
1556-603x/15©2015ieee	 November 2015 | IEEE Computational intelligence magazine 37

Michael Margaliot
Tel Aviv University, Israel

Abstract—Hebbian learning is widely accepted in
the fields of psychology, neurology, and neurobiol-

ogy. It is one of the fundamental premises of neuro-
science. The LMS (least mean square) algorithm of

Widrow and Hoff is the world’s most widely used
adaptive algorithm, fundamental in the fields of signal

processing, control systems, pattern recognition, and arti-
ficial neural networks. These are very different learning

paradigms. Hebbian learning is unsupervised. LMS learn-
ing is supervised. However, a form of LMS can be con-

structed to perform unsupervised learning and, as such, LMS
can be used in a natural way to implement Hebbian learn-
ing. Combining the two paradigms creates a new unsuper-
vised learning algorithm that has practical engineering
applications and provides insight into learning in living
neural networks. A fundamental question is, how does
learning take place in living neural networks? “Nature’s
little secret,” the learning algorithm practiced by
nature at the neuron and synapse level, may well be
the Hebbian-LMS algorithm.

I. Introduction

Donald O. Hebb has had considerable influence
in the fields of psychology and neurobiology
since the publication of his book “The
Organization of Behavior” in 1949 [1]. Heb-

bian learning is often described as: “neurons that fire
together wire together.” Now imagine a large network of
interconnected neurons whose synaptic weights are
increased because the presynaptic neuron and the postsynap-
tic neuron fired together. This might seem strange. What
purpose would nature fulfill with such a learning algorithm?

In his book, Hebb actually said: “When an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes part in

Digital Object Identifier 10.1109/MCI.2015.2471216
Date of publication: 13 October 2015

The Hebbian-LMS
Learning Algorithm

firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased.”

“Fire together wire together” is a simplification of this.
Wire together means increase the synaptic weight. Fire

©
is

to
c

k
p

h
o

to
.c

o
m

/b
e

s
t

d
e

s
ig

n
s

Bernard Widrow, Youngsik Kim,
and Dookun Park
Department of Electrical Engineering,
Stanford University, CA, USA

38 IEEE Computational intelligence magazine | November 2015

together is not exactly what Hebb said, but some researchers
have taken this literally and believe that information is carried
with the timing of each activation pulse. Some believe that the
precise timing of presynaptic and postsynaptic firings has an
effect on synaptic weight changes. There is some evidence for
these ideas [2]–[4] but they remain controversial.

Neuron-to-neuron signaling in the brain is done with pulse
trains. This is AC coupling and is one of nature’s “good ideas”,
avoiding the effects of DC level drift that could be caused by
the presence of fluids and electrolytes in the brain. We believe
that the output signal of a neuron is the neuron’s firing rate as a
function of time.

Neuron-to-neuron signaling in computer simulated artifi-
cial neural networks is done in most cases with DC levels. If a
static input pattern vector is presented, the neuron’s output is
an analog DC level that remains constant as long as the input
pattern vector is applied. That analog output can be weighted
by a synapse and applied as an input to another neuron, a
“postsynaptic” neuron, in a layered network or otherwise
interconnected network.

The purpose of this paper is to introduce a new learning
algorithm that we call Hebbian-LMS. It is an implementation of
Hebb’s teaching by means of the LMS algorithm of Widrow and
Hoff. With the Hebbian-LMS algorithm, unsupervised or auton-
omous learning takes place locally, in the individual neuron and
its synapses, and when many such neurons are connected in a
network, the entire network learns autonomously. One might
ask, what does it learn? This question will be considered below
where applications will be presented.

There is another question that can be asked: Should we
believe in Hebbian learning? Did Hebb arrive at this idea by
doing definitive biological experiments, by “getting his hands
wet”? The answer is no. The idea came to him by intuitive

reasoning. Like Newton’s theory of gravity, like Einstein’s theories
of relativity, like Darwin’s theory of evolution, it was a thought
experiment propounded long before modern knowledge and
instrumentation could challenge it, to refute it, or verify it. Hebb
described synapses and synaptic plasticity, but how synapses and
neurotransmitters worked was unknown in Hebb’s time. So far,
no one has contradicted Hebb, except for some details. For exam-
ple, learning with “fire together wire together” would cause the
synaptic weights to only increase until all of them reached satura-
tion. That would make an uninteresting neural network, and
nature would not do this. Gaps in the Hebbian learning rule will
need to be filled, keeping in mind Hebb’s basic idea, and well-
working adaptive algorithms will be the result. The Hebbian-
LMS algorithm will have engineering applications, and it may
provide insight into learning in living neural networks.

The current thinking that led us to the Hebbian-LMS
algorithm has its roots in a series of discoveries that were
made since Hebb, from the late 1950’s through the 1960’s.
These discoveries are reviewed in the next three sections. The
sections beyond describe Hebbian-LMS and how this algo-
rithm could be nature’s algorithm for learning at the neuron
and synapse level.

II. Adaline and the Lms Algorithm, from the 1950’s
Adaline is an acronym for “Adaptive Linear Neuron.” A block
diagram of the original Adaline is shown in Figure 1. Adaline
was adaptive, but not really linear. It was more than a neuron
since it also included the weights or synapses. Nevertheless,
Adaline was the name given in 1959 by Widrow and Hoff.

Adaline was a trainable classifier. The input patterns, the
vectors ,Xk , , , ,k N1 2 g= were weighted by the weight vec-
tor [, , ,] ,W w w wk k k nk

T
1 2 g= and their inner product was the

sum .y X Wk k
T

k= Each input pattern Xk was to be classified
as a +1 or a -1 in accord with its assigned
class, the “desired response.” Adaline was
trained to accomplish this by adjusting the
weights to minimize mean square error.
The error was the difference between the
desired response dk and the sum ,yk

.e d yk k k= - Adaline’s final output qk was
taken as the sign of the sum ,yk i.e.

(),q SGN yk k= where the function
()SGN $ is the signum, take the sign of.

The sum yk will henceforth be referred to
as (SUM) .k

The weights of Adaline were trained
with the LMS algorithm, as follows:

	 ,W W e X2k k k k1 n= ++ � (1)

	 .e d X Wk k k
T

k= - � (2)

Averaged over the set of training patterns,
the mean square error is a quadratic func-
tion of the weights, a quadratic “bowl.” The
LMS algorithm uses the methodology of

Input
Pattern
Vector

Output

+

-

w1kx1k

w2kx2k

w3kx3k

wnk

…

-1

+1

Signum

dk

ek

yk = (SUM)k qk

Error

Desired
Response

Xk

Weights

Summer

R

R

xnk

Figure 1 Adaline (Adaptive linear neuron.)

November 2015 | IEEE Computational intelligence magazine 39

steepest descent, a gradient method, for pulling the weights to
the bottom of the bowl, thus minimizing mean square error.

The LMS algorithm was invented by Widrow and Hoff in
1959 [5]. The derivation of this algorithm is given in many ref-
erences. One such reference is the book “Adaptive Signal Pro-
cessing” by Widrow and Stearns [6]. The LMS algorithm is the
most widely used learning algorithm in the world today. It is
used in adaptive filters that are key elements in all modems, for
channel equalization and echo canceling. It is one of the basic
technologies of the internet and of wireless communications. It
is basic to the field of digital signal processing.

The LMS learning rule is quite simple and intuitive. Equa-
tions (1) and (2) can be represented in words:

“With the presentation of each input pattern vector and its associ-
ated desired response, the weight vector is changed slightly by adding
the pattern vector to the weight vector, making the sum more positive, or
subtracting the pattern vector from the weight vector, making the sum
more negative, changing the sum in proportion to the error in a direc-
tion to make the error smaller.”

A photograph of a physical Adaline made by Widrow and
Hoff in 1960 is shown in Figure 2. The input patterns of this
Adaline were binary, 4 # 4 arrays of pixels, each pixel having
a value of +1 or -1, set by the 4 # 4 array of toggle switches.
Each toggle switch was connected to a weight, implemented
by a potentiometer. The knobs of the potentiometers, seen in
the photo, were manually rotated during the training process
in accordance with the LMS algorithm. The sum was dis-
played by the meter. Once trained, output decisions were +1
if the meter reading was positive, and -1 if the meter reading
was negative.

The earliest learning experiments were done with this Ada-
line, training it as a pattern classifier. This was supervised learning,
as the desired response for each input training pattern was given.
A video showing Prof. Widrow training Adaline can be seen
online [https://www.youtube.com/watch?v=skfNlwEbqck].

III. Unsupervised Learning with Adaline,
from the 1960’s
In order to train Adaline, it is necessary to have a desired
response for each input training pattern. The desired response
indicated the class of the pattern. But what if one had only
input patterns and did not know their desired responses, their
classes? Could learning still take place? If this were possible, this
would be unsupervised learning.

In 1960, unsupervised learning experiments were made with
the Adaline of Figure 2 as follows. Initial conditions for the
weights were randomly set and input patterns were presented
without desired responses. If the response to a given input pat-
tern was already positive (the meter reading to the right of zero),
the desired response was taken to be exactly +1. A response of
+1 was indicated by a meter reading half way on the right-hand
side of the scale. If the response was less than +1, adaptation by
LMS was performed to bring the response up toward +1. If the
response was greater than +1, adaptation was performed by
LMS to bring the response down toward +1.

If the response to another input pattern was negative (meter
reading to the left of zero), the desired response was taken to be
exactly -1 (meter reading half way on the left-hand side of the
scale). If the negative response was more positive than -1,
adaptation was performed to bring the response down toward
-1. If the response was more negative than -1, adaptation was
performed to bring the response up toward -1.

With adaptation taking place over many input patterns,
some patterns that initially responded as positive could
ultimately reverse and give negative responses, and vice
versa. However, patterns that were initially responding as
positive were more likely to remain positive, and vice
versa. When the process converges and the responses stabi-
lize, some responses would cluster about +1 and the rest
would cluster about -1.

The objective was to achieve unsupervised learning with
the analog responses at the output of the summer (SUM) clus-
tered at +1 or -1. Perfect clustering could be achieved if the
training patterns were linearly independent vectors whose
number were less than or equal to the number of weights.
Otherwise, clustering to +1 or -1 would be done as well as
possible in the least squares sense. The result was that similar
patterns were similarly classified, and this simple unsupervised
learning algorithm was an automatic clustering algorithm. It
was called “bootstrap learning” because Adaline’s quantized
output was used as the desired response. This idea is represented
by the block diagram in Figure 3.

Research done on bootstrap learning was reported in the
paper “Bootstrap Learning in Threshold Logic Systems,” pre-
sented by Bernard Widrow at an International Federation of
Automatic Control (IFAC) conference in 1966 [7]. This work
led to the 1967 Ph.D. thesis of William C. Miller, at the time a
student of Professor Widrow, entitled “A Modified Mean
Square Error Criterion for use in Unsupervised Learning” [8].
These papers described and analyzed bootstrap learning.

Figure 2 Knobby Adaline.

40 IEEE Computational intelligence magazine | November 2015

Figure 4 illustrates the formation of the error signal of boot-
strap learning. The shaded areas of Figure 4 represent the error,
the difference between the output qk and the sum (SUM) :k

	 ((SUM)) (SUM) .e SGNk k k= - � (3)

The polarities of the error are indicated in the shaded areas.
This is unsupervised learning, comprised of the LMS algorithm
of Equation (1) and the error of equation (3).

When the error is zero, no adaptation takes place. In Fig-
ure 4, one can see that there are three different values of
(SUM) where the error is zero. These are the three equilib-
rium points. The point at the origin is an unstable equilib-
rium point. The other two equilibrium points are stable.
Some of the input patterns will produce sums that gravitate
toward the positive stable equilibrium point, while the other
input patterns produce sums that gravitate toward the nega-
tive stable equilibrium point. The arrows indicate the direc-
tions of change to the sum that would occur as a result of
adaptation. All input patterns will become classified as either
positive or negative when the adaptation process converges. If
the training patterns were linearly independent, the neuron
outputs will be binary, +1 or -1.

IV. Robert Lucky’s Adaptive Equalization,
from the 1960’s
In the early 1960’s, as Widrow’s group at Stanford was develop-
ing bootstrap learning, at the same time, independently, a proj-
ect at Bell laboratories led by Robert W. Lucky was developing
an adaptive equalizer for digital data transmission over tele-
phone lines [9][10]. His adaptive algorithm incorporated what
he called “decision directed learning”, which has similarities to
bootstrap learning.

Lucky’s work turned out to be of extraordinary significance.
He was using an adaptive algorithm to adjust the weights of a
transversal digital filter for data transmission over telephone

lines. The invention of
his adaptive equalizer
ushered in the era of
high speed digital data
transmission.

Telephone channels
ideally would have a
bandwidth uniform
from 0 Hz to 3 kHz,
and a linear phase char-
acteristic whose slope
would correspond to
the bulk delay of the
channel. Real tele-
phone channels do not
respond down to zero
frequency, are not flat
in the passband, do not
cut off perfectly at

3 kHz, and do not have linear phase characteristics. Real tele-
phone channels were originally designed for analog tele-
phony, not for digital data transmission. These channels are
now used for both purposes.

Binary data can be sent by transmitting sharp positive and
negative impulses into the channel. A positive pulse is a ONE, a
negative pulse is a ZERO. If the channel were ideal, each
impulse would cause a sinc function response at the receiving
end of the channel. When transmitting data pulses at the
Nyquist rate for the channel, a superposition of sinc functions
would appear at the receiving end. Sampling or strobing the
signal at the receiving end at the Nyquist rate and adjusting the
timing of the strobe to sample at the peak magnitude of a sinc
function, it would be possible to recover the exact binary data
stream as it was transmitted. The reason is that when one of the
sinc functions has a magnitude peak, all the neighboring sinc
functions would be having zero crossings and would not inter-
fere with the sensing of an individual sinc function. There
would be no “intersymbol interference,” and perfect transmis-
sion at the Nyquist rate would be possible (assuming low noise,
which is quite realistic for land lines).

The transfer function of a real telephone channel is not
ideal and the impulse response is not a perfect sinc function
with uniformly spaced zero crossings. At the Nyquist rate,
intersymbol interference would happen. To prevent this,
Lucky’s idea was to filter the received signal so that the transfer
function of the cascade of the telephone channel and an equal-
ization filter at the receiving end would closely approximate
the ideal transfer function with a sinc-function impulse
response. Since every telephone channel has its own “personal-
ity” and can change slowly over time, the equalizing filter
would need to be adaptive.

Figure 5 shows a block diagram of a system that is similar
to Lucky’s original equalizer. Binary data are transmitted at
the Nyquist rate as positive and negative pulses into a tele-
phone channel. At the receiving end, the channel output is

Input
Pattern
Vector

Output

-

w1kx1k

w2kx2k

w3kx3k

wnkxnk

…

-1

+1

Signum

dk = qk

(SUM)k qk
Xk

Weights

Summer

R

ek

Error

+

R

Figure 3 Adaline with bootstrap learning.

November 2015 | IEEE Computational intelligence magazine 41

inputted to a tapped delay line with variable weights con-
nected to the taps. The weighted signals are summed. The
delay line, weights, and summer comprise an adaptive trans-
versal filter. The weights are given initial conditions. All
weights are set to zero except for the first weight, which is set
to the value of one. Initially, there is no filtering and, assum-
ing that the telephone channel is not highly distorting, the
summed signal will essentially be a superposition of sinc
functions separated with Nyquist spacing. At the times when
the sinc pulses have peak magnitudes, the quantized output of
the signum will be a binary sequence that is a replica of the
transmitted binary data. The quantized output will be the
correct output sequence. The quantized output can accord-
ingly be taken as the desired output, and the difference
between the quantized output and the summed signal will be
the error signal for adaptive purposes. This difference will
only be usable as the error signal at times when the sinc

functions are at their peak magnitudes. A strobe pulse samples
the error signal at the Nyquist rate, timed to the sinc function
peak, and the error samples are used to adapt the weights. The
output decision is taken to be the desired response. Thus,
decision-directed learning results.

With some channel distortion, the signum output will not
always be correct, at peak times. The equalizer can start with an
error rate of 25% and automatically converge to an error rate
of perhaps 10-8, depending on the noise level in the channel.

Figure 6(a) shows the output of a telephone channel with-
out equalization. Figure 6(b) shows the same channel with
the same dataflow after adaptive equalization. These patterns
are created by overlaying cycles of the waveform before and
after equalization. The effect of equalization is to make the
impulse responses approximate sinc functions. When this is
done, an “eye pattern” as in Figure 6(b) results. Opening the
eye is the purpose of adaptation. With the eye open and when

Error

Positive Stable
Equilibrium Point

Unstable
Equilibrium Point

Negative Stable
Equilibrium Point

Error

Slope = 1

(SUM)

–

–

+

+

qk

yk

qk = Signum (SUM)

(a) The Quantized Output, the Sum, and the Error vs (SUM).

- -

yk

Positive Stable
Equilibrium Point

Unstable
Equilibrium Point

Negative Stable
Equilibrium Point

(SUM)

ek

+ +

(b) The Error vs (SUM).

Figure 4 Bootstrap learning.

42 IEEE Computational intelligence magazine | November 2015

sampling at the appropriate time, ones and zeros are easily dis-
cerned. The adaptive algorithm keeps the ones tightly clus-
tered together and well separated from the zeros which are
also tightly clustered together. The ones and zeros comprise
two distinct clusters. This is decision directed learning, similar
to bootstrap learning.

In the present day, digital communication begins with a
“handshake” by the transmitting and receiving parties. The

transmitter begins with a known pseudo-
random sequence of pulses, a world stan-
dard known to the receiver. During the
handshake, the receiver knows the desired
responses and adapts accordingly. This is
supervised learning. The receiving adap-
tive filter converges and now, actual data
transmission can commence. Decision
directed equalization takes over and
maintains the proper equalization for the
channel by learning with the signals of
the channel. This is unsupervised learn-
ing. If the channel is stationary or only
changes slowly, the adaptive algorithm
will maintain the equalization. However,
fast changes could cause the adaptive fil-
ter to get out of lock. There will be a
“dropout,” and the transmission will need
to be reinitiated.

Adaptive equalization has been the
major application for unsupervised learn-
ing since the 1960’s. The next section
describes a new form of unsupervised
learning, bootstrap learning for the
weights of a single neuron with a sigmoi-
dal activation function. The sigmoidal
function is closer to being “biologically

correct” than the signum function of Figures 1, 3, and 5.

V. Bootstrap Learning with a Sigmoidal Neuron
Figure 7 is a diagram of a sigmoidal neuron whose weights are
trained with bootstrap learning. The learning process of Fig-
ure 7 is characterized by the following error signal:

	 error ((SUM)) (SUM) .e SGMk k k$c= = - � (4)

R

R

Tapped
Delay
Line

Received
Data

Stream

w1k

z-1

w2k

w3k

wnk

…

-1

+1

Signum

(SUM)k qk

ek

Error

Weights

Summer

Gate

dk = qk

Strobe

Binary
Data

Stream
Transmitter

Strobe

Telephone
Channel

Data Pulses

z-1

z-1

z-1

Channel
Output

- +

Figure 5 Decision-directed learning for channel equalization.

E
nv

el
op

e
V

ol
ta

ge
p

g

Relative Bit Time

0
-3.50

-1.75

0

E
nv

el
op

e
V

ol
ta

ge

1.75

3.50

-5.50

-2.75

0

2.75

5.50

0.2 0.4 0.6 0.8 1.0

(a) Before Equalization

Relative Bit Time

0 0.2 0.4 0.6 0.8 1.0

(b) After Equalization

Figure 6 Eye patterns produced by overlaying cycles of the received waveform. (a) before equalization. (b) after equalization. Figure 10.14 of
Widrow and Sterns [6], courtesy of Prentice Hall.

November 2015 | IEEE Computational intelligence magazine 43

The sigmoidal function is represented by () .SGM $ Input
pattern vectors are weighted, summed, and then applied to the
sigmoidal function to provide the output signal, (OUT) .k The
weights are initially randomized, then adaptation is performed
using the LMS algorithm (1), with an error signal given by (4).

Insight into the behavior of the form of bootstrap learning
of Figure 7 can be gained by inspection of Figure 8. The
shaded areas indicate the error, which is the difference between
the sigmoidal output and the sum multiplied by the constant ,c
in accordance with equation (4). As illustrated in the figure, the
slope of the sigmoid at the origin has a value of 1, and the
straight line has a slope of .c These values are not critical, as
long as the slope of the straight line is less than the initial slope
of the sigmoid. The polarity of the error signal is indicated as
+ or - on the shaded areas. There are two stable equilibrium
points, a positive one and a negative one, where

	 ((SUM)) (SUM),SGM $c= � (5)

and the error is zero. An unstable equilibrium point exists
where (SUM) .0=

When (SUM) is positive, and ((SUM))SGM is greater
than (SUM),$c the error will be positive and the LMS algo-
rithm will adapt the weights in order to increase (SUM) up
toward the positive equilibrium point. When (SUM) is posi-
tive and (SUM)$c is greater than ((SUM)),SGM the error

Error

Xk

ek

Input
Pattern
Vector

Weights

SIGMOID

(SUM)k
(OUT)k

- +

R

R

c

Figure 7 A sigmoidal neuron trained with bootstrap learning.

(OUT)

(SUM)

SGM

Unstable
Equilibrium Point

+1

-1 Positive Stable
Equilibrium Point

Negative Stable
Equilibrium Point

-

+

+

-

Sigmoid Error

Error

Slope = c

(a) The Output and Error vs (SUM).

Sum

Unstable
Equilibrium Point

Positive Stable
Equilibrium Point

Negative Stable
Equilibrium Point

-

++

-

ek

(b) The Error Function.

Figure 8 The error of the sigmoidal neuron trained with bootstrap learning.

44 IEEE Computational intelligence magazine | November 2015

will reverse and will be negative and the LMS algorithm will
adapt the weights in order to decrease (SUM) toward the
positive equilibrium point. The opposite of all these will take
place when (SUM) is negative.

When the training patterns are linearly independent and
their number is less than or equal to the number of weights,
all input patterns will have outputs exactly at either the posi-
tive or negative equilibrium point, upon convergence of the
LMS algorithm. The “LMS capacity” or “capacity” of the sin-
gle neuron can be defined as being equal to the number of
weights. When the number of training patterns is greater than
capacity, the LMS algorithm will cause the pattern responses
to cluster, some near the positive stable equilibrium point and
some near the negative stable equilibrium point. The error
corresponding to each input pattern will generally be small
but not zero, and the mean square of the errors averaged over
the training patterns will be minimized by LMS. The LMS
algorithm maintains stable control and prevents saturation of
the sigmoid and of the weights. The training patterns divide
themselves into two classes without supervision. Clustering of
the values of (SUM) at the positive and negative equilibrium
points as a result of LMS training will prevent the values of
(SUM) from increasing without bound.

VI. Bootstrap Learning with a
More “Biologically Correct”
Sigmoidal Neuron
The inputs to the weights of the sigmoidal
neuron in Figure 7 could be positive or
negative, the weights could be positive or
negative, and the outputs could be positive
or negative. As a biological model, this

would not be satisfactory. In the biological world, an input
signal coming from a presynaptic neuron must have positive
values (presynaptic neuron firing at a given rate) or have a
value of zero (presynaptic neuron not firing). Some synapses
are excitatory, some inhibitory. They have different neu-
rotransmitter chemistries. The inhibitory inputs to the post-
synaptic neuron are subtracted from the excitatory inputs to
form (SUM) in the cell body of the postsynaptic neuron.
Biological weights or synapses behave like variable attenuators
and can only have positive weight values. The output of the
postsynaptic neuron can only be zero (neuron not firing) or
positive (neuron firing) corresponding to (SUM) being nega-
tive or positive. The postsynaptic neuron and its synapses dia-
grammed in Figure 9 have the indicated properties and are
capable of learning exactly like the neuron and synapses in
Figure 7. The LMS algorithm of equation (1) will operate as
usual with positive excitatory inputs or negative inhibitory
inputs. For LMS, these are equivalents of positive or negative
components of the input pattern vector.

LMS will allow the weight values to remain within their nat-
ural positive range even if adaptation caused a weight value to be
pushed to one of its limits. Subsequent adaptation could bring
the weight value away from the limit and into its more normal

range, or it could remain sat-
urated. Saturation would not
necessarily be permanent (as
would occur with Hebb’s
original learning rule).

The neuron and its syn-
apses in Figure 9 are iden-
tical to those of Figure 7,
except that the final out-
put is obtained from a
“half sigmoid.” So the out-
put will be positive, the
weights will be positive,
and some of the weighted
inputs will be excitatory,
some inhibitory, equivalent
to positive or negative
inputs. The (SUM) could
be negative or positive.

The training processes
for the neurons and their
synapses of Figure 7 and
Figure 9 are identical, with
identical stabilization points.

- +

+
+

+

-
-

-

All
Positive
Inputs

Excitatory

Inhibitory

(SUM)

Error

All
Positive
Weights

OUTPUT

SIGMOID

HALF
SIGMOID

…

R

R

c

Figure 9 A postsynaptic neuron with excitatory and inhibitory inputs and all positive weights trained with
Hebbian-LMS learning. All outputs are positive. The (SUM) could be positive or negative.

The purpose of this paper is to introduce a new
learning algorithm that we call Hebbian- LMS. It is
an implementation of Hebb’s teaching by means
of the LMS algorithm of Widrow and Hoff.

November 2015 | IEEE Computational intelligence magazine 45

The error signals are obtained in the same manner, and the for-
mation of the error for the neuron and synapses of Figure 9 is
illustrated in Figure 10. The error is once again given by Equa-
tion (4). The final output, the output of the “half sigmoid”, is
indicated in Figure 10. Figure 10(a) shows the error and out-
put. Figure 10(b) shows the error function. When the (SUM) is
negative, the neuron does not fire and the output is zero. When
the (SUM) is positive, the firing rate, the neuron output, is a
sigmoidal function of the (SUM). The learning algorithm is

	

,

() ((SUM))

(SUM) .

W W e X

e SGM X W X W SGM

2k k k k

k k
T

k k
T

k k

k

1

$

n

c

c

= +

= - =

-

+

�

(6)

Equation (6) is a form of the Hebbian-LMS algorithm.
The LMS algorithm requires that all inputs to the summer

be summed, not some added and some subtracted as in Fig-
ure 9. Accordingly, when forming the X-vector, its excitatory
components are taken directly as the outputs of the corre-
spondingly connected presynaptic neurons while its inhibitory

components are taken as the negative of the outputs of the
correspondingly connected presynaptic neurons. Performing
the Hebbian-LMS algorithm of equation (6), learning will
then take place in accord with the diagram of Figure 9.

With this algorithm, there is no inputted desired response
with each input pattern .Xk Learning is unsupervised. The
parameter n controls stability and speed of convergence, as is
the case for the LMS algorithm. The parameter c has the value
of 1/2 in the diagram of Figure 10, but could have any positive
value less than the initial slope of the sigmoid function.

	 () .d
d SGM0 < <

0
c

p
p

p=

� (7)

The neuron output signal is given by:

	 (OUT)
(),

,
.

SGM X W X W
X W0

0
0<

k
k
T

k k
T

k

k
T

k

$
=) � (8)

Equation (6) represents the training procedure for the weights
(synapses). Equation (8) describes the signal flow through the
neuron. Simulation results are represented in Figure 11.

(a) The Output and Error vs (SUM).

Sum

Unstable
Equilibrium Point

Positive Stable
Equilibrium Point

Negative Stable
Equilibrium Point

-

++

-

ek

(b) The Error Function.

(SUM)

+1

-1

-

+

+

-

 Half Sigmoid Error

Error

(OUT)
(OUT´)

(OUT) = (OUT´)

(OUT´) = 0

Negative Stable
Equilibrium Point

Unstable
Equilibrium Point

Positive Stable
Equilibrium Point

Slope = c

Figure 10 The error of the sigmoidal neuron with rectified output, trained with bootstrap learning.

46 IEEE Computational intelligence magazine | November 2015

Computer simulation was performed to demonstrate
learning and clustering by the neuron and synapses of Fig-
ure 9. Initial values for the weights were chosen randomly,
independently, with uniform probability between 0 and 1.
There were 50 excitatory and 50 inhibitory weights. There
were 50 training patterns whose vector components were
chosen randomly, independently, with uniform probability
between 0 and 1. Initially some of the input patterns pro-
duced positive (SUM) values, indicated in Figure 11(a) by
blue crosses, and the remaining patterns produced negative

(SUM) values, indicated in Figure 11(a) by red crosses. After
100 iterations, some of the reds and blues have changed sides,
as seen in Figure 11(b). After 2000 iterations, as seen in Fig-
ure 11(c), clusters have began to form and membership of the
clusters has stabilized. There are no responses near zero. After
5000 iterations, tight clusters have formed as shown in Fig-
ure 11(d). At the neuron output, the output of the half sig-
moid, the responses will be binary, 0’s and approximate 1’s.
Upon convergence, the patterns selected to become 1’s or
those selected to become 0’s are strongly influenced by the

(e) A Learning Curve.

Iteration

0
0

0.05

0.1

M
S

E

0.15

0.2

1000 2000 3000 4000 5000

(a) Initial Responses. (b) Responses After 100 Iterations.

(c) Responses After 2000 Iterations. (d) Responses After 5000 Iterations.

(Out)

(Sum)

(Out)

(Sum)

(Out)

(Sum)

(Out)

(Sum)

Figure 11 A learning experiment.

November 2015 | IEEE Computational intelligence magazine 47

random initial conditions, but not absolutely determined by
initial conditions. The patterns would be classified very differ-
ently with different initial weights.

A learning curve, mean square error as a function of the
number of iterations, is shown in Figure 11(e). When using a
supervised LMS algorithm, the learning curve is known to be a
sum of exponential components [6]. With unsupervised LMS,
the theory has not yet been developed. The nature of this
learning curve and the speed of convergence have only been
studied empirically.

The method for training a neuron and synapses described
above can be used for training neural networks. The networks
could be layered structures or could be interconnected in ran-
dom configurations like a “rat’s nest.” Hebbian-LMS will work
with all such configurations. For simplicity, consider a layered
network like the one shown in Figure 12.

The example of Figure 12 is a fully connected feedforward
network. A set of input vectors are applied repetitively, peri-
odically, or in random sequence. All of the synaptic weights
are set randomly initially, and adaptation commences by apply-
ing the Hebbian-LMS algorithm independently to all the neu-
rons and their input synapses. The learning process is totally
decentralized. In nature, all of the synapses would be adapted
simultaneously, so the speed of convergence for the entire net-
work would not be much less than that of the single neuron
and its input synapses. If the first layer were trained until con-
vergence, then the second layer were trained until conver-
gence, then the third layer were trained until convergence, the
convergence for this three-layer example would be three times
slower than that of a single neuron and its input synapses.
Training the network all at once would be even faster with
totally parallel operation.

If the input patterns were linearly independent vectors, the
output of the first layer neurons would be binary after conver-
gence. Since the input synapses of each of the first layer neu-
rons were set randomly and independently, the outputs of the

first layer neurons would be different from neuron-to-neuron.
After convergence, the outputs of the second layer neurons
would also be binary, but different from the outputs of the first
layer. The outputs of the third layer will also be binary after
convergence.

If the input patterns are not linearly independent vectors,
the outputs of the first layer neurons will not be purely binary.
The outputs of the second layer will be closer to binary. The
outputs of the third layer will be even closer to binary. The
number of training patterns that is equal to the number of
input synapses of each of the output layer neurons is the capac-
ity of the network. It is shown in [11] that when applying pat-
terns that are distinct but not necessarily linear independent to
a nonlinear process such as layers of a neural network, the out-
puts of the layers will be distinct and linearly independent. If
the number of training patterns is less than or equal to the net-
work capacity, the inputs to the output layer synapses will be
linearly independent and the outputs of the output layer neu-
rons will be perfectly binary. If the number of training patterns
exceeds the network capacity, the network output will be 0’s
and “fuzzy” 1’s, close to binary.

If one were to take one of the trained in vectors and place a
large cloud of vectors randomly disposed in a cluster about it,
inputting all the vectors in the cluster without further training
would result in identical binary output vectors at the output
layer. This will be true as long as the diameter if the cluster is
not “too large.” How large this would be depends on the num-
ber and disposition of the other training vectors. The result is
that noisy or distorted input patterns in a cluster can be identi-
fied as equivalent to the associated training pattern. The net-
work determines a unique output pattern, a binary representa-
tion for each training pattern and the patterns in its cluster.
This is a useful property for pattern classification.

With unsupervised learning, each cluster “chooses” its own
binary output representation. The number of clusters that the
network can resolve is equal to the network capacity, equal to

the number of weights of each of
the neurons of the output layer.

Another application is the
following. Given a network
trained by Hebbian-LMS. Let
the weights be fixed. Inputting
a pattern from one of the clus-
ters of one of the training pat-
terns will result in a binary
output vector. The sum of the
squares of the errors of the
output neurons will be close
to zero. Now, inputting a pat-
tern not close to any of the
training patterns will result in
an output vector that will not
be binary and the sum of the
squares of the errors of the
output neurons will be large.

Input
Vectors

Outputs

First Layer
Neurons

Connection
(Synapses)

First Layer
Output

Second Layer
Neurons Third Layer

Neurons

Connection
(Synapses)

Second Layer
Output

Connection
(Synapses)

Third Layer
Output

Figure 12 An example of a layered neural network.

48 IEEE Computational intelligence magazine | November 2015

So, if the input pattern is close to a training pattern, the
output error will be close to zero. If the input pattern is
distinct from all the training patterns, the output error will
be large. One could use this when one is not asking the
neural network to classify an input pattern, merely to indi-
cate if the input pattern has been trained in, i.e., seen
before or not, deja vu, yes or no? This could be used as a
critical element of a cognitive memory system [12].

In yet another application, a multi-layer neural network could
be trained using both supervised and unsupervised methods. The
hidden layers could be trained with Hebbian-LMS and the output
layer could be trained with the original LMS algorithm.

An individual input cluster would produce an individual
binary “word” at the output of the final hidden layer. The out-
put layer could be trained with a one-out-of-many code. The
output neuron with the largest (SUM) would be identified as
representing the class of the cluster of the input pattern.

A three layer purely Hebbian-LMS network was simu-
lated with 100 neurons in each layer. The input patterns
were 50-dimensional, and the network outputs, binary after
training, were 100-bit binary numbers. A set of training pat-
terns was generated as follows. Ten random vectors were
used as representing ten clusters. Clusters were formed as
clouds about the ten original vectors. Each cloud contained
100 randomly disposed points. The ten 50-dimensional

clusters are shown in Figure 13(a) in two
dimensions. The axes were chosen as the
first two principal components.

All 1000 vectors were trained. The net-
work was not “told” which vector belonged
to which of the clusters. The 1000 input vec-

tors were not labeled in any way. After convergence, the net-
work produced 100-bit output words for each input vector.
Ten distinct 100-bit output words were observed, each corre-
sponding to one of the clouds. For a given 100-bit output
word, all input vectors that caused that output word were given
a specific color. The colored input points are shown in Fig-
ure 13(b). The colored points associate exactly as they did in
the input clouds.

The uncolored points were trained into the network and
they were “colored by the network.” The network automati-
cally produced unique representations for each of the clouds.
This was a relatively easy problem since the number of clouds,
10, was much less than the network capacity, 100.

Figure 14 illustrates how Hebbian-LMS creates binary
outputs after the above training with the 1000 patterns.
One of the neurons in the output layer was selected and
histograms were constructed for its (SUM) before and after
training, and for its half-sigmoid output before and after
training. The histograms show that, before training, the his-
togram of the (SUM) was not binary and the histogram of
the half-sigmoid output appears to be almost binary but it
is not so. Observing the colors, one can see that some of
the clusters were split apart. After training, the histogram
of the half-sigmoid output shows the clusters to be intact
and all together.

-4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

First Principal Component

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt

-4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

First Principal Component
 (a) Before Training. (b) After Training.

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt

Figure 13 50-dimensional input vectors plotted along the first two principal components.

The Hebbian-LMS algorithm exhibits homeostasis
about the two equilibrium points, caused by reversal
of the error signal at these equilibrium points.

November 2015 | IEEE Computational intelligence magazine 49

VII. Other Clustering Algorithms

A. K-Means Clustering
The K-means clustering algorithm [13][14] is one of the most
simple and basic clustering algorithms and has many variations.
It is an algorithm to find K centroids and to partition an input
dataset into K clusters based on the distances between each
input instance and K centroids. This algorithm is usually fast to
converge, relatively simple to compute, and effective in many
cases. However, the number of clusters “K” is unknown in the
beginning and it has to be determined by heuristic methods.

B. Expectation-Maximization (EM) Algorithm
EM is an algorithm for finding maximum likelihood esti-
mates of parameters in a statistical model [15]. When the
model depends on hidden latent variables, this algorithm

iteratively finds a local maximum likelihood solution by
repeating two steps: E-step and M-step. Its convergence is
well known [16] and the K-means clustering algorithm is a
special case of the EM algorithm. Same as with the K-means
algorithm, the number of clusters has to be determined prior
to applying this algorithm.

C. DBSCAN Algorithm
Density-based spatial clustering of application with noise
(DBSCAN) is one of the well-known density-based clustering
algorithms [17]. It repeats the process of grouping close points
together until there is no point left to group. After grouping,
the points that do not belong to any group become outliers
and are labeled as noise. In spite of the popularity and effective-
ness of this algorithm, its performance significantly depends on
two threshold variables that determine the grouping.

(a) Before Training.

-10 -5 0 5 10
0

50

100

150

200

250

(SUM)

C
ou

nt

0 0.5 1
0

100

200

300

400

500

600

HALF-SIGMOID OUTPUT

C
ou

nt

(b) After Training.

-10 -5 0 5 10
0

100

200

300

400

500

600

(SUM)

C
ou

nt

0 0.5 1
0

100

200

300

400

500

600

HALF-SIGMOID OUTPUT

C
ou

nt

Figure 14 Histogram of responses of a selected neuron in the output layer of a three layer Hebbian-LMS network.

50 IEEE Computational intelligence magazine | November 2015

D. Comparison Between Clustering Algorithms
We have tested several clustering methods with artificial datas-
ets such as the multivariate Gaussian random dataset and some
of the datasets from the UCI Machine Learning Repository
[18]. Overall performance of clustering with the Hebbian-
LMS algorithm is comparable to the results obtained with the
existing algorithms. These existing algorithms require us to
determine model parameters manually or to use heuristic
methods. Hebbian-LMS requires us to choose a value of the
parameter ,n the learning step. In most cases, this choice is not
critical and can be made like choosing n for supervised LMS
as described in detail in [6].

VIII. A General Hebbian-Lms Algorithm
The Hebbian-LMS algorithm applied to the neuron and syn-
apses of Figure 9 results in a nicely working clustering algo-
rithm, as demonstrated above, but its error signal may not cor-
respond exactly to nature’s error signal. How nature generates
the error signal will be discussed below.

It is possible to generate the error signal in many different
ways. The error signal is a function of the (SUM) signal. A
most general form of Hebbian-LMS is diagrammed in Fig-
ure 15. The learning algorithm can be expressed as

	 ,W W e X2k k k k1 n= ++ � (9)

	 ((SUM)) () .e f f X Wk k k
T

k= = � (10)

The neuron output can be expressed as

(OUT)
((SUM)) (),

,
(SUM)
(SUM)

.
SGM SGM X W
0

0
0

>

<
k

k k
T

k k

k
=

=)

� (11)

For this neuron and its synapses to adapt and learn in a nat-
ural way, the error function f((SUM)) would need to be
nature’s error function. To pursue this further, it is necessary to
incorporate knowledge of how synapses work, how they carry

signals from one neuron to another, and how synaptic weight
change is effected.

IX. The Synapse
The connection linking neuron to neuron is the synapse. Signal
flows in one direction, from the presynaptic neuron to the
postsynaptic neuron via the synapse which acts as a variable
attenuator. A simplified diagram of a synapse is shown in Fig-
ure 16(a) [19]. As an element of neural circuits, it is a “two-ter-
minal device”.

There is a 0.02 micron gap between the presynaptic side
and the postsynaptic side of the synapse which is called the
synaptic cleft. When the presynaptic neuron fires, a protein
called a neurotransmitter is injected into the cleft. Each acti-
vation pulse generated by the presynaptic neuron causes a
finite amount of neurotransmitter to be injected into the
cleft. The neurotransmitter lasts only for a very short time,
some being re-absorbed and some diffusing away. The out-
put signal of the presynaptic neuron is proportional to its
firing rate. Thus, the average concentration of neurotrans-
mitter in the cleft is proportional to the presynaptic neu-
ron’s firing rate.

Some of the neurotransmitter molecules attach to re-
ceptors located on the postsynaptic side of the cleft. The
effect of this on the postsynaptic neuron is either excitato-
ry or inhibitory, depending on the nature of the synapses
[19]–[23]. A synaptic effect results when neurotransmitter
attaches to its receptors. The effect is proportional to the
average amount of neurotransmitter present and the num-
ber of receptors. Thus, the effect of the presynaptic neuron
on the postsynaptic neuron is proportional to the presyn-
aptic fir ing rate and the number of receptors present.
The input signal to the synapse is the presynaptic firing
rate, and the synaptic weight is proportional to the number
of receptors. The weight or the synaptic “efficiency”
described by Hebb is increased or decreased by increasing
or decreasing the number of receptors. This can only

occur when neurotransmitter is present
[19]. Neurotransmitter is essential both as a
signal carrier and as a facilitator for weight
changing. A symbolic representation of the
synapse is shown in Figure 16(b).

The effect of the action of a single syn-
apse upon the postsynaptic neuron is actual-
ly quite small. Signals from thousands of
synapses, some excitatory, some inhibitory,
add in the postsynaptic neuron to create
the (SUM) [19] [24]. If the (SUM) of the
positive and negative inputs is below a
threshold, the postsynaptic neuron will not
fire and its output will be zero. If the (SUM)
is greater than the threshold, the postsynaptic
neuron will fire at a rate that increases with
the magnitude of the (SUM) above the
threshold. The threshold voltage within the

+
+

+
-
-

-

Excitatory

(SUM)

Inhibitory

All
Positive
Weights

Error, f = f (SUM)

All
Positive
Inputs

OUTPUT

HALF
SIGMOID

g

ERROR
FUNCTION

!

Figure 15 A general form of Hebbian-LMS.

November 2015 | IEEE Computational intelligence magazine 51

postsynaptic neuron is a “resting potential” close to -70 mil-
livolts. Summing in the postsynaptic neuron is accomplished
by Kirchoff addition.

Learning and weight changing can only be done in the
presence of neurotransmitter in the synaptic cleft. Thus, there
will be no weight changing if the presynaptic neuron is not fir-
ing, i.e., if the input signal to the synapse is zero. If the presyn-
aptic neuron is firing, there will be weight change. The number
of receptors will gradually increase (up to a limit) if the post-
synaptic neuron is firing, i.e., when the (SUM) of the postsyn-
aptic neuron has a voltage above threshold. Then the synaptic
membrane that the receptors are attached to will have a voltage
above threshold, since this membrane is part of the postsynapitc
neuron. See Figure 17. All this corresponds to Hebbian learn-
ing, firing together wiring together. Extending Hebb’s rule, if
the presynaptic neuron is firing and the postsynaptic neuron is
not firing, the postsynaptic (SUM) will be negative and below
the threshold, the membrane voltage will be negative and
below the threshold, and the number of receptors will gradu-
ally decrease.

There is another mechanism having further control over the
synaptic weight values, and it is called synaptic scaling [25]–
[29]. This natural mechanism is implemented chemically for
stability, to maintain the voltage of (SUM) within an approxi-
mate range about two set points. This is done by scaling up or
down all of the synapses supplying signal to a given neuron.
There is a positive set point and a negative one, and they turn
out to be analogous to the equilibrium points shown in Fig-
ure 8. This kind of stabilization is called homeostasis and is a

phenomenon of regularization that takes place all over living
systems. The Hebbian-LMS algorithm exhibits homeostasis
about the two equilibrium points, caused by reversal of the
error signal at these equilibrium points. See Figure 8. Slow
adaptation over thousands of adapt cycles, over hours of real
time, results in homeostasis of the (SUM).

An exaggerated diagram of a neuron, dendrites, and a syn-
apse is shown in Figure 17. This diagram suggests how the
voltage of the (SUM) in the soma of the postsynaptic neuron
can influence the voltage of the membrane.

Activation pulses are generated by a pulse generator in the
soma of the postsynaptic neuron. The pulse generator is ener-
gized when the (SUM) exceeds the threshold. The pulse

From
Presynaptic
Neuron

Neurotransmitter
Molecules
Receptors

To
Postsynaptic
Neuron

Synaptic
Cleft

Synaptic
Output
Signal

(a) Synapse. (b) A Variable Weight.

Synaptic
Input
Signal

Variable
Weight

Fro
Pre
Neu

T
P

Figure 16 A synapse corresponding to a variable weight.

(SUM) (SUM) T PG

T: Threshold
PG: Pulse Generator

AXON

NEURO
TRANSMITTER

SYNAPSE

DENDRITE

CELL BODY &
NUCLEUS

SOMA

DENDRITE

MEMBRANE

Figure 17 A neuron, dendrites, and a synapse.

52 IEEE Computational intelligence magazine | November 2015

The question remains, when nature performs learning
in neural networks, is this done with an algorithm
similar to Hebbian-LMS? No one knows for sure,
but “if it walks like a duck, quacks like a duck,
and looks like a duck, maybe it is a duck.”

generator triggers the axon to generate electrochemical waves
that carry the neuron’s output signal. The firing rate of the
pulse generator is controlled by the (SUM). The output signal
of the neuron is its firing rate.

X. Postulates of Synaptic Plasticity
The above description of the synapse and its variability or
plasticity is based on a study of the literature of the subject.
The literature is not totally clear or consistent however.
Experimental conditions of the various studies are not all the
same, and the conclusions can differ. In Figure 18, a set of
postulates of synaptic plasticity have been formulated repre-
senting a “majority opinion.”

A group of researchers have developed learning algorithms
called “anti-Hebbian learning [30]–[32]”: “Fire together,
unwire together.” This is truly the case for inhibitory synapses.
We call this in the above postulates an extension of Hebb’s rule.
Anti-Hebbian learning fits the postulates and is therefore essen-
tially incorporated in the Hebbian-LMS algorithm.

XI. The Postulates and the Hebbian-LMS Algorithm
The Hebbian-LMS algorithm of equations (6), (7), and (8),
and diagrams in Figures 9 and 10 as applied to both

excitatory and inhibitory inputs performs
in complete accord with the biological
postulates of synaptic plasticity. The second
postulate, for excitatory inputs, is “fire
together wire together.” The third postu-
late, for inhibitory inputs, is “fire together
un-wire together.” This is a clear extension
of Hebb’s rule.

An algorithm based on Hebb’s original rule would cause
all the weights to converge and saturate at their maximum
values after many adaptive cycles. Weights would only
increase, never decrease. A neural network with all equal
weights would not be useful. Accordingly, Hebb’s rule is
extended to apply to both excitatory and inhibitory synapses
and to the case where the presynaptic neuron fires and the
postsynaptic neuron does not fire. Synaptic scaling to main-
tain stability also needs to be taken into account. The Heb-
bian-LMS algorithm does all this.

XII. Nature’s Hebbian-Lms Algorithm
The Hebbian-LMS algorithm performs in accord with the
synaptic postulates. These postulates indicate the direction of
synaptic weight change, increase or decrease, but not the rate
of change. On the other hand, the Hebbian-LMS algorithm of
equation (6) not only specifies direction of weight change but
also specifies rate of change. The question is, could nature be
implementing something like Hebbian-LMS at the level of
the individual neuron and its synapses and in a full blown neu-
ral network?

The Hebbian-LMS algorithm changes the individual
weights at a rate proportional to the product of the input signal

POSTULATES OF PLASTICITY

1) Excitatory and Inhibitory ‐ no weight change with presynaptic neuron not firing: no neurotransmitter in
 gap.

2) Excitatory ‐ gradual increase in number of neuroreceptors with both pre and postsynaptic neurons firing:
 neurotransmitter in gap, membrane voltage above threshold. (Hebb’s rule)

3) Inhibitory ‐ gradual decrease in number of neuroreceptors with both pre and postsynaptic neurons firing:
 neurotransmitter in gap, membrane voltage above threshold. (Extension of Hebb’s rule)

4) Excitatory ‐ gradual decrease in number of neuroreceptors with presynaptic neuron firing and
 postsynaptic neuron not firing: neurotransmitter in gap, membrane voltage below threshold. (Extension
 of Hebb’s rule)

5) Inhibitory ‐ gradual increase in number of neuroreceptors with presynaptic neuron firing and
 postsynaptic neuron not firing: neurotransmitter in gap, membrane voltage below threshold. (Extension
 of Hebb’s rule)

6) Postulates 2)–5) reverse if u(SUM)qexceeds the equilibrium point values. Synaptic scaling (natural
 homeostasis) keeps (SUM) within small ranges about the equilibrium points, thus stabilizing firing rate
 of post‐synaptic neuron. (Beyond Hebb’s rule)

Figure 18 Postulates of plasticity.

November 2015 | IEEE Computational intelligence magazine 53

and the error signal. The Hebbian-LMS error signal is roughly
proportional to the (SUM) signal for a range of values about
zero. The error drops off and the rate of adaptation slows as
(SUM) approaches either equilibrium point. The direction of
adaptation reverses as (SUM) goes beyond the equilibrium
point, creating homeostasis.

In the synaptic cleft, the amount of neurotransmitter
present is proportional to the firing rate of the presynaptic
neuron, i.e., the input signal to the synapse. By ohmic con-
duction, the synaptic membrane voltage is proportional to
the voltage of the postsynaptic soma, the (SUM), which
determines the error signal. The rate of change in the num-
ber of neurotransmitter receptors is approximately propor-
tional to the product of the amount of neurotransmitter
present and the voltage of the synaptic membrane, negative
or positive. This is all in agreement with the Hebbian-LMS
algorithm. It is instructive to compare the drawings of Fig-
ure 17 with those of Figures 9 and 15. In a functional sense,
they are very similar. Figures 9 and 15 show weight chang-
ing being dependent on the error signal, a function of the
(SUM), and the input signals to the individual weights. Fig-
ure 17 indicates that the (SUM) signal is available to the
synaptic membrane by linear ohmic conduction and the
input signal is available in the synaptic cleft as the concen-
tration of neurotransmitter.

The above description of synaptic plasticity is highly sim-
plified. The reality is much more complicated. The literature
on the subject is very complicated. The above description is a
simplified high-level picture of what occurs with adaptation
and learning in neural networks.

The question remains, when nature performs learning in
neural networks, is this done with an algorithm similar to Heb-
bian- LMS? No one knows for sure, but “if it walks like a duck,
quacks like a duck, and looks like a duck, maybe it is a duck.”

XIII. Conclusion
The Hebbian learning rule of 1949, “fire together wire
together”, has stood the test of time in the field of neurobiol-
ogy. The LMS learning rule of 1959 has also stood in the test of
time in the field of signal processing and telecommunications.
This paper has introduced several forms of a Hebbian-LMS
algorithm that implements Hebbian-learning by means of the
LMS algorithm. Hebbian-LMS extends the Hebbian rule to
cover inhibitory as well as excitatory neuronal inputs, making
Hebbian learning more “biologically correct.” At the same
time, Hebbian-LMS is an unsupervised clustering algorithm
that is very useful for automatic pattern classification.

Given the available parts of nature’s neural networks, namely
neurons, synapses, and their interconnections and wiring con-
figurations, what kind of learning algorithms could be imple-
mented? There may not be a unique answer to this question.
But it may be possible that nature is performing Hebbian-LMS
in at least some parts of the brain.

Acknowledgment
We would like to acknowledge the help that we have received
from Neil Gallagher, Naren Krishna, and Adrian Alabi.

References
[1] D. O. Hebb, The Organization of Behavior. New York: Wiley, 1949.
[2] G.-Q. Bi and M.-M. Poo, “Synaptic modifications in cultured hippocampal neurons: De-
pendence on spike timing, synaptic strength, and postsynaptic cell type,” J. Neurosci., vol. 18,
no. 24, pp. 10464–10472, 1998.
[3] G.-Q. Bi and M.-M. Poo, “Synaptic modifications by correlated activity: Hebb’s postulate
revisited,” Annu. Rev. Neurosci., vol. 24, pp. 139–166, Mar. 2001.
[4] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity,” Nature Neurosci., vol. 3, no. 9, pp. 919–925,
2000.
[5] B. Widrow and M. E. Hoff Jr., “Adaptive switching circuits,” in Proc. IRE WESCON
Convention Rec., 1960, pp. 96–104.
[6] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice
Hall, 1985.
[7] B. Widrow, “Bootstrap learning in threshold logic systems,” in Proc. Int. Federation Auto-
matic Control, 1966, pp. 96–104.
[8] W. C. Miller, “A modified mean square error criterion for use in unsupervised learning,”
Ph.D. dissertation, Stanford Univ., Stanford, CA, 1967.
[9] R. W. Lucky, “Automatic equalization for digital communication,” Bell Syst. Tech. J., vol.
44, no. 4, pp. 547–588, 1965.
[10] R. W. Lucky, “Techniques for adaptive equalization for digital communication,” Bell Syst.
Tech. J., vol. 45, no. 2, pp. 255–286, 1966.
[11] B. Widrow, A. Greenblatt, Y. Kim, and D. Park, “The No-Prop algorithm: A new
learning algorithm for multilayer neural networks,” Neural Netw., vol. 37, pp. 182–188,
Jan. 2012.
[12] B. Widrow and J. C. Aragon, “Cognitive memory,” Neural Netw., vol. 41, pp. 3–14, 2013.
[13] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means clustering algorithm,” J.
Roy. Stat. Soc. Ser. C (Appl. Stat.), vol. 28, no. 1, pp. 100–108, 1979.
[14] J. MacQueen, “Some methods for classif ication and analysis of multivariate observa-
tions,” in Proc. 5th Berkeley Symp. Mathematical Statistics Probability, 1967, vol. 1, no. 14,
pp. 281–297.
[15] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the EM algorithm,” J. Roy. Stat. Soc. Ser. B (Methodol.), vol. 39, no. 1, pp.
1–38, 1977.
[16] C. F. J. Wu, “On the convergence properties of the EM algorithm,” Ann. Stat., vol. 11,
no. 1, pp. 95–103, 1983.
[17] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise,” in Proc. 2nd Int. Conf. Knowledge Discovery Data
Mining, 1996, vol. 96, no. 34, pp. 226–231.
[18] M. Lichman. (2013). UCI machine learning repository. [Online]. Available: http://ar-
chive.ics.uci.edu/ml
[19] D. Purves, G. J. Augustine, D. Fitzpatrick, A.-S. LaMantia, J. O. McNamara, and S. M.
Wiliams, Neuroscience. Sunderland, MA: Sinauer Associates, Inc., 2008.
[20] H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions in localized
populations of model neurons,” Biophys. J., vol. 12, no. 1, pp. 1–24, 1972.
[21] C. van Vreeswijk and H. Sompolinsky, “Chaos in neural networks with balanced excit-
atory and inhibitory activity,” Science, vol. 274, no. 5293, pp. 1724–1726, 1996.
[22] C. Luscher and R. C. Malenka, “NMDA receptor-dependent long-term potentiation and
long-term depression (LTP/LTD),” Cold Spring Harb Perspect Biol., vol. 4, no. 6, pp. 1–15, 2012.
[23] M. A. Lynch, “Long-term potentiation and memory,” Physiol. Rev., vol. 84, no. 1, pp.
87–136, 2004.
[24] J. F. Prather, R. K. Powers, and T. C. Cope, “Amplification and linear summation of
synaptic effects on motoneuron fring rate,” J. Neurophysiol., vol. 85, no. 1, pp. 43–53, 2001.
[25] G. G. Turrigano, K. R. Leslie, N. S. Desai, N. C. Rutherford, and S. B. Nelson, “Ac-
tivity-dependent scaling of quantal amplitude in neocortical neurons,” Nature, vol. 391, no.
6670, pp. 892–896, 1998.
[26] G. G. Turrigano and S. B. Nelson, “Hebb and homeostasis in neuronal plasticity,” Curr.
Opin. Neurobiol., vol. 10, no. 3, pp. 358–364, 2000.
[27] G. G. Turrigano, “The self-tuning neuron: Synaptic scaling of exitatory synapses,” Cell,
vol. 135, no. 3, pp. 422–435, 2008.
[28] N. Virtureira and Y. Goda, “The interplay between Hebbian and homeostasis synaptic
plasticity,” J. Cell Biol., vol. 203, no. 2, pp. 175–186, 2013.
[29] D. Stellwagen and R. C. Malenka, “Synaptic scaling mediated by glial TNF-a,” Nature,
vol. 440, no. 7087, pp. 1054–1059, 2006.
[30] V. R. Kompella, M. Luciw, and J. Schmidhuber, “Incremental slow feature analysis:
Adaptive low-complexity slow feature updating from high-dimensional input streams,” Neu-
ral Comput., vol. 24, no. 11, pp. 2994–3024, 2012.
[31] Z. K. Malik, A. Hussain, and J. Wu, “Novel biologically inspired approaches to extract-
ing online information from temporal data,” Cogn. Comput., vol. 6, no. 3, pp. 595–607, 2014.
[32] Y. Choe, “Anti-Hebbian learning,” in Encyclopedia of Computational Neuroscience, Berlin,
Germany: Springer-Verlag, 2014, pp. 1–4.

�

