks are multilayered neural networks
like the one in Fig. 1. They can be trained either with Back-Prop or
No-Prop. (If used for principal component analysis, all layers must
be trained with Back-Prop.) What makes them autoassociative
is how they are trained. During training, patterns presented to
the network are both input patterns and at the same time are
the desired response patterns. Thus, autoassociative networks
are trained to produce output patterns that match the input
training patterns. When inputting patterns that were not part of
the training set, the outputs will not match the inputs. Thus, an
autoassociative network will register a ‘‘hit’’ (very low difference
between an input pattern and its output pattern) or ‘‘no hit’’
(big difference between an input pattern and its output pattern)
depending on the input pattern, if it was in the training set or not.
This type of network plays a major role in data retrieval in human-
like cognitive memory systems according to the above Widrow
et al. references.

http://www-isl.stanford.edu/widrow/publications.html


B. Widrow et al. / Neural Networks 37 (2013) 182–188 187
Fig. 6. Training a network under its capacity.

Fig. 7. Training a network over its Capacity (‘Back-Prop 400’ and ‘No-Prop 400’), and
training the network under its Capacity (‘No-Prop 1000’).

Experiments have been performed with autoassociative net-
works, trained with Back-Prop and with No-Prop. The networks
were trained forminimization ofmean square error. The difference
between the input pattern vector and the output pattern vector is
the error vector. The sum of the squares of the error vector com-
ponents is computed for each training pattern and the networks
were trained to minimize the average of this quantity over the set
of training patterns. This average is the MSE.

The same set of 20,000 Chinese characters was used for the
autoassociative experiments, for training and testing. Fig. 1 shows
the network configuration that was used for these experiments.
There were 400 inputs in correspondence with the 400 pixels of
the characters. There were 400 outputs, corresponding to the 400
inputs. The first layer, a hidden layer, had 400 neurons. The second
layer, another hidden layer, had 400 neurons. The output layer had
400 neurons. The Capacity of the network was 400. The weights of
the hidden layers were trained with Back-Prop, and the weights of
the hidden layers were randomly fixed when using No-Prop.

With 380 Chinese characters chosen for training from the
available set of 20,000, learning curveswere obtained for Back-Prop
and No-Prop, and they are shown in Fig. 6. Additional experiments
were done with 1000 Chinese characters chosen for training from
the set of 20,000, and leaning curves were obtained for Back-Prop
and No-Prop and they are shown in Fig. 7.

When training with 380 patterns, the number of training
patterns was less than the network Capacity of 400. These patterns
could be trained perfectly, with the mean square error going
to zero. The asymptotic MSE level for the curves of Fig. 6 is
theoretically zero. One curve is labeled ‘Back-Prop 400’. This
represents learningwith Back-Propwith a network Capacity of 400.
The second curve is labeled ‘No-Prop 400’. This represents learning
with No-Propwith a network having a Capacity of 400. Both curves
are very similar, with similar learning rates and similar asymptotic
levels.

The Back-Prop learning process was terminated after 7000
training cycles, and the network was tested with the 20,000
Chinese characters. All 380 training patterns made hits, with low
errors. The remainder of the 20,000 patterns did not make hits,
having high errors. The Back-Prop network performed perfectly.

The No-Prop learning process was also terminated after 7000
training cycles, and the network was tested with the 20,000
Chinese characters. All 380 training patterns made hits, with low
errors. The remainder of the 20,000 patterns did not make hits,
having high errors. The No-Prop network performed perfectly.

When training the network under Capacity, with a number of
patterns less than Capacity, both Back-Prop andNo-Prop performed
equivalently, regarding training and generalization which, in this
case, was making hits with the training patterns and not making
hits with patterns that were not trained in.

Fig. 7 shows learning curves for the network trained with
1000 patterns. Curves are shown for ‘Back-Prop 400’, training the
network with a Capacity of 400, and ‘No-Prop 400’, training the
network with a Capacity of 400. In both cases, the network is
trained over its Capacity. The performance of Back-Prop is clearly
superior to that of No-Prop. The asymptotic MSE level of Back-
Prop is much lower that that of No-Prop. Both learning processes
were terminated at 20,000 cycles. The two trained networks
were tested with all 20,000 Chinese characters. Both networks
made hits with the 1000 training patterns. The Back-Prop trained
network perfectly rejected the rest of the 20,000 characters, but
the No-Prop trained network yielded 434 hits with the rest of the
20,000 characters, with a false hit rate of 2.2%. For training and
generalization, Back-Prop is the superior algorithm in this over
Capacity case.

By increasing the Capacity of the network, it became possible
for a No-Prop-trained network to perform as well as the Back-Prop
trained network. The third curve labeled ‘No-Prop 1000’ in Fig. 7
is a learning curve for the network, now with a Capacity of 1000,
trainedwith theNo-Prop algorithm. It performedperfectlywith the
same set of input patterns. The increased Capacity was obtained
by raising the number of neurons in the second hidden layer from
400 to 1000. The number of neurons in the first and third layers
remained the same. The No-Prop-trained network made hits with
the 1000 training patterns and rejected the rest of the 20,000.

From these experiments with autoassociative training, it ap-
pears that when Back-Prop training yields performance superior to
No-Prop training, No-Prop can be made to catch up with Back-Prop
by increasing the network Capacity. So there is a trade-off here.
One could use a more complicated training algorithm, Back-Prop,
or one could use a simpler training algorithm, No-Prop, with more
neurons in the network.

Back-Prop is a fine algorithm, although it may converge on
a local optimum. The No-Prop algorithm always converges on
a global optimum. With No-Prop, the mean square error is a
quadratic function of all the weights of the output-layer neurons.
This type of function has a unique optimum. The reader is re-
ferred to the Widrow–Stearns book (Widrow & Stearns, 1985), the
Widrow–Walach book (Widrow & Walach, 1995), and the Haykin
book (Haykin, 1999).



188 B. Widrow et al. / Neural Networks 37 (2013) 182–188
When using a trained autoassociative network, a hit or no hit is
determined by the magnitude of the error, the difference between
the input patterns vector and the output pattern vector. There is a
hit when the magnitude of the error vector is below a threshold.
The question is, how is the threshold determined? For this work,
the threshold was set at the end of the training process to be the
highest error magnitude among all of the training patterns.

For all the networks described in this paper that were trained
with No-Prop, the output-layer neurons were designed to produce
linear outputs, with the sigmoids omitted. This simplified the net-
work configuration and allowed the output neurons to be trained
with the simplest of all training algorithms, the LMS algorithm of
Widrow andHoff (1960). Omitting the sigmoids in the output layer
did not significantly affect performance, but caused the MSE to be
a quadratic function of the weights.

8. Conclusions

The No-Prop algorithm trains multilayer neural networks by
training the output layer only. This can be done using the LMS
algorithm of Widrow and Hoff. No-Prop has the advantage of not
requiring error backpropagation throughout the network, making
it simpler to build in hardware or to code in software.

When the number of training patterns in less than the network
Capacity (equal to the number of weights of each of the output
layer neurons), the No-Prop network and the Back-Prop network
perform equivalently. When training over Capacity, Back-Prop
performs generally better than No-Prop. But by increasing the
number of neurons in the layer before the output layer, i.e. by
increasing the network Capacity, the performance of No-Prop can
be brought up to that of the Back-Prop algorithm.
Perhaps this work will lend some insight into the training of
neural networks in animal brains. It may not be necessary to train
all layers, only the output layer. That would make mother nature’s
job much simpler.

Acknowledgment

This research was partially supported by the Department
of Defense (DoD) through the National Defense Science and
Engineering Graduate Fellowship (NDSEG) Program.

References

Haykin, S. (1999).Neural networks: a comprehensive foundation. New Jersey: Prentice
Hall.

Rumelhart, D. E., & McClellan, J. L. (Eds.) (1986). Parallel distributed processing .
Cambridge, MA: MIT press.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the
behavioral sciences. Ph.D. Thesis Harvard University, Cambridge, MA.

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON
Convention Record.

Widrow, B., & Lehr, M. A. (1992). Backpropagation and its applications. In
Proceedings of the INNS summer workshop on neural network computing for the
electric power industry. Stanford, 21–29, August.

Widrow, B., & Stearns, S. D. (1985). Adaptive signal processing. New Jersey: Prentice
Hall.

Widrow, B., & Walach, E. (1995). Adaptive inverse control. New Jersey: Prentice Hall.

Further reading

Rosenblatt, F. (1958). The perceptron: a probablistic model for information storage
and organization in the brain. Psychological Review, 65(6).

Widrow, B., & Lehr, M. A. (1990). 30 Years of adaptive neural networks: perceptron,
Madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.


	The No-Prop algorithm: A new learning algorithm for multilayer neural networks
	Introduction
	The Back-Propagation algorithm
	The No-Prop algorithm
	Linear independence
	Linear independence experiments
	Training classifiers with Back-Prop and No-Prop
	Training autoassociative networks with Back-Prop and No-Prop
	Conclusions
	Acknowledgment
	References
	Further reading


