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A straightforward simulation technique is adequate for error
probabilities greater than 10~ %, but requires too much time to
practically evaluate smaller error probabilities. To obtain results
for smaller error probabilities, we used importance sampling
(7], [8].

In Fig. 3 we show the results of the numerical simulations for
a channel with 32-ary orthogonal signaling. The block length of
the code was 31 symbols, and the minimum distance of the code
was set equal to 7. Although this set of code parameters is the
same as those used in Section TV-A, the actual code is quite
different, due to the fact that the symbols are no longer binary.
In addition, note that the results for this chapter are compared
to errors-only coding, and not to GMD decoding. Results for
GMD decoding are considerably more difficult to obtain by
simulation because the «,’s do not have a convenient distribu-
tion. A straightforward simulation for GMD decoding would be
slower due to the need to simulate the demodulator output for
each letter a;. In addition, the implementation for improved
GMD decoding is nearly the same as that of GMD decoding.
Since the improved version is always better, there is no reason
why it should not be used instead.

If we compare these results to those obtained for binary
orthogonal signals, we can sce that the relative performance of
improved GMD decoding and errors-only decoding has the
same appearance as a function of the signal-to-noise ratio. In
fact, the performance difference between improved GMD de-
coding and errors-only decoding for the results of Section III
and this section are almost identical as a function of codeword
error probability.

V. CONCLUSION

In this correspondence, we presented two improvements to
the generalized-minimum-distance decoding acceptance crite-
rion. The definition of the reliabilities has been extended so that
nonbinary signal sets can be better handled, in particular, it is
possible to use the true likelihood metric. In addition, we have
developed a new acceptance criterion using the vector reliabili-
ties that is less stringent than previous conditions. We have
shown that the performance (when using the new acceptance
criterion) of the improved algorithm (in additive-white-Gaussian
noise) is asymptotically the same as that of maximum-likelihood
decoding for channels using M-ary orthogonal signaling.
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On the Competitive Optimality of Huffman Codes
Thomas M. Cover

Abstract —Let X be a discrete random variable drawn according to a
probability mass function p(x), and suppose p(x), is dyadic, i.e.,
log(1/p(x)) is an integer for each x. We show that the binary code
length assignment

{(x)=log(1/p(x))

dominates any other uniquely decodable assignment /'(x) in expected
length in the sense that F/(X)< E/'(X), indicating optimality in long
run performance (which is well known), and competitively dominates
I'(x), in the sense that Pr{/{( X) < I'(X)}> Pr{l( X)> I'( X))}, which indi-
cates [ is also optimal in the short run. In general, if p is not dyadic,
then /={log!/p] dominates /' + 1 in expected length and competitively
dominates /' + 1, where /' is any other uniquely decodable code.

Index Terms —Huffman codes, Shannon codes, competitive optimality,
optimality of Huffman codes, data compression.

1. INTRODUCTION

Flying on Mexican airlines into the United States, one ob-
serves two signs on the bulkhead: No smoking, and under it, No
fumar. The other says, Fasten seat belts, and under it,
Abrocharse el cinturon. Note that the “Fasten secat belts” sign is
shorter in English than in Spanish, while the reverse is true of
the “No smoking” sign. Thus English and Spanish are “‘competi-
tively”” equal for this example—each language is shorter half the
time. However, the average number of symbols for these two
signs clearly favors English over Spanish. Is it conceivable in
general that brief translations are shorter in Spanish more often
than they are in English, while long translations are shorter in
English than they are in Spanish? Mathematically put, we ask
whether it is possible that Pr(/, >1I¢)>1/2 while Elg. < Elq,
where [ and [ are the lengths of the English and Spanish
versions.

Here is a coding example where one observes this sort of
anomalous ordering. We consider a random variable X that
takes on four possible values and we assign the encodings C,
and Cy into binary strings as follows:

X =1, 2, 3, 4
plx)=1, T T 7
Cp(x) =000, 001, 010, 011
[x)=3, 3, 3, 3
C(x)= 00, 01, 10, 11111
I(x)=2, 2, 2, 7.
The expected description Iengths under each code are
El(X)=3; ElJ(X)=33,

while the probability that code Cy is shorter than code C,. is
Pr{l . (X)>l(X)}=1%.
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Notice how the Spanish word length assignment /((x) undercuts
the English assignment for x =1,2,3. One notes that the ex-
pected value of [, is less than the expected value of /. On the
other hand, because /. is dominated by /¢ in three out of the
four cases, the probability that [, > { is 2. Thus, in this exam-
ple, (binary) English is longer most of the time but is shorter on
the average.

This coding example illustrates the possibility of different
orderings under the two criteria, but lacks charm because both
encodings are extraordinarily wasteful. There is a reason for this
which will be proved in Theorem 1. Apparently optimal codes
(Huffman codes, for dyadic distributions) enjoy the distinction
of being shorter on the average and also on the average shorter
in a sense that will be made precise.

We first review the well understood notion of expected length
optimality and then define competitive optimality. An inequality
will be proved that will be used to show that Huffman codes for
dyadic sources are strictly competitively optimal and strictly
expected length optimal. A similar but somewhat weaker result
will be proved for nondyadic distributions.

The main point to be made from all of this is that Huffman
coding for dyadic distributions has an unexpected bonus. Not
only is it expected length optimal, but it cannot be undercut by
another code more than half the time, even if the other code is
granted infinite expected length.

II. DEFINITIONS

We wish to show that codes with word lengths [/(x)=
log1/p(x) arc shorter than any other code assignment ['(x)
more often than not in the sense that

Pr{i<l'}>Pr{l>1},
or equivalently,

Zp(x)sgn(l(x)— I'(x)) <0,

for all uniquely decodable assignments {'(x), where sgn(t) is
defined by

1, >0
sgn(t)=< 0, t=0
-1, 1<0.

Throughout, log denotes log to the base 2.

We recall the theory of data compression for the discrete
random variable X ~ p(x), x € X ={x, x5, -, x,,}, p(x;)>0,
Lp(x;)=1. Let /(x) denote the length of the binary codeword
assigned to x € X. By the Kraft-McMillan inequality [4], the
word lengths /{x) correspond to a uniquely decodable binary
code if and only if

Y 27« )]

re X

We use the following definitions:

Definition: The probability mass function p(x) is said to be
dyadic if log(1/p(x)) is an integer for each x € X.

Definition: A code with length assignment / dominates code I’
in expected length if

EN(X)<El'(X).
Definition: A code I competitively dominates I' if
Pr{i(X)<I'(X))=Pr{l(X)>I'(X)}.
We will say that [ is competitively optimal if | competitively
dominates all other uniquely decodable assignments /'.
Remark: 1t is worth noting that cxpected length optimality is

not well defined if H(x) =1, while competitive optimality may
still be achicvable.

It is known that /(X)=[logl/p(x)] codes are close to opti-
mal in expected length, where [¢] denotes the least integer > ¢,
as shown in the following theorem.

Theorem 1 (Shannon [1]): Let I(x)=[logl/p(x)]. Then

H(X)<El(X)<H(X)+1 (2)
with equality iff p(x) is dyadic. Moreover, if p is dyadic,
EI(X) < EI'(X), forallI', (3)
if p is dyadic. Finally,
E(X)y<E(I'(X)+1), foralll, (4)

for any p(x).

Thus [ is expected length optimal if p is dyadic and within one
of optimal in general.

Proof: By definition of I(x),
1 () <1 1
<i(x)<log
p(x) p(x)

Taking expectations yields (2). Since any uniquely decodable
code has word length assignments /'(x) satisfying (1), the infor-
mation inequality ¥ p(x)log p(x)/27 >0 yields ElI'(X)=
H(X), with equality iff /'(x)=1[(x), thus proving (3). This in-
equality together with (2) yields (4). |

+1.

log

II. CompPETITIVE OPTIMALITY
We now examine the performance of the Shannon code
I(x)={log(1/p(x))]
with respect to the competitive shortness criterion
Esgn(I'(x)—-1(x)).
Our proof will be based on the inequality
sgn(¢)<2'—1, t=0,+1,+£2,---. (5)

Note that this inequality is false if ¢ is unrestricted. We first
examine the case where the Shannon code is the Huffman code,
which occurs when p(x) is dyadic.

Theorem 2: If p is dyadic, then
Esgn('(x)—1(x)) <0, (6)

for all '+ [ satisfying the Kraft inequality. This is equivalent to
Pr{i<{}>Pr{i>1}

for all uniquely decodable codes '+ /.
Proof: Let I(x)=log(1/p(x)). Then
Pr{l> 1} =Pr{l<l}= ) p(x)sgn({(x)~1'(x))

< T p(n)(@0=1 1)
S IERICIEE)
-r2-x2
=y27"~1
<0, (7

where the first inequality follows from (5) and the second from
the Kraft inequality. This establishes weak inequality in (6). To
show the strict inequality and thus that / is uniquely optimal, we
note that the first inequality in (7) is an equality only if + =0 or
1. Thus either I'(x)=1(x), or I'(x)=1(x)+ 1. If I'(x)=1(x)+1
for any x, then the Kraft inequality is strict: £2/¢ <1, and (7)
is a strict inequality. We conclude that equality holds in (7) if
and only if I'(x)=I(x) for all x. Thus / is uniquely optimal. [
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IV. Nonpyapic p

The Shannon code [log1/ p(x)] is expected length optimal (a
Huffman code) if p is dyadic and is within 1 of expected length
optimal for arbitrary p. Similarly, [log1/p(x)] is competitively
optimal if p is dyadic. We now ask about the competitive
performance of [log1/pl in general.

Let I(x)=[logl/p(x)l. We now show that / competitively
dominates "+ 1 for all uniquely decodable codes /'.

Theorem 3: If I{x)=[log(1/p(x))], then
Esgn({(X)-(I'(X)+1)) <0,

for all uniquely decodable assignments /'(x).

Proof: From I =[log(1/p)] we have 27/ < p <2-27". Thus

Esen({(X)~(I'(X)+1)) < Y p(x)(2I»-0-1 1)

=2 Sp(oat oy

2 ,
<3 Y272 -1

=Y2"-1<0. ]

V. REPEATED PLAYS

The previous results easily extend to sequences of random
variables. Suppose p(x) is dyadic and we wish to encode blocks
(X, X, -, X,,), where X, X,, -+, X, are independent identi-
cally distributed according to p(x). Consider the myopic encod-
ing (X, X,,~ -, X,)=2"I(X,), where [(x;)=logl/p(x)),
obtained by concatenating the codewords associated with the
individual symbols,

We observe that p(x,, -+, x,) is also dyadic, and I(x,," -
=log(1/p(x,," -, x,)). Consequently,

x,)

st

ESgn(ll(Xl’XZ’. ’ "Xn)_l(XI’XZ7. ! .’Xn)) >0

for all "+ [, for all n. Thus the short term goal of designing the
competitively shortest code at time n =1 is completely compati-
ble with designing the shortest code for any time. Simply con-
catenate the codewords.

VI. SummMaRY

Let I(x)=[log(1/ p(x)]. Then for any other uniquely decod-
able assignment ['(x) we have shown that / competitively domi-
nates I'+1 and also dominates /'+1 in expected value. If p is
dyadic, ! competitively dominates /' and also dominates /' in
expected value. These results indicate that the Shannon code-
word length assignment /(x)=[log(1/p(x))} has optimal short
run as well as optimal long run properties.
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A Note on D-ary Huffman Codes

Renato M. Capocelli, Senior Member, IEEE and
Alfredo De Santis, Member, IEEE

Abstract —An upper bound on the redundancy of D-ary Huffman
codes in terms of the probability p, of the most likely source letter is
provided. For large values of p,, the bound improves the one given by
Gallager. Additionally, some results known for the binary case (D = 2)
are extended to arbitrary D-ary Huffman codes. As a consequence, a
tight lower bound that corrects a bound recently proposed by Golic and
Obradovic is derived.

Index Terms —Huffman coding, entropy, codeword, source coding.

I. INTRODUCTION

Let A be a discrete source with N letters, 2 < N <o, and p,
denote the probability of letter a,, 1<k < N.Let D,2 <D <o,
denote the size of the code alphabet. Let {x,,x,, " -, xy} be a
set of D-ary codewords and n,n,,- ,ny be the codeword
lengths. The Huffman encoding algorithm provides an optimal
prefix code C for the source A. The encoding is optimal in the
sense that codeword lengths minimize the redundancy r, defined
as the difference between the average codeword length E of the
code and the entropy H(p,, p,,"**, py) of the source:

N N
r=E—H(p,,ps ", Pny)= 2, pn;+ 3 p;log, p;.

i=1 i=1

According to Shannon’s first theorem, the redundancy of any
Huffman code is always nonnegative and less than or equal to
one.

In a remarkable paper [1], Gallager has proved that, knowing
the probability of the most likely source letter p |, the following
upper bound holds:

r<op+p,D/InD,

ey

where o), = log, (D —1)+log,, (log,, e)—log, e + (D — 1)~
For binary codes (D = 2) bounds better than (1) are known [1],
[3], [4], [5], and [6]. Bound (1) improves the Shannon limit, » <1,
only when p,<y,=0~-o0,)InD)/D. Moreover vy, ap-
proaches 0 as D gets large. Indicatively, one has that y, = 0.316,
vs=0.259, y,,=0.168 and vy,,=0.099. Finding upper bounds
tighter than the Shannon limit for y, < p, <1 is therefore an
open problem.

A necessary and sufficient condition for the most likely letter
of a discrete source to be coded by a single symbol with a binary
Huffman code was first obtained by Johnsen [3]. Capocelli ef al.
[4] extended this result to the case of a two symbol codeword.
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