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A straightforward simulation technique is adequate for error 
probabilities greater than 10e4, but requires too much time to 
practically evaluate smaller error probabilities. To obtain results 
for smaller error probabilities, we used importance sampling 
[71, k31. 

In Fig. 3 we show the results of the numerical simulations for 
a channel with 32-ary orthogonal signaling. The block length of 
the code was 31 symbols, and the minimum distance of the code 
was set equal to 7. Although this set of code parameters is the 
same as those used in Section IV-A, the actual code is quite 
different, due to the fact that the symbols are no longer binary. 
In addition, note that the results for this chapter are compared 
to errors-only coding, and not to GMD decoding. Results for 
GMD decoding are considerably more difficult to obtain by 
simulation because the ai’s do not have a convenient distribu- 
tion. A straightforward simulation for GMD decoding would be 
slower due to the need to simulate the demodulator output for 
each letter aj. In addition, the implementation for improved 
GMD decoding is nearly the same as that of GMD decoding. 
Since the improved version is always better, there is no reason 
why it should not be used instead. 

If we compare these results to those obtained for binary 
orthogonal signals, we can see that the relative performance of 
improved GMD decoding and errors-only decoding has the 
same appearance as a function of the signal-to-noise ratio. In 
fact, the performance difference between improved GMD de- 
coding and errors-only decoding for the results of Section III 
and this section are almost identical as a function of codeword 
error probability. 

V. CONCLUSION 

In this correspondence, we presented two improvements to 
the generalized-minimum-distance decoding acceptance crite- 
rion. The definition of the reliabilities has been extended so that 
nonbinary signal sets can be better handled, in particular, it is 
possible to use the true likelihood metric. In addition, we have 
developed a new acceptance criterion using the vector reliabili- 
ties that is less stringent than previous conditions. We have 
shown that the performance (when using the new acceptance 
criterion) of the improved algorithm (in additive-white-Gaussian 
noise) is asymptotically the same as that of maximum-likelihood 
decoding for channels using M-at-y orthogonal signaling. 
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On the Competitive Optimality of Huffman Codes 

Thomas M. Cover 

Abstract -Let X be a discrete random variable drawn according to a 
probability mass function p(x), and suppose p(x), is dyadic, i.e., 
log(l/p(xll is an integer for each x. We show that the binary code 
length assignment 

j(x) = log(l/P(x)) 
dominates any other uniquely decodable assignment I’(x) in expected 
length in the sense that E/(X) < E/‘(X), indicating optimality in long 
run performance (which is well known), and competitively dominates 
I’(x), in the sense that Pr{/(X)</‘(X))> Pr(/(X)>I’(X)), which indi- 
cates I is also optimal in the short run. In general, if p is not dyadic, 
then I = [log l/p1 dominates I’+ 1 in expected length and competitively 
dominates I’ + 1, where I’ is any other uniquely decodable code. 

Index Terms-Huffman codes, Shannon codes, competitive optimality, 
optimality of Huffman codes, data compression. 

I. INTRODUCTION 

Flying on Mexican airlines into the United States, one ob- 
serves two signs on the bulkhead: No smoking, and under it, No 
fumar. The other says, Fasten seat belts, and under it, 
Abrocbarse el cinturon. Note that the “Fasten seat belts” sign is 
shorter in English than in Spanish, while the reverse is true of 
the “No smoking” sign. Thus English and Spanish are “competi- 
tively” equal for this example-each language is shorter half the 
time. However, the average number of symbols for these two 
signs clearly favors English over Spanish. Is it conceivable in 
general that brief translations are shorter in Spanish more often 
than they are in English, while long translations are shorter in 
English than they are in Spanish? Mathematically put, we ask 
whether it is possible that Pr(L, 2 Is)> l/2 while El, I El,, 
where I, and l,Y are the lengths of the English and Spanish 
versions. 

Here is a coding example where one observes this sort of 
anomalous ordering. We consider a random variable X that 
takes on four possible values and we assign the encodings C, 
and C, into binary strings as follows: 

x= 1, 2, 3, 4 

C,(x) = 000, 001, 010, 011 

I,(x) = 3, 3, 3, 3 

C,y(x) = 00, 01, 10, 1111111 

I,y(x) = 2, 2, 2, 7. 

The expected description lengths under each code are 

EI,(X)=3; El,(X)=3+, 

while the probability that code C,s is shorter than code C, is 

Pr{l,(X)>I,s(X)} =+ 
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Notice how the Spanish word length assignment I,s(x) undercuts 
the English assignment for x = 1,2,3. One notes that the ex- 
pected value of I, is less than the expected value of /,s. On  the 
other hand, because I, is dominated by l,s in three out of the 
four cases, the probability that I, > l,s is :. Thus, in this exam- 
ple, (binary) English is longer most of the time but is shorter on 
the average. 

This coding example illustrates the possibility of different 
orderings under the two criteria, but lacks charm because both 
encodings are extraordinarily wasteful. There is a reason for this 
which will be proved in Theorem 1. Apparently optimal codes 
(Huffman codes, for dyadic distributions) enjoy the distinction 
of being shorter on the average and also on the average shorter 
in a sense that will be made precise. 

We first review the well understood notion of expected length 
optimality and then define competitive optimality. An inequality 
will be proved that will be used to show that Huffman codes for 
dyadic sources are strictly competitively optimal and strictly 
expected length optimal. A similar but somewhat weaker result 
will be proved for nondyadic distributions. 

The main point to be made from all of this is that Huffman 
coding for dyadic distributions has an unexpected bonus. Not 
only is it expected length optimal, but it cannot be undercut by 
another code more than half the time, even if the other code is 
granted infinite expected length. 

II. DEFINITIONS 

We wish to show that codes with word lengths I(x)= 
log I/p(x) arc shorter than any other code assignment I’(x) 
more often than not in the sense that 

Pr (I < I’} > Pr {/ > I’}, 

or equivalently, 

Cdx)sgn(l(x)- /‘(xl) < 0, 
A- 

for all uniquely decodable assignments I’(x), where sgn(t) is 
defined by 

l 

1, t>O 
m(t)= 0, t=O 

-1, t <o. 

Throughout, log denotes log to the base 2. 
We recall the theory of data compression for the discrete 

random variable X-p(x), XEX=(X,,X~;..,X,,,}, p(x;)>O, 
Cp(x,)= 1. Let l(x) denote the length of the binary codeword 
assigned to x E X. By the Kraft-McMillan inequality [4], the 
word lengths I(x) correspond to a uniquely decodable binary 
code if and only if 

c 2-‘(-‘)1 1. (1) 
.v E x 

We use the following definitions: 
Definition: The probability mass function p(x) is said to be 

dyadic if log(l/p(x)) is an integer for each x E X. 
Definition: A code with length assignment 1 dominates code I’ 

in expected lcwgth if 

El(X) I El’(X). 

Definition: A code 1 competitil,ely dominates I’ if 

Pr{l(X)<I’(X))2Pr(l(X)>I’(X)}. 

WC will say that 1 is competitil,ely optimal if I competitively 
dominates all other uniquely decodable assignments I’. 

Remark: It is worth noting that expected length optimality is 
not well defined if H(x) = =, while competitive optimality may 
still bc achicvablc. 

It is known that I(X)= [logl/p(x)] codes are close to opti- 
mal in expected length, where [tl denotes the least integer 2 t, 
as shown in the following theorem. 

Theorem 1 (Shannon (I/) Let l(x) = [log l/p(x)]. Then 
H(X)rEI(X)<H(X)+l (4 

with equality iff p(x) is dyadic. Moreover, if p is dyadic, 

El(X) 5 E/‘(X), for all I’, (3) 
if p is dyadic. Finally, 

EI(X)IE(I’(X)+l), forall/‘, (4) 
for any p(x). 

Thus 1 is expected length optimal if p is dyadic and within one 
of optimal in general. 

Proof: By definition of I(x), 
1 1 

log ~ 
P(X) 

<l(x) <log- 
P(X) 

+1. 

Taking expectations yields (2). Since any uniquely decodable 
code has word length assignments I’(x) satisfying (l), the infor- 
mation inequality Cp(x)log p(x)/2-“(“) 2 0 yields El’(X) 2 
H(X), with equality iff I’(x) = I(x), thus proving (3). This in- 
equality together with (2) yields (4). 0 

III. COMPETITIVE OPTIMALIT\ 

We now examine the performance of the Shannon code 

l(x) = rloP(l/P(x))l 
with respect to the competitive shortness criterion 

Esgn(l’(x)-l(x)). 

Our  proof will be based on the inequality 

sgn(t)l2’-1, t=0,*1,*2;... (5) 
Note that this inequality is false if t is unrestricted. We first 
examine the case where the Shannon code is the Huffman code, 
which occurs when p(x) is dyadic. 

Theorem 2: If p is dyadic, then 

Esgn(l’(x)-l(x)) CO, (6) 

for all I’# I satisfying the Kraft inequality. This is equivalent to 
Pr {I < I’} > Pr {I > 1’) 

for all uniquely decodable codes I’# 1. 

Proof Let I(x) = log(l/p(x)). Then 

Pr{I>I’}-Pr{l<I’}=Cp(x)sgn(l(x)-l’(x)) 

2 cp(x)(2”‘“‘-“““-l) 

= c 2-‘(2” - 1) 

= cp- X2-l 

= X2-L 1 

5 0, (7) 
where the first inequality follows from (5) and the second from 
the Kraft inequality. This establishes weak inequality in (6). To 
show the strict inequality and thus that 1 is uniquely optimal, we 
note that the first inequality in (7) is an equality only if t = 0 or 
1. Thus either I’(x)= I(x), or I’(x) = I(x)+ 1. If 1’(x) = I(x)+ 1 
for any x, then the Kraft inequality is strict: Z2”(‘) < 1, and (7) 
is a strict inequality. We conclude that equality holds in (7) if 
and only if I’(x) = /(x) for all x. Thus I is uniquely optimal. 0 
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IV. N~NDYADIC p A Note on D-ary Huffman Codes 
The Shannon code [log l/p(x)] is expected length optimal (a 

Huffman code) if p is dyadic and is within 1 of expected length 
optimal for arbitrary p. Similarly, ]logl/p(x)] is competitively 
optimal if p is dyadic. We now ask about the competitive 
performance of ]logl/p] in general. 

Let I(x) = ]logl/p(x)]. We now show that 1 competitively 
dominates I’+ 1 for all uniquely decodable codes I’. 

Theorem 3: If I(x) = ]log(l/p(x))], then 

Esgn(l(X)-(I’(X)+l)) 10, 

Renato M. Capocelli, Senior Member, IEEE and 
Alfred0 De Santis, Member, IEEE 

Abstract-An upper bound on the redundancy of D-ary Huffman 
codes in terms of the probability p, of the most likely source letter is 
provided. For large values of p,, the bound improves the one given by 
Gallager. Additionally, some results known for the binary case (D = 2) 
are extended to arbitrary D-ary Huffman codes. As a consequence, a 
tight lower bound that corrects a bound recently proposed by Golic and 
Obradovic is derived. 

for all uniquely decodable assignments I’(x). 

Proof: From I= ]log(l/p)] we have 2-‘1 p < 2.2-‘. Thus 

Esgn(l(X)-(I’(X)+l))I Cp(x)(2”x’P”‘“‘~1-1) 

= ; Cp( x)2/(.‘)-l’w _ 1 

<; c2-‘(2’-“)-1 

= c 2~” - 1 I 0. q 

Index Terms -Huffman coding, entropy, codeword, source coding. 

I. INTRODUCTION 

Let A be a discrete source with N letters, 2 I N  <co, and pk 
denote the probability of letter a,, 1 I k I N. Let D, 2 I D  <co, 
denote the size of the code alphabet. Let {x,,xz; . .,x,} be a 
set of D-at-y codewords and n,,n,; . ‘,nN be the codeword 
lengths. The Huffman encoding algorithm provides an optimal 
prefix code C for the source A. The encoding is optimal in the 
sense that codeword lengths minimize the redundancy r, defined 
as the difference between the acerage codeword length E of the 
code and the entropy H( p I, pz,. . . , pN ) of the source: 

V. REPEATED PLAYS 

The previous results easily extend to sequences of random 
variables. Suppose p(x) is dyadic and we wish to encode blocks 
u,, x2,. . ., X,,), where Xl, X,; . ., X,, are independent identi- 
cally distributed according to p(x). Consider the myopic encod- 
ing ,(X,,X,;..,X,,)=C:‘=,I(X,), where I(x,)=logl/p(x,), 
obtained by concatenating the codewords associated with the 
individual symbols. 

N N 

r=E-H(p,,p,;.., pN)= Cp,n;+ Cp,log,p;. 
i=l i=I 

According to Shannon’s first theorem, the redundancy of any 
Huffman code is always nonnegative and less than or equal to 
one. 

We observe that p(x,, . . .,x,,) is also dyadic, and I(x,; .,x,,) 
= log(l/P(x,,~~ ., x,,)). Consequently, 

In a remarkable paper [l], Gallager has proved that, knowing 
the probability of the most likely source letter p,, the following 
upper bound holds: 

r I a,., + pl D/In D, (1) 

for all I’+ 1, for all n. Thus the short term goal of designing the 
competitively shortest code at time IZ = 1 is completely compati- 
ble with designing the shortest code for any time. Simply con- 
catenate the codewords. 

VI. SUMMARY 

Let I(x) = ]log(l/p(x))]. Then for any other uniquely decod- 
able assignment I’(x) we have shown that 1 competitively domi- 
nates I’+ 1 and also dominates I’+ 1 in expected value. If p is 
dyadic, I competitively dominates I’ and also dominates 1’ in 
expected value. These results indicate that the Shannon code- 
word length assignment I(x) = ]log(l/p(x))] has optimal short 
run as well as optimal long run properties. 
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