COGNITIVE COMPUTATION

The Back-Prop and No-Prop Training Algorithms

Bernard Widrow, Youngsik Kim, Yizheng Liao, Dookun Park, and Aaron Greenblatt

Abstract—Back-Prop and No-Prop, two training algorithms
for multi-layer neural networks, are compared in design and
performance. With Back-Prop, all layers of the network receive
least squares training. With No-Prop, only the output layer
receives least squares training, whereas the hidden layer weights
are chosen randomly and then fixed. No-Prop is much simpler
than Back-Prop. No-Prop can deliver equal performance to Back-
Prop when the number of training patterns is less than or equal to
the number of neurons in the final hidden layer When the number
of training patterns is increased beyond this, the performance of
Back-Prop can be slightly better than that of No-Prop. However,
the performance of No-Prop can be made equal to or better
than the performance of Back-Prop by increasing the number of
neurons in the final hidden layer. These algorithms are compared
with respect to training time, minimum mean square error for
the training patterns, and classification accuracy for the testing
patterns. These algorithms are applied to pattern classification
and nonlinear adaptive filtering.

Index Terms—Neural Networks, Back-Propagation, No-Prop,
Least Squares Training, Capacity, Pattern Classification, Nonlin-
ear Adaptive Filtering.

I. INTRODUCTION

HE Back-Prop (Backpropagation) algorithm of Paul

Werbos is the most widely used method for training
multiple-layered neural networks. It is based on the method
of steepest descent. An instantaneous gradient of the mean
square error with respect to each of the weights (synapses)
of the network is computed, and the weights are changed
by small amounts in the direction of the negative gradient.
The process is repeated over again and again as the mean
square error becomes smaller. The objective is to minimize
mean square error. Details of this well-known algorithm are
available in the literature [1][2].

A new training algorithm for multi-layered neural networks
has been introduced by Widrow et. al.[3]. We call this
algorithm No-Prop. Closely related prior work by Huang
et. al. describing an algorithm that they call the Extreme
Learning Machine (ELM) has been proposed [4][5][6][7].
Under many circumstances, the ELM and No-Prop algorithms
can be substitutes for Back-Prop, offering faster and more
predictable convergence, and greater simplicity. Back-Prop
is a remarkable algorithm. No-Prop on the other hand is a
very simple option. The purpose of this paper is to compare
Back-Prop and No-Prop and to further explore the properties
of No-Prop.

With the Back-Prop algorithm, all of the weights of the
multi-layered network are changed during each training cycle.
Errors at the output layer are back propagated throughout the
network in order to compute the components of the gradient.
With the No-Prop algorithm, only the weights of the output
layer are changed during each training cycle. The weights of
the hidden layers are not trained and the output errors are not

Xk
input Yi
vector output
. h +
weights

dy,
desired
response

Fig. 1: An adaptive linear combiner

back propagated. Hence the name No-Prop. The weights of
the hidden layers are initially set randomly and independently,
and they remain fixed. The ELM algorithm also fixes the
hidden-layer weights and trains the output layer.

Back-Prop and No-Prop are supervised training algorithms.
No-Prop is easy to build in hardware and easy to implement
in software. No-Prop is less flexible than Back-Prop, but the
lack of adaptivity in the hidden layers has in many cases no
effect or only a small effect on performance. The performance
of No-Prop can always be enhanced by increasing the number
of weights of the output layer neurons, thus allowing No-Prop
to be equivalent, for many applications, to Back-Prop.

It should noted that the earliest neural network configured
with a random hidden layer and an adaptive output layer
was Rosenblatt’s perceptron [8] [9] [10]. The perceptrion
adaptation rule, however, was not based on least squares.

II. THE LINEAR COMBINER AND ITS LMS CAPACITY

In order to compare the Back-Prop and No-Prop algorithms,
the LMS capacity of neural networks will be defined. Capacity
has to do with the number of patterns that can be perfectly
trained in, with zero mean square error [3]. The simplest way
to study this would be to begin with a single neuron and its
weights, the adaptive linear combiner of Figure 1. This is a
trainable element that works as follows. A set of input training
patterns, input vectors, are presented together with associated
desired responses. The k th input pattern vector is Xy, and its
desired response, a scalar, is dj. Least squares methods can be
used to find a set of weights wy, wa, . .., w, that yield outputs
yi that match the desired responses dj as well as possible for
the set of training patterns. The objective is to set the weights
to values that minimize the mean square error, averaged over
the set of training patterns. For each input pattern, the error

COGNITIVE COMPUTATION

€, is the difference between the output response y; and the
desired response dj. The weights are the components of the
weight vector Wj,. Let the number of input training patterns
be N. Referring to Figure 1,

X, TWy,
= dy—yp =di — X" Wy

Yk
€k

D

The equations (1) can be written as simultaneous equations:

Y1 =d1 — €
Y2 = dy — €2

rwy +rowe + -+ rw, =
T21W1 + TooWa + -+ + TopW, =

yn =dn —€n
2
It is clear that for a given set of input pattern vec-
tors X1, Xo,..., Xy with their respective desired responses
di,dsa,...,dy, a set of weights wi,ws,...,w, will exist
such that all the errors €1, €3, ..., €en Will be zero as long as
N < n, and the training vectors X1, Xo,..., X are linearly
independent. If the training vectors are linearly independent,
the maximum number that can be perfectly trained in with
zero error is n, equal to the number of weights. If the number
of training patterns is greater than the number of weights,
ie. N > n, the training patterns cannot all be linearly inde-
pendent. Weight values can be found that minimize the mean
square error (MSE), but the minimum MSE will generally not
be zero.
The maximum number of patterns that can be perfectly
trained in (zero MSE), equal to the number of weights n, is

TN1W1 + TN2W2 + - - + TNpWy =

defined to be the least mean square capacity, the LMS capacityl\ietwork
nputs

of the linear combiner, the capacity of the single neuron and
its weights (synapses). Henceforth, the LMS capacity will be
simply called the capacity.

The linear combiner of Figure 1 can be trained with any
least squares method. It is quite common to do this with the
Widrow-Hoff LMS algorithm [11] [12] [13], as follows:

Wit1 = Wi+ 2uep Xy

= dp— X, Wi 3

€k
Each input pattern X, and its associated desired response
dj, are presented in sequence, and the present weight vector
Wi is changed a small amount to obtain the next weight
vector Wy, reducing the error € with each iteration. The
parameter p controls the speed of convergence and stability.
This training algorithm will find a set of weights to bring the
MSE to zero if the training patterns are linearly independent,
but if not, a set of weights will be found that minimizes MSE.
This algorithm is based on the method of steepest descent,
using an instantaneous gradient with each iteration. The mean
square error can be shown to be a quadratic function of the
weights [11] [12] [13]. When optimizing by following the
gradient, there will be no local optima. The LMS algorithm
was invented in 1959. Today, it is the world’s most widely
used learning algorithm. It is used in adaptive filters which
are used in telecom systems for echo cancelling and channel
equalization, and for many other applications.
The capacity of the linear combiner, as stated above, is
equal to the number of weights. If the number of training

patterns is less than capacity, the weights will not be totally
constrained by least squares training and this is called
“overfitting.” If the number of training patterns is equal to or
greater than capacity and the weights are totally constrained
by training, this is called “underfitting.” The ideas of capacity,
overfitting, and underfitting will be extended to apply to
layered neural networks. For this purpose, some ideas about
nonlinear mapping will be needed.

Knowledge of capacity of layered neural networks will
be needed when comparing the Back-Prop and No-Prop
algorithms.

III. NONLINEAR MAPPING AND LINEAR INDEPENDENCE

A three-layer neural network is diagrammed in Figure 2.
The first two layers, the “hidden layers”, have neurons with
sigmoidal activation functions. The neurons of the third layer
are linear combiners without sigmoids, like the neuron of
Figure 1. The two hidden layers provide a nonlinear mapping
of the network inputs into a set of inputs for the third layer,
the output layer.

hidden hidden output
layer layer layer
weights sigmoids weights sigmoids weights

o]

Errors

Nonlinear Mapping

Desired
responses

Fig. 2: A Three-Layer Neural Network

When training the neural network of Figure 2, input patterns
and their desired response patterns are presented. The weights
are changed to minimize the mean of the sum of the squares
of the errors, averaged over all the training patterns. The
errors are the difference between the outputs and the respective
desired responses. Two methods will be used for training
networks like this one, Back-Prop and No-Prop.

When the weights of the first two layers are fixed, whether
fixed after training with Back-Prop or initially fixed with
No-Prop, the nonlinear mapping shown in Figure 2 will
be memoryless. For every distinct pattern presented at the
network inputs, a distinct pattern will be presented at the inputs
to the output layer neurons. The mapping will be one-to-one
from the network input to the input of the output layer.

An interesting effect of the nonlinear mapping shown in
Figure 2 is the following: If the number of network input
patterns is less than or equal to the number of weights of

Outputs

COGNITIVE COMPUTATION

— Y%
—— Y2

. —
“Nonlinear box” Ys

Y

Fig. 3: Memoryless nonlinear mapping

each of the output layer neurons and all of these patterns
are distinct, the input patterns to the output layer will be
linearly independent vectors, whether or not the network input
patterns are linearly independent. This effect holds for 1
hidden layer, 2 hidden layers, or any number of hidden layers.
At present, we have no rigorous proof of linear independence,
but we have a strong plausibility argument and experimental
confirmation [3]. Huang et. al. have shown linear independence
for a single hidden layer by means of a statistical argument [5].

Linear independence is the key to the idea of capacity of a
layered neural network. An argument for linear independence
follows. In Figure 3, a “nonlinear box” is shown doing
nonlinear mapping. One example of a nonlinear box is the
nonlinear mapping seen in Figure 2.

In Figure 3, a set of X vectors are inputs to the nonlinear
box. A corresponding set of Y vectors are outputs of the
nonlinear box. The set of X vectors are distinct and may or
may not be linearly independent. The input X vectors have n
components, and the output Y vectors have m components.
The box is memoryless, and distinct input vectors will yield
distinct output vectors. The mapping is instantaneous and one-
to-one.

Let there be three distinct input vectors that cause three
distinct output vectors. In other words, X; — Y7, Xo — Yo,
and X3 — Y3. These vectors are

11 T12 Z13
T21 T22 x23
X1 =) Xo = . X3 = i 4
Tnl Tn2 Tn3
T11 T12 x13
T21 T22 T23
Yi=F . Yo=F . Y3=F)
Tnl Tn2 Tn3

4)
where F' is a memoryless nonlinear mapping function. The
question is, does Y3 = aY7 + 8Y35? In other words, does

13 T11 T12
Z23 T21 €22

F| =aF +B8F | |7 (6)
Tn3 Tni Tn2

Would a set of constants o and 3 exist for the nonlinear
equation (6) to be correct? The answer is generally no, and
as such, Yi, Y5, and Y3 would be linearly independent. It

— Y

would be very unlikely but not impossible for the above
equation to hold. A pathological case could occur with a
carefully chosen set of X input vectors and a carefully chosen
nonlinear mapping function. If equation (6) holds, then the
three Y vectors would be linearly dependent. Otherwise, they
are linearly independent.

Given the randomly chosen nonlinear mapping function
as illustrated in Figure 2, where the hidden layer weights
are chosen randomly and fixed. It is highly unlikely that
equation (6) would hold, and linear independence would
be almost perfectly assured. It is impossible to prove linear
independence deterministically, since linear dependence could
actually happen, but this would be extremely rare. A set of
simulation experiments have been performed to demonstrate
this rarity.

IV. LINEAR INDEPENDENCE EXPERIMENTS

By computer simulation, an extensive set of experiments
was performed in order to confirm or contradict the above
argument about linear independence, as well as this could
be resolved by experimentation. In each case, the number of
input patterns was chosen to be equal to the number of outputs
m of the nonlinear box of Figure 3. The corresponding output
patterns or output vectors were tested for linear independence
by means of the MATLAB function called “rank”. If the
rank of the set of output vectors equalled the number of
output vectors, the output patterns were linearly independent.
Otherwise, the output patterns were linearly dependent. For
these experiments, the nonlinear box of Figure 3 was actually
a neural network with randomly chosen fixed weights. The
size of the network and the number of layers was varied in
the course of the experiments.

For all of the experiments, the input patterns were random
vectors whose component values were gray scale from -1
to +1. Thirty percent of the patterns were independently
generated. Seventy percent were linear combinations of the
first thirty percent. These input patterns were all distinct, but
clearly not linearly independent. In spite of this, the question
is, would the output patterns from the nonlinear box be
linearly independent?

The first experiments were done with the hidden layers of
the neural network of Figure 2, except that only one hidden
layer was used. The weights of this layer were randomly
independently chosen and fixed. The number of neurons in
this layer was 400, giving 400 hidden layer outputs. Four
hundred input patterns were generated and the 400 hidden
layer output patterns were tested and found to be linearly
independent. This experiment was repeated 1000 times with
different random weights. In every single case, the output
patterns were linearly independent.

A second set of experiments was done, again with only
one hidden layer. The number of neurons in that layer being
alternatively 100 and 200, tested with 100 and 200 input
patterns respectively. These experiments were repeated 1000
times and in every single case, the output patterns were
linearly independent.

COGNITIVE COMPUTATION

A third set of experiments was performed with networks
having two fixed hidden layers. The first layer had alternatively
100, 200, and 400 neurons connected in turn with all
combinations of 100, 200, and 400 neurons in the second
fixed layer. The input pattern vectors had 200 components
generated as above, and the number of input patterns chosen
in each case was equal to the number of outputs of the
second layer. The second layer output vectors were linearly
independent. The experiments were repeated 1000 times, and
in every case the output vectors were linearly independent.

A fourth set of experiments was performed with networks
having three fixed hidden layers, 200 neurons in the first fixed
layer, 100 neurons in the second fixed layer, connected with
100, 200, or 400 neurons in the third fixed layer. The number
of input patterns chosen in each case was equal to the number
of neurons in the third hidden layer. These experiments were
repeated 1000 times and in every case, the third-layer output
vectors were linearly independent.

The total number of experiments was 15000. In every
case, the output vectors created by nonlinear mapping were
linearly independent. Not a single case of linear dependence
was observed. Linear dependence is highly unlikely and we
can now accept this with a great deal of confidence.

V. CAPACITY OF LAYERED NEURAL NETWORKS

The capacity (the LMS capacity) of the single neuron
of Figure 1, defined as the number of linearly independent
patterns that can be perfectly trained in with zero MSE, is
equal to the number of weights. This idea can be generalized
for layered neural networks. Consider the 3-layer network
of Figure 2. Let the weights of the two hidden layers be
randomly chosen and fixed. Let the weights of the third layer,
the output layer, be trained with the LMS algorithm. The
question is, how many patterns can be perfectly trained in,
with zero mean square error? The capacity of the network is
defined to be the answer to this question.

Perfect training of the output layer requires that the error
for each output-layer neuron be zero for each of the network
input training patterns. This will be possible if the input
patterns to the output layer are linearly independent. Note
that all the output-layer neurons have the same input patterns.
Their input patterns will be linearly independent as long as
the network input patterns are distinct and their number is less
than or equal to the number of weights of each output-layer
neuron.

The number of network input patterns that can be perfectly
trained in, the network capacity, is therefore equal to the
number of weights of each of the neurons of the output layer.
The capacity does not depend on the number of hidden layers.
The capacity can be stated as being equal to the number of
neurons in the final hidden layer, just before the output layer.
The number of neurons in the other hidden layers would have
no effect on capacity. The capacity is not affected by the
network input patterns being linearly dependent or linearly
independent, as long as they are distinct. The capacity of
this network does not depend on the random choice of the

fixed weights of the hidden layers, as long as they are chosen
with finite non-zero values, negative or positive. The random
weights are usually chosen to have zero mean.

The capacity of a network is an important property, as will
be seen with the application examples to be presented below.
It is an important property when comparing the Back-Prop
and No-Prop algorithms.

VI. NONLINEAR MAPPING; 1-TO-1 MAPPING

The Back-Prop and No-Prop algorithms will be compared
as training algorithms for multi-layer neural networks used
for pattern classification. One might wonder about the effects
of nonlinear mapping, that this might destroy whatever
structure the input patterns have and make the classification
task more difficult. This raises the immediate question, what
is the purpose of the hidden layer or layers for pattern
classification?

Without the hidden layers, only linear classification would
be possible. The input patterns would need to be linearly
separable [14][15]. With one or more hidden layers, this
limitation is overcome and more general nonlinear separation
becomes possible.

Memoryless nonlinear mappings with layered neural
networks having sigmoidal activation functions map small
neighborhoods into small neighborhoods. They map small
clusters of points into small clusters of points, even when
going through hidden layers with random fixed weights,
as with No-Prop. The reason is that Jacobian matrices for
mapping from input space to output space exist throughout
the input space.

Consider the nonlinear box of Figure 3. Let an input vector
be X 4. A matrix of partial derivatives, the Jacobian matrix,
can be written as follows:

Oy1 Oy1 ... Ou
oz Oxo Ox .,
vz 92 .. Ouw
Oz e Oy,
.) . (7
OYm OYm OYm
Bxl 85,82 6‘Ln A

Now let another input vector be Xp. The Jacobian can be
written as

Oy1 Oy1 Oy1
@Il 8932 c’)xn
O0y2 Jy2 ... Oy
Oz Oxo Oy,
)) . (8)
OYm OYm OYm
oxq Oxo Oxp B

For layered neural networks with sigmoidal activation func-
tions, these derivatives will exist, and will vary continuously
if the input vector were varied gradually, as if for example one
wished to morph vector X 4 into vector X 5. Small changes in
the input vector will cause small changes in the output vector.
Neighborhoods will map into neighborhoods.

It is common for an input pattern, a vector with n com-
ponents, to be represented as a point in an n-dimensional
space. A pure noise free input pattern is thereby a point in

COGNITIVE COMPUTATION

the space. A collection of noisy versions of the pure pattern
is a cluster of points in the space. Let all the points of the
cluster be contained within a manifold. The manifold itself is
an infinite set of points in the space. The input manifold and
all the points therein will map into an output manifold with
internal points corresponding to the internal points of the input
manifold. This is a consequence of a neighborhood mapping
into a neighborhood. The output manifold will usually be a
distorted form of the input manifold.

Now suppose that there is a second pure noise free input
pattern, and a second collection of noisy versions of it. Let
there be a second manifold that encloses the second cluster
in the input vector space. Assume that the two manifolds do
not overlap and have no points in common. The question is,
could the two output manifolds overlap?

This is a difficult question to answer in general. If the output
manifolds do not overlap, this would be desirable. Separability
of the input manifolds would lead to separability of the output
manifolds. In that case, nonlinear mapping would “do no
harm” from the point of view of pattern classification. If the
output manifolds were to overlap, then the nonlinear mapping
would instill confusion and perfect pattern separation would
not be possible with the outputs of the nonlinear map. Harm
will have been done.

Nonlinear mapping is useful, providing linear independence
and allowing nonlinear separation, but it sometimes could
cause overlap of clusters that were originally separated. The
clusters and manifolds sketched in Figure 4 illustrate the idea.

Referring to Figure 4, points in the input space map into

Input
Space

~ 7 Nonlinear
- - Mapping

Nonlinear :
Mapping «____

Output
Space

(a) bijection, 1-to-1 mapping (b) Injection only, output space overlap
Fig. 4: Nonlinear Mapping: (a) bijection, one-to-one mapping,
(b) injection, but not bijection.

points in the output space. This is injection. In the reverse
or inverse direction, points in the output space correspond to
unique points in the input space, one-to-one correspondence,
in Figure 4(a). This is bijection. In Figure 4(b), not all points
in the output space correspond to unique points in the input
space. Where the manifolds overlap, points in the overlap
region correspond to points in both input manifolds and are
not uniquely identifiable.

Figure 5 shows simple one-layer neural networks that per-
form nonlinear mapping. The vector X is the input. The vector
Y’ is the output. The weights are chosen randomly, and are
represented by the matrix W whose rows correspond to the

weight vectors of the individual neurons. The linear sums are
represented by the vector Y. The nonlinearities are sigmoids.
The network of Figure 5(a) has 3 inputs and 3 outputs. The
network of Figure 5(b) has 5 input and 3 outputs.

For every X vector, there will be a unique Y vector and a

(a) One-to-one mapping

(b) Many-to-one mapping

Fig. 5: Neural Networks for Nonlinear Mapping

unique Y vector. The question is, is there a unique X vector
that corresponds to every Y’ vector? The answer is, possibly
yes for the network of Figure 5(a), and no for the network of
Figure 5(b).

Because of the monotonic nature of the sigmoids, for every
Y’ there will be a unique Y, so the question can be changed
to, is there a unique X vector that corresponds to every Y
vector? Referring to Figure 5(a), the vector Y can be written
as

Y =WX 9)
If W—1 exists, then X can be written as
X=w-ly (10)

and there will be a unique X for every Y. Therefore, there
will be a unique X for every Y’. This will not be the case
for the neural network of Figure 5(b). The W matrix here is
not square and does not have an inverse.

Why would the W-matrix of equation (9) have an inverse?
It turns out that since the elements of W are randomly
chosen, there is a high probability that W1 exists. The
probability gets closer and closer to 1 as the number of
neurons is increased, as the dimensions of the W -matrix
increases. Mathematical justification for this statement is
provided by reference [16].

With 10 or more neurons, it is almost certain that W'
exists. We have tested the rank of 50000 10x10 random
matrices, and not a single case of singularity has been
observed. Figure 4(a) represents the mapping behavior of the
neural network of Figure 5(a), and Figure 4(b) represents
a possible mapping behavior of the neural network of
Figure 5(b).

By induction we conclude that a layered neural network
having equal numbers of neurons in each hidden layer, with
the number of neurons in each layer made equal to the
number of components of the input vector, with the weights
of the hidden layers chosen randomly, the hidden layers will
provide 1-to-1 bijection mapping and will not cause cluster
overlap when the input clusters do not overlap. This is not

COGNITIVE COMPUTATION

affected by the number of neurons in the output layer. Other
network configurations might create overlap, which would
make pattern classification more difficult or impossible. It
should be noted that although overlap would be possible with
certain network configurations, overlap will not automatically
occur with all sets of input patterns.

VII. TRAINING CLASSIFIERS WITH BACK-PROP AND
No-PrOP

Classification experiments were performed to compare the
behavior of the Back-Prop and No-Prop algorithms. Experi-
ments were done with numbers of training patterns less than
or equal to the network capacity, and with numbers of training
patterns greater than capacity. The training and testing patterns
were obtained from a set of 20,000 Chinese characters. Each
character had 20x20 pixels. The content of each pixel was
either black or white, represented numerically as +0.5 or -
0.5 respectively. Each character was able to be translated up
or down by one pixel, and left or right by one pixel. For
these experiments, nine distinct patterns were constructed by
translation from each Chinese character. An example is shown
in Figure 6.

Fig. 6: Nine translations, left-right, up-down, of a Chinese
character. Grids are shown to help illustrate the translations.
Each of these patterns had 20x20 pixels, black or white.

Noisy patterns were constructed by adding various amounts
of independent random noise to the pixels of the pure binary
patterns. Figure 7 shows probability density distributions for
different amounts of noise, on a percent basis. The percent
noise refers to the ratio of noise variance to the variance of the
pure pixels. Noise applied to a +0.5 pixel had the probability
densities on the right in Figure 7. For a -0.5 pixel, the additive
noise had the probability densities on the left. Figure 8 shows

(a) 40% noise

(c) 120% noise W%m

Fig. 7: Probability density distributions for noise additive to
binary Chinese characters.

40% Noise 80% Noise

Pure

120% Noise

Character 1

Character 2

Character 3

Fig. 8: Examples of Chinese characters with various amounts
of noise.

examples of Chinese characters with various amounts of noise.

The neural network that was used for comparing Back-Prop
and No-Prop in a classifier application is shown in Figure 9.
It is a three-layer network having two hidden layers and one
output layer. With Back-Prop, all three layers are trained. With
No-Prop, the hidden layers have their weights set randomly
and fixed, while the third layer, the output layer, is trained.
The input patterns were 20x 20, 400 pixels, so the inputs to the
neural network were pattern vectors having 400 components.
The number of output layer neurons corresponded to the
number of pattern classes. For these experiments, there were
50 classes, each class corresponding to a single character. The
character is of the same class in all nine positions.

Each output neuron was assigned to a pattern class and
was trained to produce a +1 output for that class while all
other neurons were trained to -1 outputs for that class. After
training, a test pattern would be classified by identification
with the output layer neuron with the most positive output.
This is a one-out-of-many code.

The network of Figure 9 had 50 output neurons. The two
hidden layers had various numbers of neurons but always

COGNITIVE COMPUTATION

7

7 W

Input
Pattern
(400 pixel)

MAX

DETECTOR Output

Summers “giooids
Output layer

Hidden layers

Fig. 9: A trainable neural-net classifier

the same number of neurons in each layer. For different
experiments, the hidden layers had 400 neurons, 800 neurons,
or 1200 neurons. The network capacities were 400, 800,
and 1200, respectively. When trained with Back-Prop with
a capacity of 400, the algorithm was designated as BP 400.
When trained with No-Prop with a capacity of 400, the
algorithm was NP 400. With a capacity of 800, the algorithm
was NP 800, and with a capacity of 1200, the algorithm
was NP 1200. For all of the experiments, the network was
trained with 50 Chinese characters in all 9 positions, with
a small amount of independent noise added to the training
patterns, 10%. Deliberately adding a small amount of noise to
the original pure characters turned out to be beneficial when
the trained network was tested with noisy versions of the 50
Chinese characters in any of their nine positions.

The mean square error was minimized by the training
process. Errors were observed before training, and the mean
of the squares of the errors was the initial MSE. The percent
MSE was the ratio of MSE to the mean square of the desired
output values, multiplied by 100. Learning curves that show
percent MSE as a function of the number of adapt cycles or
iterations are shown in Figure 10 for Back-Prop and No-Prop
learning.

—_
o

MSE (%)
S = N W e U N9 ® O

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
of iterations

Fig. 10: Back-Prop and No-Prop learning curves. Three-layer
neural network, training with noisy patterns with small noise
(10%), 50 classes.

The training patterns were 50 Chinese characters. For each
character in each translated position, a cluster of 10 noisy
versions were constructed with 10% noise making the total

Classification,

20

15 |

10

H BP 400
O NP 400
& NP 800

3 NP 1200

Misclassification Rate (%)

20% 40% 60% 80% 100% 120%

Noise Level

Fig. 11: Classification errors when testing with noisy Chinese
characters.

number of training patterns 4500. In all cases, training was
underfitted, with the number of training patterns greater than
capacity. Back-Prop was performed with a capacity of 400.
No-Prop was performed with capacities of 400, 800, and
1200.

The learning curves of Figure 10 show that all the
No-Prop algorithms converge with less adaptation cycles
than Back-Prop 400. It should be noted that each cycle of
Back-Prop 400 with the 3-layer network described above
required 1.7M floating operations per training pattern.
Increasing the capacity increases the computational cost.
With Back-Prop, computation increases with the square of
capacity. With No-Prop, computation increases linearly with
capacity. For the above network, No-Prop 400 required 0.1M
floating operations per cycle, No-Prop 800 required 0.2M
floating operations per cycle, and No-Prop 1200 required
0.3M floating operations per cycle. Comparing BP 400
with NP 1200, Back-Prop required almost 5 times as much
computation per cycle, and No-Prop converges with many
times less cycles than Back-Prop. Both algorithms yielded
very low levels of mean square error, less than 0.5% with
4500 training patterns.

Once the network was trained, the question arose about
the effectiveness of the network as a classifier of the Chinese
characters with additional noise. The issue is generalization
with noisy test patterns. Figure 11 presents results of
classification experiments with additive noise ranging from
20% to 120%. The misclassification rate, the percent of
classification errors over hundreds of noisy versions of each
of the 50 characters in all 9 positions, is shown in the figure.
The error rates are surprisingly small even with noise at the
120% level. The rate of misclassification was 1% for the BP
400 network, 2% for the NP 800 network, 0.2% for the NP
1200 network.

For these experiments, the performance of No-Prop was
made equal to or better than that of Back-Prop by increasing
the network capacity by a factor of 3, comparing BP 400 with
NP 1200. There was no need to train the hidden layers, and
training the output layer with the LMS algorithm of Widrow

COGNITIVE COMPUTATION

Sigmoid

Gaussian Sum

Fig. 12: A Gaussian sum superposed on a sigmoid character-
istic.

and Hoff allowed one to precisely predict learning rate and
misadjustment [12][13]. With No-Prop, convergence was at
a global optimum. With Back-Prop, the rate of convergence
was hard to predict and convergence to a global optimum
could not be assured.

VIII. CHOICE OF RANDOM WEIGHT DISTRIBUTIONS FOR
THE HIDDEN LAYERS WHEN USING NO-PROP

For the experiments with No-Prop described above, the
weights of the hidden layers were randomly selected from
uniformly distributed probability densities. The choices of the
variances were not critical, but some thought was warranted
to insure that the sigmoids were not always saturated and
alternatively not always operated at low levels making them
essentially linear devices.

Consider the example of the Chinese characters. They
are 20x20, providing 400 inputs to the first hidden layer
neurons. Each pixel has a value of +0.5 or -0.5, plus noise,
having a variance of the order of 0.25, plus that of possible
additive noise. In the first hidden layer neurons, Gaussian
sums (Central limit theorem) are generated whose variances
are the variances of the input image pixels multiplied by
the variance of the independently randomly chosen weights,
multiplied by 400. If the weights are chosen from a uniform
density, the variance of the weights will be % the square of
the width of the uniform density.

In each of the neurons, the sums are applied to sigmoids.
The probability density of a Gaussian sum is sketched
in Figure 12, superposed on the sigmoid characteristic.
Intuitively, the variance of the first layer random weights can
be chosen so that abscissas at £1 standard deviation of a
typical Gaussian sum would intersect its sigmoid at a range
of its output values of +0.2 to +0.8 and this would be fine.
This is not critical.

To choose the variance of the random weights of the second
hidden layer, the same method can be used. The inputs to the
second hidden layer are outputs of the sigmoids of the first
hidden layer, and these outputs will have a variance of the

order of 0.25.

It should be noted that Back-Prop does not need this
choice since it adapts the hidden layer weights automatically,
although making this choice when using Back-Prop would
insure good initial conditions and would aid the convergence
process.

IX. TRAINING NONLINEAR ADAPTIVE FILTERS WITH
BACK-PROP AND NO-PROP

Adaptive filters and their applications are described in
reference [12] and in many other books and papers. They are
an important part of the repertory of digital signal processing.
Linear adaptive filters become linear filters after learning,
when their weights converge and stablize. Nonlinear adaptive
filters become nonlinear filters when their weights converge
and stablize. In this section, an adaptive filter that is a com-
bination of linear and nonlinear adaptive filters is described.
The nonlinear filter components contained neural networks
that were trained alternatively with both Back-Prop and No-
Prop. The linear component was trained with LMS. Both
components were trained with the same error signal, and both
contributed to minimization of the MSE.

UNKNOWN
DYNAMIC
SYSTEM

SYSTEM
INPUT

SYSTEM
OUTPUT

ERROR *
SIGNAL

ADAPTIVE
FILTER

/

Fig. 13: Using an adaptive filer for modeling an unknown
dynamic system.

Figure 13 illustrates an application for adaptive filtering, that
of modeling an unknown dynamic system. In the terminology
of the control system field, this is called “plant identification.”
An input signal is applied to both the unknown dynamic
system to be modeled and to the adaptive modeling filter. The
output of the unknown system becomes the desired response
for the adaptive system. The difference between the output of
the unknown system and the adaptive filter is the error signal
that is used by the adaptive algorithm for training the adaptive
filter. Low error indicates a good match. Note that a nonlinear
adaptive filter is required for accurate modeling of a nonlinear
unknown dynamic system.

SYSTEM__ | 05 _) 1 [systEm
INPUT 1-047° 1-08z°" OUTPUT
SIGMOID
LINEAR LINEAR
DIGITAL DIGITAL
FILTER FILTER

Fig. 14: The unknown dynamic system of this study.

For this study, a nonlinear dynamic system was computer
simulated as follows. A sigmoid was flanked by linear digital

COGNITIVE COMPUTATION

filters, as is shown in Figure 14. The nonlinearity was created
by the sigmoid, and the dynamic aspects were created by the
two digital filters. The problem was to model this specific
nonlinear dynamic system using the standardized general
purpose nonlinear adaptive filter shown in Figures 15 and 16.

SYSTEM %I\LKNIX%IVY? SYSTEM
INPUT OUTPUT
SYSTEM
+
ERROR
{ SIGNAL _@

1 1

! LINEAR !

| ADAPTIVE —l |

1 1

1 FILTER 1 ADAPTIVE

1 / : FILTER

! NONLINEAR] * ouTruT

1 1

1 ADAPTIVE ! GENERAL PURPOSE

1 FILTER le— NONLINEAR

: \[: ADAPTIVE FILTER

Fig. 15: A general purpose nonlinear adaptive filter, having
linear and nonlinear components, modeling an unknown dy-
namic system. The same error signal is used for training the
weights of both adaptive filters.

The linear adaptive filter component is FIR (finite impulse
response), a tapped delay line trained with LMS. The nonlinear
adaptive filter component is a tapped delay line whose taps
provide input signals to a 3-layer neural network trained with
Back-Prop or No-Prop. The same error signal is used for
both components with the mutual purpose of minimizing mean
square error. The experiments of this study compared No-Prop
with Back-Prop training of the nonlinear component.

SYSTEM 0.5 1 SYSTEM
INPUT 1-04z7" 1-08zt OUTPUT
A A S A

WEIGHTS / 4o ED+
- Z)
ozt ot ottt
WEIGHTS
+ ADAPTIVE
" CZS—-—) FILTER
WEIGHTS + OUTPUT
< WEIGHTS
2

Fig. 16: Details of Figure 15.

For computer simulation, the sampling rate was set at 16
kHz for the unknown dynamic system and for the linear and
nonlinear adaptive filters. The tapped delay lines for these
filters each had 100 taps. For the nonlinear adaptive filter,
both hidden layers had 400 neurons for Back-Prop and 1200
neurons for No-Prop. The random fixed weight values for No-
Prop were chosen by observing the criteria of Section VIII

above. The system input signal during training was a Gaussian
first-order Markov process.

Learning curves for the general purpose nonlinear adaptive
system contrasting training with BP400 and training with
NP1200 is shown in Figure 17. The two curves are almost
identical. These curves give percent MSE versus the number
of training cycles. The percent MSE was calculated as the ratio
of the mean square of the error signal to mean square of the
unknown system output signal, multiplied by 100.

Training MSE Percentage

1000 1500 2000

Training Cycle
Fig. 17: Learning curves for Training with BP400 and NP1200.

0 500

When modeling an unknown nonlinear dynamic system,
the model, being generic, would invariably have a different
architecture from that of the system being modeled. This
is certainly true of the case being studied and illustrated
in Figure 16. The model may fit for the training data, and
Figure 17 shows low error after training, but would the model
fit for input data that it was not specifically trained on?
Statistical generalization requires low error on new input data
having the same statistical properties as the training data.
This did indeed work for the system being tested. Table I
shows percent MSE after different number of training cycles,
stopping training for testing, then starting training again.
BP400 had slightly less error than NP1200.

. MSE Percentage
Training Cycle 55260 TNP1200
2000 548 % | 6.63 %
5000 437 % | 5.44 %
10000 412 % | 5.10 %
15000 4.00 % | 4.96 %

TABLE I: Statistical generalization. Performance results with
random input signals not used for training.

The statistical generalization results were quite good for both
training algorithms. Further testing for generalization was done
with sinusoidal inputs that were of course quite different from
the first-order Markov training signals. The results were not
perfect, but surprisingly not bad. They are shown in Figure 18
for a 100 Hz input and in Figure 19 for a 3 kHz input.

This study of nonlinear adaptive filtering is a work in
progress. This is a very important subject in the field of
adaptive signal processing, and will be a subject for future

COGNITIVE COMPUTATION

Unknown Syste

N W N

Output Signal
o

A b N

| | | | | | |)
650 700 750 800 850 900 950 10C
Time, Number of Samples

& ,]
500 550 600

Fig. 18: Generalization with a 100 Hz sinusoidal input sig-
nal. Comparison of unknown system output with outputs of
adaptive models trained with BP400 having 10.42% MSE and
NP1200 having 9.61% MSE. The difference in performance
of the two adaptive models is indistinguishable.

Output Signal

B \ , , , \ \ , \ ,)
80 982 984 986 _ 988 990 992 994 996 998 1000
Time, Number of Samples

Fig. 19: Generalization with a 3 kHz sinusoidal input signal.
Comparison of unknown system output with outputs of adap-
tive models trained with BP400 having 4.45% and NP1200
having 3.65% MSE. The difference in performance of the two
adaptive models is very slight.

research. Both Back-Prop and No-Prop have worked well.

X. CONCLUSION

Back-Prop and No-Prop are least squares training algo-
rithms for layered neural networks. The purpose of this paper
is to compare them regarding structure and performance.
Applications to adaptive pattern classification and nonlinear
adaptive filtering are described and used in the comparison.

In making the comparison, a useful idea is that of LMS
capacity or simply the capacity. The capacity of a layered
neural network is equal to the number of neurons in the final
hidden layer which is equal to the number of weights in
the output layer neurons. Equivalent performance for the two
algorithms has been achieved by increasing the capacity of the
network when using No-Prop by an approximate factor of 3.
With No-Prop, the training algorithm is simpler and has no
relative optima, but one may need to use more neurons in the
final hidden layer.

The hidden layers of a neural network play an important
role. They allow nonlinear separation for adaptive pattern
classification, and they provide the required nonlinearity for
nonlinear adaptive filtering. When the weights of the hidden
layers are randomized and fixed, a concern might be that the

input patterns will be scrambled and information might be lost.
But the random hidden layers can be designed so that input
patterns in neighborhoods that do not overlap can produce
output patterns in neighborhoods that also do not overlap. As
such, no harm is done by the hidden layer or layers.

The Back-Prop algorithm is very useful and very popular.
The No-Prop algorithm could also be very useful and very
popular. No-Prop is easy to implement and well worth trying.

REFERENCES

[1] P. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences,” Harvard University, 1974.

[2] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Fondations. MIT press,
1987.

[3] B. Widrow, A. Greenblatt, Y. Kim, and D. Park, “The no-prop algorithm:
A new learning algorithm for multilayer neural networks,” Neural
Networks, vol. 37, pp. 182-188, Jan. 2013.

[4] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
a new learning scheme of feedforward neural networks,” in [EEE
International Joint Conference on Neural Networks, 2004, pp. 985-990.

, “Extreme learning machine: theory and applications,” Neurocom-

puting, vol. 70, no. 1, pp. 489-501, 2006.

, “Extreme learning machine for regresion and multiclass class-
fication,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp.
863-878, 2006.

[71 G. B. Huang, H. Zhu, X. Ding, and R. Zhang, “Extreme learning

machine for regresion and multiclass classfication,” IEEE Transactions

on Systems, Man, and Cybernetics - Part B, vol. 42, no. 2, pp. 513-529,

2012.

F. Rosenblatt, Principles of neurodynamics: perceptrions and the theory

of brain mechanism. Spartan Books, 1962.

[9]1 H. D. Block, “The perceptron: A model for brain functioning. i,” Reviews

of Modern Physics, vol. 43, no. 1, pp. 123-135, 1962.

H. D. Block, B. W. J. Knight, and F. Rosenblatt, “Analysis of a four-

layer series-coupled perceptron. ii,” Reviews of Modern Physics, vol. 43,

no. 1, pp. 135-142, 1962.

B. Widrow and M. E. Hoff Jr., “Adaptive switching circuits,” in /IRE

WESCON Convention Record, 1960, pp. 96-104.

B. Widrow and S. D. Stearns, Adaptive signal processing. Prentice-Hall,

1985.

B. Widrow and E. Walach, Adaptive Inverse Control, Reissue Edition:

A Signal Processing Approach. Wiley-IEEE Press, 2008.

T. M. Cover, “Geometrical and statistical properties of systems of linear

inequalities with applications in pattern recognition,” IEEE Transactions

on Electronic Computers, vol. EC-14, no. 3, pp. 326-334, 1965.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-

Interscience, 2000.

M. Rudelson, “Norm of the inverse of a random matrix,” in Foundations

of Computer Science, 2006. FOCS ’06. 47th Annual IEEE Symposium

on, 2006, pp. 487-496.

[5]
[6]

[8

—_

(10]

(11]
[12]
[13]

[14]

[15]

[16]

