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Abstract—Hebbian learning is widely accepted in 
the fields of psychology, neurology, and neurobiol-

ogy. It is one of the fundamental premises of neuro-
science. The LMS (least mean square) algorithm of 

Widrow and Hoff is the world’s most widely used 
adaptive algorithm, fundamental in the fields of signal 

processing, control systems, pattern recognition, and arti-
ficial neural networks. These are very different learning 

paradigms. Hebbian learning is unsupervised. LMS learn-
ing is supervised. However, a form of LMS can be con-

structed to perform unsupervised learning and, as such, LMS 
can be used in a natural way to implement Hebbian learn-
ing. Combining the two paradigms creates a new unsuper-
vised learning algorithm that has practical engineering 
applications and provides insight into learning in living 
neural networks. A fundamental question is, how does 
learning take place in living neural networks? “Nature’s 
little secret,” the learning algorithm practiced by 
nature at the neuron and synapse level, may well be 
the Hebbian-LMS algorithm.

I. Introduction

Donald O. Hebb has had considerable influence 
in the fields of psychology and neurobiology 
since the publication of his book “The 
Organization of Behavior” in 1949 [1]. Heb-

bian learning is often described as: “neurons that fire 
together wire together.” Now imagine a large network of 
interconnected neurons whose synaptic weights are 
increased because the presynaptic neuron and the postsynap-
tic neuron fired together. This might seem strange. What 
purpose would nature fulfill with such a learning algorithm?

In his book, Hebb actually said: “When an axon of cell A is 
near enough to excite a cell B and repeatedly or persistently takes part in 
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firing it, some growth process or metabolic change takes place in one or 
both cells such that A’s efficiency, as one of the cells firing B, is increased.”

“Fire together wire together” is a simplification of this. 
Wire together means increase the synaptic weight. Fire 
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together is not exactly what Hebb said, but some researchers 
have taken this literally and believe that information is carried 
with the timing of each activation pulse. Some believe that the 
precise timing of presynaptic and postsynaptic firings has an 
effect on synaptic weight changes. There is some evidence for 
these ideas [2]–[4] but they remain controversial.

Neuron-to-neuron signaling in the brain is done with pulse 
trains. This is AC coupling and is one of nature’s “good ideas”, 
avoiding the effects of DC level drift that could be caused by 
the presence of fluids and electrolytes in the brain. We believe 
that the output signal of a neuron is the neuron’s firing rate as a 
function of time.

Neuron-to-neuron signaling in computer simulated artifi-
cial neural networks is done in most cases with DC levels. If a 
static input pattern vector is presented, the neuron’s output is 
an analog DC level that remains constant as long as the input 
pattern vector is applied. That analog output can be weighted 
by a synapse and applied as an input to another neuron, a 
“postsynaptic” neuron, in a layered network or otherwise 
interconnected network.

The purpose of this paper is to introduce a new learning 
algorithm that we call Hebbian-LMS. It is an implementation of 
Hebb’s teaching by means of the LMS algorithm of Widrow and 
Hoff. With the Hebbian-LMS algorithm, unsupervised or auton-
omous learning takes place locally, in the individual neuron and 
its synapses, and when many such neurons are connected in a 
network, the entire network learns autonomously. One might 
ask, what does it learn? This question will be considered below 
where applications will be presented.

There is another question that can be asked: Should we 
believe in Hebbian learning? Did Hebb arrive at this idea by 
doing definitive biological experiments, by “getting his hands 
wet”? The answer is no. The idea came to him by intuitive 

reasoning. Like Newton’s theory of gravity, like Einstein’s theories 
of relativity, like Darwin’s theory of evolution, it was a thought 
experiment propounded long before modern knowledge and 
instrumentation could challenge it, to refute it, or verify it. Hebb 
described synapses and synaptic plasticity, but how synapses and 
neurotransmitters worked was unknown in Hebb’s time. So far, 
no one has contradicted Hebb, except for some details. For exam-
ple, learning with “fire together wire together” would cause the 
synaptic weights to only increase until all of them reached satura-
tion. That would make an uninteresting neural network, and 
nature would not do this. Gaps in the Hebbian learning rule will 
need to be filled, keeping in mind Hebb’s basic idea, and well-
working adaptive algorithms will be the result. The Hebbian-
LMS algorithm will have engineering applications, and it may 
provide insight into learning in living neural networks.

The current thinking that led us to the Hebbian-LMS 
algorithm has its roots in a series of discoveries that were 
made since Hebb, from the late 1950’s through the 1960’s. 
These discoveries are reviewed in the next three sections. The 
sections beyond describe Hebbian-LMS and how this algo-
rithm could be nature’s algorithm for learning at the neuron 
and synapse level.

II. Adaline and the Lms Algorithm, from the 1950’s
Adaline is an acronym for “Adaptive Linear Neuron.” A block 
diagram of the original Adaline is shown in Figure 1. Adaline 
was adaptive, but not really linear. It was more than a neuron 
since it also included the weights or synapses. Nevertheless, 
Adaline was the name given in 1959 by Widrow and Hoff.

Adaline was a trainable classifier. The input patterns, the 
vectors ,Xk  , , , ,k N1 2 g=  were weighted by the weight vec-
tor [ , , , ] ,W w w wk k k nk

T
1 2 g=  and their inner product was the 

sum .y X Wk k
T

k=  Each input pattern Xk  was to be classified 
as a +1 or a -1 in accord with its assigned 
class, the “desired response.” Adaline was 
trained to accomplish this by adjusting the 
weights to minimize mean square error. 
The error was the difference between the 
desired response dk  and the sum ,yk  

.e d yk k k= -  Adaline’s final output qk  was 
taken as the sign of the sum ,yk  i.e. 

( ),q SGN yk k=  where the function 
( )SGN $  is the signum, take the sign of. 

The sum yk  will henceforth be referred to 
as (SUM) .k

The weights of Adaline were trained 
with the LMS algorithm, as follows:

	 ,W W e X2k k k k1 n= ++ � (1)

	 .e d X Wk k k
T

k= - � (2)

Averaged over the set of training patterns, 
the mean square error is a quadratic func-
tion of the weights, a quadratic “bowl.” The 
LMS algorithm uses the methodology of 
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steepest descent, a gradient method, for pulling the weights to 
the bottom of the bowl, thus minimizing mean square error.

The LMS algorithm was invented by Widrow and Hoff in 
1959 [5]. The derivation of this algorithm is given in many ref-
erences. One such reference is the book “Adaptive Signal Pro-
cessing” by Widrow and Stearns [6]. The LMS algorithm is the 
most widely used learning algorithm in the world today. It is 
used in adaptive filters that are key elements in all modems, for 
channel equalization and echo canceling. It is one of the basic 
technologies of the internet and of wireless communications. It 
is basic to the field of digital signal processing.

The LMS learning rule is quite simple and intuitive. Equa-
tions (1) and (2) can be represented in words:

“With the presentation of each input pattern vector and its associ-
ated desired response, the weight vector is changed slightly by adding 
the pattern vector to the weight vector, making the sum more positive, or 
subtracting the pattern vector from the weight vector, making the sum 
more negative, changing the sum in proportion to the error in a direc-
tion to make the error smaller.”

A photograph of a physical Adaline made by Widrow and 
Hoff in 1960 is shown in Figure 2. The input patterns of this 
Adaline were binary, 4 # 4 arrays of pixels, each pixel having 
a value of +1 or -1, set by the 4 # 4 array of toggle switches. 
Each toggle switch was connected to a weight, implemented 
by a potentiometer. The knobs of the potentiometers, seen in 
the photo, were manually rotated during the training process 
in accordance with the LMS algorithm. The sum was dis-
played by the meter. Once trained, output decisions were +1 
if the meter reading was positive, and -1 if the meter reading 
was negative.

The earliest learning experiments were done with this Ada-
line, training it as a pattern classifier. This was supervised learning, 
as the desired response for each input training pattern was given. 
A video showing Prof. Widrow training Adaline can be seen 
online [https://www.youtube.com/watch?v=skfNlwEbqck].

III. Unsupervised Learning with Adaline,  
from the 1960’s
In order to train Adaline, it is necessary to have a desired 
response for each input training pattern. The desired response 
indicated the class of the pattern. But what if one had only 
input patterns and did not know their desired responses, their 
classes? Could learning still take place? If this were possible, this 
would be unsupervised learning.

In 1960, unsupervised learning experiments were made with 
the Adaline of Figure 2 as follows. Initial conditions for the 
weights were randomly set and input patterns were presented 
without desired responses. If the response to a given input pat-
tern was already positive (the meter reading to the right of zero), 
the desired response was taken to be exactly +1. A response of 
+1 was indicated by a meter reading half way on the right-hand 
side of the scale. If the response was less than +1, adaptation by 
LMS was performed to bring the response up toward +1. If the 
response was greater than +1, adaptation was performed by 
LMS to bring the response down toward +1.

If the response to another input pattern was negative (meter 
reading to the left of zero), the desired response was taken to be 
exactly -1 (meter reading half way on the left-hand side of the 
scale). If the negative response was more positive than -1, 
adaptation was performed to bring the response down toward 
-1. If the response was more negative than -1, adaptation was 
performed to bring the response up toward -1.

With adaptation taking place over many input patterns, 
some patterns that initially responded as positive could 
ultimately reverse and give negative responses, and vice 
versa. However, patterns that were initially responding as 
positive were more likely to remain positive, and vice 
versa. When the process converges and the responses stabi-
lize, some responses would cluster about +1 and the rest 
would cluster about -1.

The objective was to achieve unsupervised learning with 
the analog responses at the output of the summer (SUM) clus-
tered at +1 or -1. Perfect clustering could be achieved if the 
training patterns were linearly independent vectors whose 
number were less than or equal to the number of weights. 
Otherwise, clustering to +1 or -1 would be done as well as 
possible in the least squares sense. The result was that similar 
patterns were similarly classified, and this simple unsupervised 
learning algorithm was an automatic clustering algorithm. It 
was called “bootstrap learning” because Adaline’s quantized 
output was used as the desired response. This idea is represented 
by the block diagram in Figure 3.

Research done on bootstrap learning was reported in the 
paper “Bootstrap Learning in Threshold Logic Systems,” pre-
sented by Bernard Widrow at an International Federation of 
Automatic Control (IFAC) conference in 1966 [7]. This work 
led to the 1967 Ph.D. thesis of William C. Miller, at the time a 
student of Professor Widrow, entitled “A Modified Mean 
Square Error Criterion for use in Unsupervised Learning” [8]. 
These papers described and analyzed bootstrap learning.

Figure 2 Knobby Adaline.
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Figure 4 illustrates the formation of the error signal of boot-
strap learning. The shaded areas of Figure 4 represent the error, 
the difference between the output qk  and the sum (SUM) :k

	 ((SUM) ) (SUM) .e SGNk k k= - � (3)

The polarities of the error are indicated in the shaded areas. 
This is unsupervised learning, comprised of the LMS algorithm 
of Equation (1) and the error of equation (3).

When the error is zero, no adaptation takes place. In Fig-
ure 4, one can see that there are three different values of 
(SUM) where the error is zero. These are the three equilib-
rium points. The point at the origin is an unstable equilib-
rium point. The other two equilibrium points are stable. 
Some of the input patterns will produce sums that gravitate 
toward the positive stable equilibrium point, while the other 
input patterns produce sums that gravitate toward the nega-
tive stable equilibrium point. The arrows indicate the direc-
tions of change to the sum that would occur as a result of 
adaptation. All input patterns will become classified as either 
positive or negative when the adaptation process converges. If 
the training patterns were linearly independent, the neuron 
outputs will be binary, +1 or -1.

IV. Robert Lucky’s Adaptive Equalization,  
from the 1960’s
In the early 1960’s, as Widrow’s group at Stanford was develop-
ing bootstrap learning, at the same time, independently, a proj-
ect at Bell laboratories led by Robert W. Lucky was developing 
an adaptive equalizer for digital data transmission over tele-
phone lines [9][10]. His adaptive algorithm incorporated what 
he called “decision directed learning”, which has similarities to 
bootstrap learning.

Lucky’s work turned out to be of extraordinary significance. 
He was using an adaptive algorithm to adjust the weights of a 
transversal digital filter for data transmission over telephone 

lines. The invention of 
his adaptive equalizer 
ushered in the era of 
high speed digital data 
transmission.

Telephone channels 
ideally would have a 
bandwidth uniform 
from 0 Hz to 3 kHz, 
and a linear phase char-
acteristic whose slope 
would correspond to 
the bulk delay of the 
channel. Real tele-
phone channels do not 
respond down to zero 
frequency, are not flat 
in the passband, do not 
cut off perfectly at 

3 kHz, and do not have linear phase characteristics. Real tele-
phone channels were originally designed for analog tele-
phony, not for digital data transmission. These channels are 
now used for both purposes.

Binary data can be sent by transmitting sharp positive and 
negative impulses into the channel. A positive pulse is a ONE, a 
negative pulse is a ZERO. If the channel were ideal, each 
impulse would cause a sinc function response at the receiving 
end of the channel. When transmitting data pulses at the 
Nyquist rate for the channel, a superposition of sinc functions 
would appear at the receiving end. Sampling or strobing the 
signal at the receiving end at the Nyquist rate and adjusting the 
timing of the strobe to sample at the peak magnitude of a sinc 
function, it would be possible to recover the exact binary data 
stream as it was transmitted. The reason is that when one of the 
sinc functions has a magnitude peak, all the neighboring sinc 
functions would be having zero crossings and would not inter-
fere with the sensing of an individual sinc function. There 
would be no “intersymbol interference,” and perfect transmis-
sion at the Nyquist rate would be possible (assuming low noise, 
which is quite realistic for land lines).

The transfer function of a real telephone channel is not 
ideal and the impulse response is not a perfect sinc function 
with uniformly spaced zero crossings. At the Nyquist rate, 
intersymbol interference would happen. To prevent this, 
Lucky’s idea was to filter the received signal so that the transfer 
function of the cascade of the telephone channel and an equal-
ization filter at the receiving end would closely approximate 
the ideal transfer function with a sinc-function impulse 
response. Since every telephone channel has its own “personal-
ity” and can change slowly over time, the equalizing filter 
would need to be adaptive.

Figure 5 shows a block diagram of a system that is similar 
to Lucky’s original equalizer. Binary data are transmitted at 
the Nyquist rate as positive and negative pulses into a tele-
phone channel. At the receiving end, the channel output is 
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inputted to a tapped delay line with variable weights con-
nected to the taps. The weighted signals are summed. The 
delay line, weights, and summer comprise an adaptive trans-
versal filter. The weights are given initial conditions. All 
weights are set to zero except for the first weight, which is set 
to the value of one. Initially, there is no filtering and, assum-
ing that the telephone channel is not highly distorting, the 
summed signal will essentially be a superposition of sinc 
functions separated with Nyquist spacing. At the times when 
the sinc pulses have peak magnitudes, the quantized output of 
the signum will be a binary sequence that is a replica of the 
transmitted binary data. The quantized output will be the 
correct output sequence. The quantized output can accord-
ingly be taken as the desired output, and the difference 
between the quantized output and the summed signal will be 
the error signal for adaptive purposes. This difference will 
only be usable as the error signal at times when the sinc 

functions are at their peak magnitudes. A strobe pulse samples 
the error signal at the Nyquist rate, timed to the sinc function 
peak, and the error samples are used to adapt the weights. The 
output decision is taken to be the desired response. Thus, 
decision-directed learning results.

With some channel distortion, the signum output will not 
always be correct, at peak times. The equalizer can start with an 
error rate of 25% and automatically converge to an error rate 
of perhaps 10-8, depending on the noise level in the channel.

Figure 6(a) shows the output of a telephone channel with-
out equalization. Figure 6(b) shows the same channel with 
the same dataflow after adaptive equalization. These patterns 
are created by overlaying cycles of the waveform before and 
after equalization. The effect of equalization is to make the 
impulse responses approximate sinc functions. When this is 
done, an “eye pattern” as in Figure 6(b) results. Opening the 
eye is the purpose of adaptation. With the eye open and when 

Error

Positive Stable 
Equilibrium Point

Unstable 
Equilibrium Point

Negative Stable
Equilibrium Point

Error

Slope =  1

(SUM)

–

–

+

+

qk

yk

qk =  Signum (SUM)

(a) The Quantized Output, the Sum, and the Error vs (SUM).

- -

yk

Positive Stable 
Equilibrium Point

Unstable 
Equilibrium Point

Negative Stable
Equilibrium Point

(SUM)

ek

+ +

(b) The Error vs (SUM).

Figure 4 Bootstrap learning.



42    IEEE Computational intelligence magazine | November 2015

sampling at the appropriate time, ones and zeros are easily dis-
cerned. The adaptive algorithm keeps the ones tightly clus-
tered together and well separated from the zeros which are 
also tightly clustered together. The ones and zeros comprise 
two distinct clusters. This is decision directed learning, similar 
to bootstrap learning.

In the present day, digital communication begins with a 
“handshake” by the transmitting and receiving parties. The 

transmitter begins with a known pseudo-
random sequence of pulses, a world stan-
dard known to the receiver. During the 
handshake, the receiver knows the desired 
responses and adapts accordingly. This is 
supervised learning. The receiving adap-
tive filter converges and now, actual data 
transmission can commence. Decision 
directed equalization takes over and 
maintains the proper equalization for the 
channel by learning with the signals of 
the channel. This is unsupervised learn-
ing. If the channel is stationary or only 
changes slowly, the adaptive algorithm 
will maintain the equalization. However, 
fast changes could cause the adaptive fil-
ter to get out of lock. There will be a 
“dropout,” and the transmission will need 
to be reinitiated.

Adaptive equalization has been the 
major application for unsupervised learn-
ing since the 1960’s. The next section 
describes a new form of unsupervised 
learning, bootstrap learning for the 
weights of a single neuron with a sigmoi-
dal activation function. The sigmoidal 
function is closer to being “biologically 

correct” than the signum function of Figures 1, 3, and 5.

V. Bootstrap Learning with a Sigmoidal Neuron
Figure 7 is a diagram of a sigmoidal neuron whose weights are 
trained with bootstrap learning. The learning process of Fig-
ure 7 is characterized by the following error signal:

	 error ((SUM) ) (SUM) .e SGMk k k$c= = - � (4)
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The sigmoidal function is represented by ( ) .SGM $  Input 
pattern vectors are weighted, summed, and then applied to the 
sigmoidal function to provide the output signal, (OUT) .k  The 
weights are initially randomized, then adaptation is performed 
using the LMS algorithm (1), with an error signal given by (4).

Insight into the behavior of the form of bootstrap learning 
of Figure 7 can be gained by inspection of Figure 8. The 
shaded areas indicate the error, which is the difference between 
the sigmoidal output and the sum multiplied by the constant ,c  
in accordance with equation (4). As illustrated in the figure, the 
slope of the sigmoid at the origin has a value of 1, and the 
straight line has a slope of .c  These values are not critical, as 
long as the slope of the straight line is less than the initial slope 
of the sigmoid. The polarity of the error signal is indicated as  
+ or - on the shaded areas. There are two stable equilibrium 
points, a positive one and a negative one, where

	 ((SUM)) (SUM),SGM $c= � (5)

and the error is zero. An unstable equilibrium point exists 
where (SUM) .0=

When (SUM) is positive, and ((SUM))SGM  is greater 
than (SUM),$c  the error will be positive and the LMS algo-
rithm will adapt the weights in order to increase (SUM) up 
toward the positive equilibrium point. When (SUM) is posi-
tive and (SUM)$c  is greater than ((SUM)),SGM  the error 
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will reverse and will be negative and the LMS algorithm will 
adapt the weights in order to decrease (SUM) toward the 
positive equilibrium point. The opposite of all these will take 
place when (SUM) is negative.

When the training patterns are linearly independent and 
their number is less than or equal to the number of weights, 
all input patterns will have outputs exactly at either the posi-
tive or negative equilibrium point, upon convergence of the 
LMS algorithm. The “LMS capacity” or “capacity” of the sin-
gle neuron can be defined as being equal to the number of 
weights. When the number of training patterns is greater than 
capacity, the LMS algorithm will cause the pattern responses 
to cluster, some near the positive stable equilibrium point and 
some near the negative stable equilibrium point. The error 
corresponding to each input pattern will generally be small 
but not zero, and the mean square of the errors averaged over 
the training patterns will be minimized by LMS. The LMS 
algorithm maintains stable control and prevents saturation of 
the sigmoid and of the weights. The training patterns divide 
themselves into two classes without supervision. Clustering of 
the values of (SUM) at the positive and negative equilibrium 
points as a result of LMS training will prevent the values of 
(SUM) from increasing without bound.

VI. Bootstrap Learning with a  
More “Biologically Correct”  
Sigmoidal Neuron
The inputs to the weights of the sigmoidal 
neuron in Figure 7 could be positive or 
negative, the weights could be positive or 
negative, and the outputs could be positive 
or negative. As a biological model, this 

would not be satisfactory. In the biological world, an input 
signal coming from a presynaptic neuron must have positive 
values (presynaptic neuron firing at a given rate) or have a 
value of zero (presynaptic neuron not firing). Some synapses 
are excitatory, some inhibitory. They have different neu-
rotransmitter chemistries. The inhibitory inputs to the post-
synaptic neuron are subtracted from the excitatory inputs to 
form (SUM) in the cell body of the postsynaptic neuron. 
Biological weights or synapses behave like variable attenuators 
and can only have positive weight values. The output of the 
postsynaptic neuron can only be zero (neuron not firing) or 
positive (neuron firing) corresponding to (SUM) being nega-
tive or positive. The postsynaptic neuron and its synapses dia-
grammed in Figure 9 have the indicated properties and are 
capable of learning exactly like the neuron and synapses in 
Figure 7. The LMS algorithm of equation (1) will operate as 
usual with positive excitatory inputs or negative inhibitory 
inputs. For LMS, these are equivalents of positive or negative 
components of the input pattern vector.

LMS will allow the weight values to remain within their nat-
ural positive range even if adaptation caused a weight value to be 
pushed to one of its limits. Subsequent adaptation could bring 
the weight value away from the limit and into its more normal 

range, or it could remain sat-
urated. Saturation would not 
necessarily be permanent (as 
would occur with Hebb’s 
original learning rule).

The neuron and its syn-
apses in Figure 9 are iden-
tical to those of Figure 7, 
except that the final out-
put is obtained from a 
“half sigmoid.” So the out-
put will be positive, the 
weights will be positive, 
and some of the weighted 
inputs will be excitatory, 
some inhibitory, equivalent 
to positive or negative 
inputs. The (SUM) could 
be negative or positive. 

The training processes 
for the neurons and their 
synapses of Figure 7 and 
Figure 9 are identical, with 
identical stabilization points. 
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of the LMS algorithm of Widrow and Hoff.
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The error signals are obtained in the same manner, and the for-
mation of the error for the neuron and synapses of Figure 9 is 
illustrated in Figure 10. The error is once again given by Equa-
tion (4). The final output, the output of the “half sigmoid”, is 
indicated in Figure 10. Figure 10(a) shows the error and out-
put. Figure 10(b) shows the error function. When the (SUM) is 
negative, the neuron does not fire and the output is zero. When 
the (SUM) is positive, the firing rate, the neuron output, is a 
sigmoidal function of the (SUM). The learning algorithm is
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�
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Equation (6) is a form of the Hebbian-LMS algorithm.
The LMS algorithm requires that all inputs to the summer 

be summed, not some added and some subtracted as in Fig-
ure 9. Accordingly, when forming the X-vector, its excitatory 
components are taken directly as the outputs of the corre-
spondingly connected presynaptic neurons while its inhibitory 

components are taken as the negative of the outputs of the 
correspondingly connected presynaptic neurons. Performing 
the Hebbian-LMS algorithm of equation (6), learning will 
then take place in accord with the diagram of Figure 9.

With this algorithm, there is no inputted desired response 
with each input pattern .Xk  Learning is unsupervised. The 
parameter n  controls stability and speed of convergence, as is 
the case for the LMS algorithm. The parameter c  has the value 
of 1/2 in the diagram of Figure 10, but could have any positive 
value less than the initial slope of the sigmoid function.

	 ( ) .d
d SGM0 < <

0
c

p
p

p=

� (7)

The neuron output signal is given by:
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Equation (6) represents the training procedure for the weights 
(synapses). Equation (8) describes the signal flow through the 
neuron. Simulation results are represented in Figure 11.
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Figure 10 The error of the sigmoidal neuron with rectified output, trained with bootstrap learning.
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Computer simulation was performed to demonstrate 
learning and clustering by the neuron and synapses of Fig-
ure 9. Initial values for the weights were chosen randomly, 
independently, with uniform probability between 0 and 1. 
There were 50 excitatory and 50 inhibitory weights. There 
were 50 training patterns whose vector components were 
chosen randomly, independently, with uniform probability 
between 0 and 1. Initially some of the input patterns pro-
duced positive (SUM) values, indicated in Figure 11(a) by 
blue crosses, and the remaining patterns produced negative 

(SUM) values, indicated in Figure 11(a) by red crosses. After 
100 iterations, some of the reds and blues have changed sides, 
as seen in Figure 11(b). After 2000 iterations, as seen in Fig-
ure 11(c), clusters have began to form and membership of the 
clusters has stabilized. There are no responses near zero. After 
5000 iterations, tight clusters have formed as shown in Fig-
ure 11(d). At the neuron output, the output of the half sig-
moid, the responses will be binary, 0’s and approximate 1’s. 
Upon convergence, the patterns selected to become 1’s or 
those selected to become 0’s are strongly influenced by the 

(e) A Learning Curve.
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random initial conditions, but not absolutely determined by 
initial conditions. The patterns would be classified very differ-
ently with different initial weights.

A learning curve, mean square error as a function of the 
number of iterations, is shown in Figure 11(e). When using a 
supervised LMS algorithm, the learning curve is known to be a 
sum of exponential components [6]. With unsupervised LMS, 
the theory has not yet been developed. The nature of this 
learning curve and the speed of convergence have only been 
studied empirically.

The method for training a neuron and synapses described 
above can be used for training neural networks. The networks 
could be layered structures or could be interconnected in ran-
dom configurations like a “rat’s nest.” Hebbian-LMS will work 
with all such configurations. For simplicity, consider a layered 
network like the one shown in Figure 12.

The example of Figure 12 is a fully connected feedforward 
network. A set of input vectors are applied repetitively, peri-
odically, or in random sequence. All of the synaptic weights 
are set randomly initially, and adaptation commences by apply-
ing the Hebbian-LMS algorithm independently to all the neu-
rons and their input synapses. The learning process is totally 
decentralized. In nature, all of the synapses would be adapted 
simultaneously, so the speed of convergence for the entire net-
work would not be much less than that of the single neuron 
and its input synapses. If the first layer were trained until con-
vergence, then the second layer were trained until conver-
gence, then the third layer were trained until convergence, the 
convergence for this three-layer example would be three times 
slower than that of a single neuron and its input synapses. 
Training the network all at once would be even faster with 
totally parallel operation.

If the input patterns were linearly independent vectors, the 
output of the first layer neurons would be binary after conver-
gence. Since the input synapses of each of the first layer neu-
rons were set randomly and independently, the outputs of the 

first layer neurons would be different from neuron-to-neuron. 
After convergence, the outputs of the second layer neurons 
would also be binary, but different from the outputs of the first 
layer. The outputs of the third layer will also be binary after 
convergence.

If the input patterns are not linearly independent vectors, 
the outputs of the first layer neurons will not be purely binary. 
The outputs of the second layer will be closer to binary. The 
outputs of the third layer will be even closer to binary. The 
number of training patterns that is equal to the number of 
input synapses of each of the output layer neurons is the capac-
ity of the network. It is shown in [11] that when applying pat-
terns that are distinct but not necessarily linear independent to 
a nonlinear process such as layers of a neural network, the out-
puts of the layers will be distinct and linearly independent. If 
the number of training patterns is less than or equal to the net-
work capacity, the inputs to the output layer synapses will be 
linearly independent and the outputs of the output layer neu-
rons will be perfectly binary. If the number of training patterns 
exceeds the network capacity, the network output will be 0’s 
and “fuzzy” 1’s, close to binary.

If one were to take one of the trained in vectors and place a 
large cloud of vectors randomly disposed in a cluster about it, 
inputting all the vectors in the cluster without further training 
would result in identical binary output vectors at the output 
layer. This will be true as long as the diameter if the cluster is 
not “too large.” How large this would be depends on the num-
ber and disposition of the other training vectors. The result is 
that noisy or distorted input patterns in a cluster can be identi-
fied as equivalent to the associated training pattern. The net-
work determines a unique output pattern, a binary representa-
tion for each training pattern and the patterns in its cluster. 
This is a useful property for pattern classification.

With unsupervised learning, each cluster “chooses” its own 
binary output representation. The number of clusters that the 
network can resolve is equal to the network capacity, equal to 

the number of weights of each of 
the neurons of the output layer.

Another application is the 
following. Given a network 
trained by Hebbian-LMS. Let 
the weights be fixed. Inputting 
a pattern from one of the clus-
ters of one of the training pat-
terns will result in a binary 
output vector. The sum of the 
squares of the errors of the 
output neurons will be close 
to zero. Now, inputting a pat-
tern not close to any of the 
training patterns will result in 
an output vector that will not 
be binary and the sum of the 
squares of the errors of the 
output neurons will be large. 
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Figure 12 An example of a layered neural network.
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So, if the input pattern is close to a training pattern, the 
output error will be close to zero. If the input pattern is 
distinct from all the training patterns, the output error will 
be large. One could use this when one is not asking the 
neural network to classify an input pattern, merely to indi-
cate if the input pattern has been trained in, i.e., seen 
before or not, deja vu, yes or no? This could be used as a 
critical element of a cognitive memory system [12].

In yet another application, a multi-layer neural network could 
be trained using both supervised and unsupervised methods. The 
hidden layers could be trained with Hebbian-LMS and the output 
layer could be trained with the original LMS algorithm.

An individual input cluster would produce an individual 
binary “word” at the output of the final hidden layer. The out-
put layer could be trained with a one-out-of-many code. The 
output neuron with the largest (SUM) would be identified as 
representing the class of the cluster of the input pattern.

A three layer purely Hebbian-LMS network was simu-
lated with 100 neurons in each layer. The input patterns 
were 50-dimensional, and the network outputs, binary after 
training, were 100-bit binary numbers. A set of training pat-
terns was generated as follows. Ten random vectors were 
used as representing ten clusters. Clusters were formed as 
clouds about the ten original vectors. Each cloud contained 
100 randomly disposed points. The ten 50-dimensional 

clusters are shown in Figure 13(a) in two 
dimensions. The axes were chosen as the 
first two principal components.

All 1000 vectors were trained. The net-
work was not “told” which vector belonged 
to which of the clusters. The 1000 input vec-

tors were not labeled in any way. After convergence, the net-
work produced 100-bit output words for each input vector. 
Ten distinct 100-bit output words were observed, each corre-
sponding to one of the clouds. For a given 100-bit output 
word, all input vectors that caused that output word were given 
a specific color. The colored input points are shown in Fig-
ure  13(b). The colored points associate exactly as they did in 
the input clouds.

The uncolored points were trained into the network and 
they were “colored by the network.” The network automati-
cally produced unique representations for each of the clouds. 
This was a relatively easy problem since the number of clouds, 
10, was much less than the network capacity, 100.

Figure 14 illustrates how Hebbian-LMS creates binary 
outputs after the above training with the 1000 patterns. 
One of the neurons in the output layer was selected and 
histograms were constructed for its (SUM) before and after 
training, and for its half-sigmoid output before and after 
training. The histograms show that, before training, the his-
togram of the (SUM) was not binary and the histogram of 
the half-sigmoid output appears to be almost binary but it 
is not so. Observing the colors, one can see that some of 
the clusters were split apart. After training, the histogram 
of the half-sigmoid output shows the clusters to be intact 
and all together.
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Figure 13 50-dimensional input vectors plotted along the first two principal components.

The Hebbian-LMS algorithm exhibits homeostasis 
about the two equilibrium points, caused by reversal 
of the error signal at these equilibrium points.
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VII. Other Clustering Algorithms

A. K-Means Clustering
The K-means clustering algorithm [13][14] is one of the most 
simple and basic clustering algorithms and has many variations. 
It is an algorithm to find K centroids and to partition an input 
dataset into K clusters based on the distances between each 
input instance and K centroids. This algorithm is usually fast to 
converge, relatively simple to compute, and effective in many 
cases. However, the number of clusters “K” is unknown in the 
beginning and it has to be determined by heuristic methods.

B. Expectation-Maximization (EM) Algorithm
EM is an algorithm for finding maximum likelihood esti-
mates of parameters in a statistical model [15]. When the 
model depends on hidden latent variables, this algorithm 

iteratively finds a local maximum likelihood solution by 
repeating two steps: E-step and M-step. Its convergence is 
well known [16] and the K-means clustering algorithm is a 
special case of the EM algorithm. Same as with the K-means 
algorithm, the number of clusters has to be determined prior 
to applying this algorithm.

C. DBSCAN Algorithm
Density-based spatial clustering of application with noise 
(DBSCAN) is one of the well-known density-based clustering 
algorithms [17]. It repeats the process of grouping close points 
together until there is no point left to group. After grouping, 
the points that do not belong to any group become outliers 
and are labeled as noise. In spite of the popularity and effective-
ness of this algorithm, its performance significantly depends on 
two threshold variables that determine the grouping.
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Figure 14 Histogram of responses of a selected neuron in the output layer of a three layer Hebbian-LMS network.
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D. Comparison Between Clustering Algorithms
We have tested several clustering methods with artificial datas-
ets such as the multivariate Gaussian random dataset and some 
of the datasets from the UCI Machine Learning Repository 
[18]. Overall performance of clustering with the Hebbian-
LMS algorithm is comparable to the results obtained with the 
existing algorithms. These existing algorithms require us to 
determine model parameters manually or to use heuristic 
methods. Hebbian-LMS requires us to choose a value of the 
parameter ,n  the learning step. In most cases, this choice is not 
critical and can be made like choosing n  for supervised LMS 
as described in detail in [6].

VIII. A General Hebbian-Lms Algorithm
The Hebbian-LMS algorithm applied to the neuron and syn-
apses of Figure 9 results in a nicely working clustering algo-
rithm, as demonstrated above, but its error signal may not cor-
respond exactly to nature’s error signal. How nature generates 
the error signal will be discussed below.

It is possible to generate the error signal in many different 
ways. The error signal is a function of the (SUM) signal. A 
most general form of Hebbian-LMS is diagrammed in Fig-
ure 15. The learning algorithm can be expressed as

	 ,W W e X2k k k k1 n= ++ � (9)
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For this neuron and its synapses to adapt and learn in a nat-
ural way, the error function f((SUM)) would need to be 
nature’s error function. To pursue this further, it is necessary to 
incorporate knowledge of how synapses work, how they carry 

signals from one neuron to another, and how synaptic weight 
change is effected.

IX. The Synapse
The connection linking neuron to neuron is the synapse. Signal 
flows in one direction, from the presynaptic neuron to the 
postsynaptic neuron via the synapse which acts as a variable 
attenuator. A simplified diagram of a synapse is shown in Fig-
ure 16(a) [19]. As an element of neural circuits, it is a “two-ter-
minal device”.

There is a 0.02 micron gap between the presynaptic side 
and the postsynaptic side of the synapse which is called the 
synaptic cleft. When the presynaptic neuron fires, a protein 
called a neurotransmitter is injected into the cleft. Each acti-
vation pulse generated by the presynaptic neuron causes a 
finite amount of neurotransmitter to be injected into the 
cleft. The neurotransmitter lasts only for a very short time, 
some being re-absorbed and some diffusing away. The out-
put signal of the presynaptic neuron is proportional to its 
firing rate. Thus, the average concentration of neurotrans-
mitter in the cleft is proportional to the presynaptic neu-
ron’s firing rate.

Some of the neurotransmitter molecules attach to re-
ceptors located on the postsynaptic side of the cleft. The 
effect of this on the postsynaptic neuron is either excitato-
ry or inhibitory, depending on the nature of the synapses 
[19]–[23]. A synaptic effect results when neurotransmitter 
attaches to its receptors. The effect is proportional to the 
average amount of neurotransmitter present and the num-
ber of receptors. Thus, the effect of the presynaptic neuron 
on the postsynaptic neuron is proportional to the presyn-
aptic fir ing rate and the number of receptors present.  
The input signal to the synapse is the presynaptic firing 
rate, and the synaptic weight is proportional to the number 
of receptors. The weight or the synaptic “efficiency”  
described by Hebb is increased or decreased by increasing 
or decreasing the number of receptors. This can only  

occur when neurotransmitter is present 
[19]. Neurotransmitter is essential both as a 
signal carrier and as a facilitator for weight 
changing. A symbolic representation of the 
synapse is shown in Figure 16(b).

The effect of the action of a single syn-
apse upon the postsynaptic neuron is actual-
ly  quite small. Signals from thousands of 
synapses, some excitatory, some inhibitory, 
add in the postsynaptic neuron to create  
the (SUM) [19] [24]. If the (SUM) of the  
positive and negative inputs is below a 
threshold, the postsynaptic neuron will not 
fire and its output will be zero. If the (SUM) 
is greater than the threshold, the postsynaptic 
neuron will fire at a rate that increases with 
the magnitude of the (SUM) above the 
threshold. The threshold voltage within the 
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postsynaptic neuron is a “resting potential” close to -70 mil-
livolts. Summing in the postsynaptic neuron is accomplished 
by Kirchoff addition.

Learning and weight changing can only be done in the 
presence of neurotransmitter in the synaptic cleft. Thus, there 
will be no weight changing if the presynaptic neuron is not fir-
ing, i.e., if the input signal to the synapse is zero. If the presyn-
aptic neuron is firing, there will be weight change. The number 
of receptors will gradually increase (up to a limit) if the post-
synaptic neuron is firing, i.e., when the (SUM) of the postsyn-
aptic neuron has a voltage above threshold. Then the synaptic 
membrane that the receptors are attached to will have a voltage 
above threshold, since this membrane is part of the postsynapitc 
neuron. See Figure 17. All this corresponds to Hebbian learn-
ing, firing together wiring together. Extending Hebb’s rule, if 
the presynaptic neuron is firing and the postsynaptic neuron is 
not firing, the postsynaptic (SUM) will be negative and below 
the threshold, the membrane voltage will be negative and 
below the threshold, and the number of receptors will gradu-
ally decrease.

There is another mechanism having further control over the 
synaptic weight values, and it is called synaptic scaling [25]–
[29]. This natural mechanism is implemented chemically for 
stability, to maintain the voltage of (SUM) within an approxi-
mate range about two set points. This is done by scaling up or 
down all of the synapses supplying signal to a given neuron. 
There is a positive set point and a negative one, and they turn 
out to be analogous to the equilibrium points shown in Fig-
ure 8. This kind of stabilization is called homeostasis and is a 

phenomenon of regularization that takes place all over living 
systems. The Hebbian-LMS algorithm exhibits homeostasis 
about the two equilibrium points, caused by reversal of the 
error signal at these equilibrium points. See Figure 8. Slow 
adaptation over thousands of adapt cycles, over hours of real 
time, results in homeostasis of the (SUM).

An exaggerated diagram of a neuron, dendrites, and a syn-
apse is shown in Figure 17. This diagram suggests how the 
voltage of the (SUM) in the soma of the postsynaptic neuron 
can influence the voltage of the membrane.

Activation pulses are generated by a pulse generator in the 
soma of the postsynaptic neuron. The pulse generator is ener-
gized when the (SUM) exceeds the threshold. The pulse 
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The question remains, when nature performs learning 
in neural networks, is this done with an algorithm 
similar to Hebbian-LMS? No one knows for sure,  
but “if it walks like a duck, quacks like a duck,  
and looks like a duck, maybe it is a duck.”

generator triggers the axon to generate electrochemical waves 
that carry the neuron’s output signal. The firing rate of the 
pulse generator is controlled by the (SUM). The output signal 
of the neuron is its firing rate.

X. Postulates of Synaptic Plasticity
The above description of the synapse and its variability or 
plasticity is based on a study of the literature of the subject. 
The literature is not totally clear or consistent however. 
Experimental conditions of the various studies are not all the 
same, and the conclusions can differ. In Figure 18, a set of 
postulates of synaptic plasticity have been formulated repre-
senting a “majority opinion.”

A group of researchers have developed learning algorithms 
called “anti-Hebbian learning [30]–[32]”: “Fire together, 
unwire together.” This is truly the case for inhibitory synapses. 
We call this in the above postulates an extension of Hebb’s rule. 
Anti-Hebbian learning fits the postulates and is therefore essen-
tially incorporated in the Hebbian-LMS algorithm.

XI. The Postulates and the Hebbian-LMS Algorithm
The Hebbian-LMS algorithm of equations (6), (7), and (8), 
and diagrams in Figures 9 and 10 as applied to both 

excitatory and inhibitory inputs performs 
in complete accord with the biological 
postulates of synaptic plasticity. The second 
postulate, for excitatory inputs, is “fire 
together wire together.” The third postu-
late, for inhibitory inputs, is “fire together 
un-wire together.” This is a clear extension 
of Hebb’s rule.

An algorithm based on Hebb’s original rule would cause 
all the weights to converge and saturate at their maximum 
values after many adaptive cycles. Weights would only 
increase, never decrease. A neural network with all equal 
weights would not be useful. Accordingly, Hebb’s rule is 
extended to apply to both excitatory and inhibitory synapses 
and to the case where the presynaptic neuron fires and the 
postsynaptic neuron does not fire. Synaptic scaling to main-
tain stability also needs to be taken into account. The Heb-
bian-LMS algorithm does all this.

XII. Nature’s Hebbian-Lms Algorithm
The Hebbian-LMS algorithm performs in accord with the 
synaptic postulates. These postulates indicate the direction of 
synaptic weight change, increase or decrease, but not the rate 
of change. On the other hand, the Hebbian-LMS algorithm of 
equation (6) not only specifies direction of weight change but 
also specifies rate of change. The question is, could nature be 
implementing something like Hebbian-LMS at the level of 
the individual neuron and its synapses and in a full blown neu-
ral network?

The Hebbian-LMS algorithm changes the individual 
weights at a rate proportional to the product of the input signal 

POSTULATES OF PLASTICITY

1) Excitatory and Inhibitory ‐ no weight change with presynaptic neuron not firing: no neurotransmitter in
 gap.

2) Excitatory ‐ gradual increase in number of neuroreceptors with both pre and postsynaptic neurons firing:
 neurotransmitter in gap, membrane voltage above threshold. (Hebb’s rule)

3) Inhibitory ‐ gradual decrease in number of neuroreceptors with both pre and postsynaptic neurons firing:
 neurotransmitter in gap, membrane voltage above threshold. (Extension of Hebb’s rule)

4) Excitatory ‐ gradual decrease in number of neuroreceptors with presynaptic neuron firing and
 postsynaptic neuron not firing: neurotransmitter in gap, membrane voltage below threshold. (Extension
 of Hebb’s rule)

5) Inhibitory ‐ gradual increase in number of neuroreceptors with presynaptic neuron firing and
 postsynaptic neuron not firing: neurotransmitter in gap, membrane voltage below threshold. (Extension
 of Hebb’s rule)

6) Postulates 2)–5) reverse if u(SUM)qexceeds the equilibrium point values. Synaptic scaling (natural
 homeostasis) keeps (SUM) within small ranges about the equilibrium points, thus stabilizing firing rate
 of post‐synaptic neuron. (Beyond Hebb’s rule)

Figure 18 Postulates of plasticity.
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and the error signal. The Hebbian-LMS error signal is roughly 
proportional to the (SUM) signal for a range of values about 
zero. The error drops off and the rate of adaptation slows as 
(SUM) approaches either equilibrium point. The direction of 
adaptation reverses as (SUM) goes beyond the equilibrium 
point, creating homeostasis.

In the synaptic cleft, the amount of neurotransmitter 
present is proportional to the firing rate of the presynaptic 
neuron, i.e., the input signal to the synapse. By ohmic con-
duction, the synaptic membrane voltage is proportional to 
the voltage of the postsynaptic soma, the (SUM), which 
determines the error signal. The rate of change in the num-
ber of neurotransmitter receptors is approximately propor-
tional to the product of the amount of neurotransmitter 
present and the voltage of the synaptic membrane, negative 
or positive. This is all in agreement with the Hebbian-LMS 
algorithm. It is instructive to compare the drawings of Fig-
ure 17 with those of Figures 9 and 15. In a functional sense, 
they are very similar. Figures 9 and 15 show weight chang-
ing being dependent on the error signal, a function of the 
(SUM), and the input signals to the individual weights. Fig-
ure 17 indicates that the (SUM) signal is available to the 
synaptic membrane by linear ohmic conduction and the 
input signal is available in the synaptic cleft as the concen-
tration of neurotransmitter.

The above description of synaptic plasticity is highly sim-
plified. The reality is much more complicated. The literature 
on the subject is very complicated. The above description is a 
simplified high-level picture of what occurs with adaptation 
and learning in neural networks.

The question remains, when nature performs learning in 
neural networks, is this done with an algorithm similar to Heb-
bian- LMS? No one knows for sure, but “if it walks like a duck, 
quacks like a duck, and looks like a duck, maybe it is a duck.”

XIII. Conclusion
The Hebbian learning rule of 1949, “fire together wire 
together”, has stood the test of time in the field of neurobiol-
ogy. The LMS learning rule of 1959 has also stood in the test of 
time in the field of signal processing and telecommunications. 
This paper has introduced several forms of a Hebbian-LMS 
algorithm that implements Hebbian-learning by means of the 
LMS algorithm. Hebbian-LMS extends the Hebbian rule to 
cover inhibitory as well as excitatory neuronal inputs, making 
Hebbian learning more “biologically correct.” At the same 
time, Hebbian-LMS is an unsupervised clustering algorithm 
that is very useful for automatic pattern classification. 

Given the available parts of nature’s neural networks, namely 
neurons, synapses, and their interconnections and wiring con-
figurations, what kind of learning algorithms could be imple-
mented? There may not be a unique answer to this question. 
But it may be possible that nature is performing Hebbian-LMS 
in at least some parts of the brain.
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