gorithm
kely.

23

Kolmogorov Complexity, Data Compression, and Inference

Thomas M. Cover
Stanford University

Abstract

If a sequence of random variables has Shannon entropy H, it is well known
that there exists an efficient description of this sequence which requires only H
bits. But the entropy H of a sequence also has to do with inference. Low
entropy sequences allow good guesses of their next terms. This is best illustrated
by allowing a gambler to gamble at fair odds on such a sequence. The amount of
money that one can make is essentially the complement of the entropy with

respect to the length of the sequence.

Now suppose that the sequence is mot random. Although the entropy of
such a sequence is not defined, there is a notion of its intrinsic descriptive com-
plexity. This idea, put forth by Kolmogorov, Chaitin, and Solomonoff, says that
the intrinsic complexity of a sequence is the length of its shortest description. .
Here too there is a tradeoff between cbmplexity and inference. Low complexity

sequences allow a high degree of inference. Again there is a gambling tradeoff.

Finally, it will be shown that if a sequence is random and has entropy H,

then with high probability its Kolmogorov complexity will also be H.

e e MMM AY ok (T R ot AV e

Special attention will be given to the so-called Kolmogorov H function, a
function that has not yet made its appearance in the literature. We argue that it
plays the role of a minimal sufficient statistic. Thus, we can assert that thereis a

sufficient statistic for the Mona Lisa. This idea will capture the fundamental
structure of geometrical patterns, probability distributions and the laws of

nature.
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1. Kolmogorov Complexity.

Let N denote the natural numbers {0,1,2,...} . Let z E {0,1}* denote an |
infinite binary sequence z = (z,,z,,...} and let z(n) = (24,25, . ..,z,) denote;
the first n terms. Let {0,1}* denote all binary sequences of finite length. Let_:
A be a partial recursive function A: {0,1}* X N — {0,1}* . We restrict A to

have a prefix free domain, i.e., no program p accepted by A is the prefix of '

another. Let [(z) denote the length of the sequence z. Then

Ky(z(n)|n) = 1(s) '

]

_is defined to be the complexity of z(n) with respect to the algorithm A, given%

min
A(p,n)=-z(u)

the length n of the sequence z(n). Similarly, let

Kplz) = min 1(p) @ |

. Alp0)=2

H

If A is a universal partial recursive function, then K A » or simply K, is called

the Kolmogorov complexity {1,2,3,4,5,9,10,11). We know that

1) K(z(n)|n) < Kp(z(n)[n)+ cp forall neN, \ 2z (3)

i) [z €{01)* :K(z) <k} <2,V keN. "

Now we define a complexity measure for functions J : D — {0,1}, where the:

domain D is some finite set. Let A be a universal partial recursive function

Definition (Function complexity)

i AR

K f|D) = min | 5
AU1D) = min 1) ©

s€ED
Thus the complexity of f given the domain D is the minimum length program p .
such that a Turing machine A4, or equivalently a mechanical algorithm A, can

compute f(z) in finite time, forall z € D .
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9. Some More Properties of the Kolmogorov Complexity K.

First some examples. Let all sequences z € {0,1}* . Let n be known to

1ote an
denote the computer. Let 0* denote a sequence of n 0's. Examples:
h. Let? , )
i 1. K(0*|n)=c (some constant independent of n ). (8)
¢t Ato!
.refix of 2. K(mymym,|n)=c, where mm, are the first n bits of «. (7)
| 3. K(1st n bits of Shakespeare [n)~ n/f4. 8)
(1) '
4. K(ayapa,|n)= 7 ,where a is the ith bit in the binary
4, given
expansion of the fine structure constant &= e/ he . {9)
® | 3
K(II:ZZ"'xnln)th(_n'Ezi)+log"+c'
Te=]
is called
If X; ~ Bernoulli (p), (10}
® | then Pr{l L K(GX; - X, |n) - hlp) | > ) =0 (1)
(4) 3 We investigate some additional properties of K. Again, we assume n known
£ to the computer.
where the :]
. % Proposition 1:
:tion 2
: K(z(n)|n)<n+ ¢, foral z€ {o01}". (12)
(5) | Proof: The program “Print 225 -« 2, ” achieves the bound.
' Proposition 2:
program p : :
K(z) < K(z|l{z)) + 2 log l(z)+ ¢, forall z€{01}" . (13)
im A, can

Theorem: (Complexity version of law of large numbers) (Fine [8])



1 &2 1 ' #
K(xlzz-'-nln)Zn(l—e)=>l:Ex;-—-2-|<e, (14)

f=] -

where ¢ — 0 as ¢ — 0. Thus high complexity sequences satisfy the most fre-; :nr :
quently used test for randomness. : exh:
the
gen«
3. Gambling on Patterns. and

We shall now develop some properties of the function complexity defined in-. cort
Equation (2). This section follows the development in Cover [7].

Given a domain D of patterns D = {z;,75,...,2,} and an unknown
classification function f : D — {0,1} assigning the patterns to two classes, we§ No
ask for an intelligent way to learn f as the correctly classiﬁéd elements in D are ; prot
presented one by one. We ask this question in a gambling context in which a 1 AC
gambler, starting with one unit, sequentially bets a portion of his current capital ‘ the
cn the classification of the new pattern. We find the optimal gambling system i pew
when f is known a lpfiori to belong to some family F. We also exhibit a univer- )
sal optimal learning scheme achieving expy(n — K(f | D) - log(n + 1)) units for ‘
each f, where K(f[D) is the length of the shortest binary computer programg Con’
that calculates f on its domain D. In particular it can be shown that a gamblerg
can double his money aproximately n(l- H(d /n))  times, where ; ind
H(p)} = -p log p - (1-p)log(1-p) , if f turns out to be a linear threshold func-
tion on n patterns in d-space. :

Let F denote a set of (classification) functions f : D — {0,1} . For exam- as a
ple, F might be the set of all linear threshold functions. Let |F| denote the | class
number of elements in F. ‘

The interpretation will be that D is the set of patterns, and f(z) is the obse
classification of the pattern z in D. :
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Consider the following gambling situation. The elements of D are presented
in any order. A gambler starts with one dollar. The first pattern z, E D is
exhibited. The gambler then announces amounts b; and b, that he bets on
the true class being f(z;) =1 and f{z)) = 0, respectively. Without loss of
generality we can set by + by ==1. The true value f(z,) is then announced,
and the gambler loses the incorrect bet and is paid fair odds {2 for 1) on the
correct bet, Thus his new capital is

2b1 y f(xl) == 1

S1= 128, flz)=0.

Now a new pattern element z, € D is exhibited. Again, the gambler announces
proportions b, and by of his current capital that he bets on f(z,) =1 and
f(z5) = 0 respectively. Without loss of generality, let b6y + by =1. Thus
the bet sizes are 5,S; and 835, . Then f(z) is announced and the gambler’s
new capital is

2615;, flz)=1
2= 25,8, flz)=0.

Continuing in this fashion, we define

b[k)[ T I(Ilsf(zl))i R r(zk—bf(xk-l))] y T € D '
and

b =1-8{" ) >0, 88 >0,

as a gambling scheme that depends only on the previously observed properly
classified {training) set.
The accrued capital after all patterns z,,75, ... ,%,, # = |D| , have been

observed is



for ¥ =12,.,n and Sy=1. Let

denote a sequence of gambling functions,

achieving S,(f) = §°* = 2*-01F| ynits, for all f in F and for all orders of

presentation of the elements z € D . Moreover, there exists no b that dom-

pattern z; to classes g(z) =1 and g(z;) = 0 respectively.”

26{95, .y, flz)=1

S, =
g 2688,y , f(z)=0,

N 3

e

s

b= (6§",5{V ),( (66D, ), ..., ((5".f"), E

Theorem 1: For any F C Doy , there exists a gambling scheme 5*

vl

ES

?

‘inates 5* for all [ ; thus, b* is minimax. This gambling scheme is given by':

3

the expression :]

|{g € F:g(zl) = f(zl): t = 1r21"'7k"1: and g(z) = I}I ,
{H{g € F:g(z) = [(z), i = 1,2,....k-1}|

bf9)*(z) =

Remark: This gambling scheme simply asserts at time %k, “Bet all of the:

current capital on the hypotheses f(z;)=1 and f{2,) =0 in proportion to

the number of functions g in F that agree on the training set and assign the new

The proof will not be given here but can be found in [1].

Applications and Examples:

om0 RS AT BN

Let F be all 2" functions f :D — {0,1}, where n = |D]. Theni
log|F] =n,and §*=1. No money can be gained. The training set
gives no information about future pattern classifications. This is the worst

case.
Let D denote a set of n vectors in Euclidean d-space RY. Let us also
assume that {z;,z5,...,2,} = D is in general position in the sense that

every d-element subset of D is linearly independent. Let F' be the set of all
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linear threshold functions on D; i.e., f € F implies there exists w € R¢,

T € R, such that
f(z)=sm(vw'2-T), ¥ z2D,
where

‘ 1, =
sgn{t) = {0, t<0.

Then from Cover [8], we have

4 n-1
Fl=2% (p )o ¥ don.
=0

Using bounds derived from Stirling’s approximstion, it can be shown that

d n-1 d
lg(2 3 (' )= nH(L), for n>2d,
k=0

where H(p) = -p log p — {1-p)log{1-p} is the Shannon entropy function.

Thus we conclude, for n > 2d , that an amount S, = gn(1-H(d/n)) can
be won if in fact the n patterns are linearly separable in R? . Note also
that H(d/n) is the Kolmogorov complexity of most of the linear threshold
function f € F . Finally, we observe that S, is not much greater than 1
until n > 24, at which point the behavior of S, is exponential. This is

yet more evidence that n = 2d is a natural definition of the capacity of a

linear threshold pattern recognition device with d variable weights.

Let F be the set of al] functions f : D — {0,1} that can be represented by

rth degree polynomial discriminant functions:

f('.b’) = sgn E w;l,-,. ce z;lz;, e 27," -T ]

Tbgy o o oy by

If the elements of D are in general position with respect to rth degree poly-

» d-1 n-1
nomials, we see [8] that there are precisely 2 Y, ( g ) elements in F
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where d is the number of coefficients in an arbitrary rth degree polynomial

in d variables. For example, for r =2, d = 2, we have

f(z) = oz} + agezF + eppE7 + 6,7y + a7, + gy,

and d =6.
The point is that d is the number of degrees of freedom of the manifold
{z:f(z) =0} . Again by the theorem, we have S, > gn(1- H(d'/a)) ,
where now 4 is the number of degrees of freedom of the family of separat-

ing surfaces F.

‘Suppose it is not known what degree polynomial is needed to classify D

correctly. Since the degree r need take on only (# 4+ 1) values before the
degree is sufficient to make an arbitrary assignment f, we merely invest an
initial amount 1/(n 4+ 1) in the betting system for each degrce

r = 0,1,...,n . Then the theorem becomes

Sif) > er-H@U) ) ~legls + 1) | for all f: D — {0,1}

where d(f) is the number of degrees of freedom of an rth degree polyno-

mial, and r is the minimal degree necessary to yield f.

'Theorem: These results are special cases of the following theorem:

- Theorem: There exists a betting scheme &* such that the total accumu-

lated capital satisfies

Simply write a program saying “f is the ith function in the lexicographically

S(f) 2 2* -~ K(f | D) ~log(n + 1) i
Comment: If [ is a linear threshold function, then

i1 n-1
K(/ID)<log2( B (f )+ e
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ordered list of linear threshold functions on D”. Thus 1§ requires

-1 n-1 :
log2( 3 ( p )) bitsand ¢ is the length of the rest of the program specified
k=0

above.
Similarly, the polynomial threshold functions can be seen to be special cases

of this theorem.

4. Kolmogorov’'s H; Function.
Consider the function H, : {0,1}* = N, Hi(z) = ’r?i)n<h log| S| , where
pil{p)<

the minimum is taken over all subsets S C {0,1}", such that z €S,
U(p) = 8§, I(p) < k. This definition was introduced by Kolmogorov in a talk
at the Information Theory Symposium, Tallin, Estonia, in 1974. Thus H(z) is
the log of the size of the smallest set containing z over all sets specifiable by a

program of k or fewer bits. Of special interest is the value
k*(z) = min{k:H(2z)+ k= K(z)} .

Note that log|S| is the maximal number of bits necessary to describe an arbi-
trary element z € $. Thus a program for z could be written in two stages:
“Use p to print the indicator function for S; the desired sequence is the ith
sequence in a lexicographic ordering of the elements of this set.” This program
has length {(p) + log|S| , and k°(z) is the length of the shortest program p
for which this 2-stage description is as short as the best 1-stage description p° .
We observe that z must be maximally random with respect to S — otherwise the
2-stage description could be improved, contradicting the minimality of K(z).
Thus k°(z) and its associated program p constitute a minimal sufficient descrip-

tion for z.
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(2]

8]

[4]

(5]

(6]
7}

and the associated program is “S is the set of all =z € {0,1} such that

22"=k.”

S* describe all of the “structure” of z. The remaining details about z are con- °
ditionally maximally complex. Thus pp**, the program for $*, plays the role :

of a sufficient statistic.

1.

 Example: Let =z € {0,1}", i‘ 7; =k. Then F*(z)=3log(n + 1),

Vmel

R A, ok b st

Arguments can be provided to establish that %*(z) and its associated set i
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