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THIS PAPER is concerned with some problems of a combinatorial
geometric nature which are related to the general problem of describing
the behavior and capacity of networks of linear threshold devices.

We shall first review the problems of counting the number of linearly
separable dichotomies and counting the number of linearly inducible
orderings of n points in d-space. We shall use the form of the solutions
of these two problems to guess the solution to a third—that of counting
the number of linearly inducible r-chotomies of n points in d-space.
During this development we shall mention several straightforward tech-
niques for solving linear orderings.

Finally, we shall investigate the computational capacity, as a function
of the number of variable weights, of arbitrary networks of linear thresh-
old devices. All of our results tend to indicate that the pattern-classify-
ing capacity of networks of linear threshold devices is of the same order
of magnitude as the number of variable weights. Hence, some idea is
given of the number of patterns necessary to train such systems.

The lLinear Dichotemization Problem

Let C{n,d) be the number of ways in which » patterns in general posi-
tion in d-space may be partitioned into two sets X, and X, by the assign-
ment function
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xeX,ifwx=0
xeX,, if wix <O
where w is a freely chosen weight vector in Euclidean d-space.
This problem has a long history of contributions,”™ culminating in
Winder’s® very nice generalization to points not in general position.
It can be shown that C{n,d) satisfies the recurrence relation
] Cin,d)=C(n-1,d}+C(n-1,d-1)
with the boundary conditions
Cnd)=2,n=1,2,..
c(i,d=2,d=1,2,..

yielding the solution

C(nd)_zgl(”—l)

k=0
‘where A (";I)=(n— DYk (n— I —k)!

Thus C(n,d) is independent of the precise configuration of the pat-
terns up to general position.

The Linear Ranking Problem

Consider a collection of n pattern vectors Xy, Xp, ..., X, i E¢ which
are ranked according to their orthogonal projection onto a reference
vector we E% If # is a permutation of the integers 1 ,2,..., n we shall
-say that the ranking 7 is ]mearly inducible if there exists a weaghtmg
vector weE? such that

W) > Wity >0 o0 > Wkaa)
Let Q(n,d) be the number of linearly 1nduc1ble rankings of n pattern vec-
tors in E4. If the patterns are in general position it has been shown®™#
that Q(n,d) satisfies the recurrence relation
Q(n,d)=Q(n-1,d) +(n-1) Q (n-1,d-1)

with the boundary conditions

Qn,1)=2 n=23,...

0Q2.d)y=2 d=12,...
_This relation was first surmised by Bennet® and was elaborated upon
in Bennet and Hayes” in connection with the problem of determining
the minimum natural dimension for a set of data points for which an
ordering of the interpoint distances is specified. Their proof, which is
heuristic in nature, is completed and established rigorously in Cover®,
and an explicit specification of general position (with respect to the linear
ordering problem) is provided as a consequence.
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This system has the solution

con=23, (") AR

where

- *
(%) = S

where the summation is over

1 <iy<ip<...<ip<n
Here, as in the case of C(n,d), we see that Q(n,d) is independent of the
configuration of the pattern vectors up to general position.

Achieving Linear Rankings

Before proceeding to the r-chotomization problem in the next section,
we should like to mention some simple methods for the determination
of a weight vector w* achieving a desired linear ordering 7.

Consider the algorithm which, upon being presented a pair of pattern
x; and x; at the kth stage, increments the weight vector wy by x; — x; only
if w, incorrectly orders x; and x,. Specifically, for (i) < w(j),

I3
B +oxe - X, WX < WX
k1 Wi, H)!k Xy > Wi X;

Then, by the percepiron convergence algorithm, for any sequence of
_pairs of vectors from x,, x5,...,x, the sequence of weight vectors w;
will make only a finite number of mistakes. Moreover, if a sequence of
pairs of vectors is presented in which each pair occurs infinitely often
(for example, if we run serially through the set of all pairs), then {w,}
converges, in a finite number of corrections, to a vector w* which yields
the desired ordering.
If an orderly procedure like the fixed increment, relaxation, or simplex
method is to be used for training, an lmportant saving in time will be
“effected if only the n — 1 extreme pattern palrs (e, = x3,)s Oy = X ) o oy
(xin_i Xi,) correspondmg to the ordenng (iiy, iz 5 - . ., i) are used for train-
ing. Since all other inequalities are consequences of‘these, the number of
patterns in the training set is reduced from (3-) to n— 1.

THE r-CATEGORY LINEAR ASSIGNMENT PROBLEM>

Consider using hyperplanes to partition a pattern set {xy, Xs,...,X,}
into r categories.
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Let X, X,, ..., X, be apartition of {x,, X, .. ., xp}. Then several defini-
tions of r-separability seem to be natural in the context of this discussion.
For example, we may say that X;, X,,...,X, is r-separable if there
exist »-1 hyperplanes which partition d-space into cells such that no two
patterns from different X’s lie in the same cell. Or we may restrict the
hyperplanes to be parallel in the above definition. We may even wish to
add the constraint that each of the X;’s be completely contained in a single
cell of the partition formed by the hyperplanes. Clearly there are other
possible natural definitions. Unfortunately, we do not know at this time
which definition leads to the number of r-chotomies C, (#,d) which we
shall now develop.

Consider » points in general position in d-space. Since the number of
linearly inducible dichotomies C(n,d) satisfies

Cln,d)y=C(n-1,d)+ C(n-1, d-1)
and since the number of linearly inducible orderings Q(n,d) satisfies
Qnd)=0(n-1,d+(n-1) Q(n-1,d-1)
it seems, by analogy, that the number of linearly inducible r-chotomies
C{n,d) should satisfy
CAnd)=CAn-1,d)+ (r-1) C{n-1,d-1)

Examining this relation, we find, assuming natural boundary conditions,
that

Condy=r JZI (”;) (1)

=0

Since there are r* possible partitions of » points into  sets, we see that
the probability that a “random” r-chotomy is linearly inducible is

d-1

CAn,d)r = Z

(") -ty cupryess

iy \ K

which is just the probability that d-1 or fewer successes result from n-1
tosses of a coin with bias (1-1/r}. Since the expected number of such suc-
cess is n(1-1/r), it is clear that C{(nd)/r* is near 1 or-0 accordingly as
d>n(1-1fryord < n(1-1/r).

Thus, it would be natural to define n*=dr/(r—1) to be the pattern classi-
fying capacity of such a system. This value for the capacity agrees pre-
cisely with that conjectured by Brown® and is supported by empirical
evidence gathered by Brown. In the special case r= 2, it agrees with the
definition of capacity in Ref. 3. However, the particular linear threshold
system yielding C,{n,d) remains unknown.




CAPACITY PROBLEMS FOR LINEAR MACHINES 287

Minimum Complexity of a Network

In this section, the material on the linear dichotomization problem
will be applied to a large class of networks of linear threshold units in
order to place a lower bound on the number of variable weights in a uni-
versal network. A network will be called wniversal with respect to a set
of N pattern vectors if the network can implement each of the 2" functions
from the pattern set to { —1,1}. Cameron,'® Winder,"* and Joseph,'* have
~studied several specific network organizations of linear threshold units
‘and have determined lower bounds on the number of linear threshold
units (gates) in a universal network.

It is known® that a single linear threshold unit has a capacity of two
patterns per variable weight. Hence it is natural to ask for the capacity
of a network of linear threshold units in terms of the total number of
variable weights.

i1
-
IKPUT

PATTERN -@_n

YECTORS OF : | e I
UNSPECIFIED
DIMENS 0N

Fig. 1. Network of linear threshold units imbedded in arbitrary but fixed circuitry.

Consider a class A of networks on linear threshold units imbedded in
fixed but arbitrary circuitry, as depicted in Fig. 1. However, in order to
avoid problems of timing and stability it is required that there be no feed-
back from the output of any linear threshold unit to its input. Order the
linear threshold units in any way that is not inconsistent with the flow of
signal from input to output of the network, and let K; denote the number

~of variable weights in the i linear threshold unit. Note that it is not re-
quired that -all the inputs to the " linear threshold unit be utilized, nor is
it required that all the dimensions of the input patterns be accommodated
by the network. Let T denote the total number of weights in a given net-
work in the class A. That is,
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i

Proposition. If a network in A containing a total of T variable weights
is universal with respect to an input set of N patterns, then

N

T>1+10g2N

Proof. An upper bound is to be placed on the number of states of any
T-weight network in A. Consider the rth linear threshold unit, with
‘the weight vectors of the first r-1 linear threshold units fixed. The rth .

unit receives input K,-tuples {x,’,x,’, ... xy’ } corresponding to the set
of N inputs {x,,%s, ...,xy} to the network. Then, from the section on the

linear dichotomization problem there are at most C(N,K,} different

states of the rth unit with respectto {x;", %', ... xy } {There are precisely
" C(N,K,) states if every K ,-element subset of {x1 W Xo' 5. .., xy }is linearly

independent.) Hence, an upper bound #(N,T) on the number of states of
the network is

- H(N,T)=max I1 2N¥)
EKi =T

Consider the crude bound on C(N,K } holding for all positive integers
N and K:
1

CINK)=2S (2’ ) 2 Nm<onw

m=0 m=0
Thus
HN,T) < (@2N)

There are 2¥ functions mapping {x;,x;,....xy} to {—1,1}. Thus the
number of states of a universal network must exceed 2%, That is,

(2QN)T > 2¥

or

N

T 7 +log, N -
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